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One of the novel interesting topics in the study of cardiovascular disease is the role of the oxidation system, since inflammation and
oxidative stress are known to lead to cardiovascular diseases, their progression and complications. During decades of research,
many complex interactions between agents of oxidative stress, oxidation, and antioxidant systems have been elucidated, and
numerous important pathophysiological links to na number of disorders and diseases have been established. This review article
will present the most relevant knowledge linking oxidative stress to vascular dysfunction and disease. The review will focus on
the role of oxidative stress in endotheleial dysfunction, atherosclerosis, and other pathogenetic processes and mechanisms that
contribute to the development of ischemic heart disease.

1. Introduction

Atherosclerosis is the most common form of large vessel
pathology responsible for syndromes of vital organ ischemic
damage like myocardial infarction [1].

The key pathophysiologic process of atherosclerosis is
chronic inflammation, where oxidative stress plays an
essential role in vascular homeostasis regulation including
endothelial and smooth muscle cell growth, proliferation,
and migration; angiogenesis; apoptosis; vascular tone; host
defenses; and genomic stability. Imbalance in the oxidant/
antioxidant mechanisms leads to oxidative stress and uncon-
trolled vascular injury [2–4].

The relation between heart failure and vascular disease is
also marked by oxidative stress, caused by ischemia, left
ventricular (LV) dysfunction, and neuroendocrinological
activation. Reactive oxygen species (ROS) negatively affect
myocardial calcium handling, cause arrhythmias, and
contribute to cardiac remodeling by inducing hypertrophic

signaling, apoptosis, and necrosis. Neurohumoral activation
via the renin-angiotensin-aldosterone system (RAAS) and
the sympathetic nervous system (SNS), combined with
increased pre- and after-load, impose additional myocardial
oxidative stress [5].

Ageing, traditional cardiovascular risk factors (arterial
hypertension, dyslipidemia, diabetes mellitus and smoking),
genetic predisposition, and environmental factors increase
ROS generation and decrease endothelial nitric oxide (NO)
production. Additional factors like mechanic vascular prop-
erties and geometry, hemodynamic forces, and endothelial
gene regulation by biomechanical forces (atheroprone and
atheroprotective phenotypes), disturbed flow in vascular
regions like arches, branches, and bifurcations can promote
vascular injury, ROS activity, coronary atherosclerosis, and
ischemic heart failure development [6, 7]. The gut microbiota
is involved in mediating metabolic processes associated with
risk factors for coronary artery disease such as obesity,
dyslipidemia, diabetes mellitus, and dyslipidemia. These

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2020, Article ID 6627144, 30 pages
https://doi.org/10.1155/2020/6627144

https://orcid.org/0000-0001-7843-1079
https://orcid.org/0000-0001-6687-8500
https://orcid.org/0000-0001-6903-2439
https://orcid.org/0000-0002-0975-3039
https://orcid.org/0000-0002-9890-6489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6627144


comorbidities via its metabolites can induce development of
atheroslerosis and aterosclerotic coronary artery disease.
The main pathways for these processes are provided via
oxidative stress, inflammation, cholesterol, and uric acid
metabolism [8, 9].

The current therapeutic approach for atherosclerotic
vascular plaque stabilization and disease includes RAAS
inhibitors, statins, and acetylsalicylic acid, because of their
pleiotropic antioxidative effects [10–12]. There is a need to
elucidate oxidative stress physiology and pathophysiology,
to identify novel therapeutic modalities for selective oxidative
stress targeting in atherosclerosis [4].

2. Ischemic Heart Disease

Myocardial infarction (MI) is defined by clinical presenta-
tion, new ischemic electrocardiogram changes, and cardiac
biomarkers elevation. The cause of MI is acute myocardial
injury. Prolonged ischemia (a restriction in tissue blood sup-
ply, causing a deficiency of oxygen) can lead to myocardial
necrosis and cell death. According to the Fourth Universal
Definition of Myocardial Infarction 2018, MI can be divided
into five categories (Figure 1).

MI type 1—caused by atherothrombotic coronary artery
disease (CAD) and usually precipitated by atherosclerotic
plaque disruption (rupture or erosion)

MI type 2—result of a mismatch between oxygen supply
and demand: (a) reduced myocardial perfusion—coronary
artery spasm, microvascular dysfunction, coronary embo-
lism, coronary artery dissection, sustained bradyarrhythmia,

hypotension or shock, respiratory failure, and severe anemia;
(b) increased myocardial oxygen demand—sustained tachy-
arrhythmia and severe hypertension with or without LV
hypertrophy

MI type 3—differentiation from sudden cardiac death
MI type 4—associated with percutaneous coronary

intervention (PCI)
MI type 5—associated with coronary artery bypass

grafting [7]
MINOCA (myocardial infarction with nonobstructive

coronary arteries) can cause MI presenting with typical
symptoms for acute coronary syndrome (ACS) and ST-
segment elevation or equivalent. The underlying cause of
disease may be nonobstructive (<50%) coronary artery
disease stenosis, or mismatch between oxygen supply and
demand, or secondary to myocardial disorders without
involvement of the coronary arteries as myocarditis or
Takotsubo syndrome [13].

Coronary artery disease (CAD) is a chronic, mostly
progressive pathological process with predominant serious
prognosis. This process can be modified by conservative
and invasive treatment to achieve disease stabilization or
regression [14]. Other cardiac conditions that are related to
secondary myocardial injury are heart failure, myocarditis,
any type of cardiomyopathy, Takotsubo syndrome, coronary
revascularization procedure, cardiac procedure other than
revascularization, catheter ablation, defibrillator shocks,
cardiac contusion, systemic conditions, sepsis, infectious
disease, chronic kidney disease, stroke, subarachnoid hem-
orrhage, pulmonary embolism, pulmonary hypertension,

CORONARY ARTERY
DISEASE (CAD)

ACUTE

MINOCA

TYPE 1

a) CAD/stabile angina/dyspnea
b) new onset of HF/LV dysfunction and CAD
c) <1 year after ACS or revascularisation
d) >1 year after initial diagnosis and
revascularisation
e) vasospastic/microvascular angina
f) asymptomatic‑CAD screening

Mismatch between
oxygen supply/demand

Differentiation from
sudden cardiac death

Accociated with PCI
demand

Associated with CABG

TYPE 2

TYPE 3

TYPE 4

TYPE 5

MYOCARDIAL
INFARCTION

CHRONIC

CHRONIC CORONARY SYNDROME

Plaque rupture‑nonobstructive
CAD (<50%) 

a) coronary causes: emboli,
dissection, microvascular disease,
spasm, thrombosis
b) noncoronary causes: associated
with cardiac disorders
c) noncoronary causes: associated
with extracardiac disorders

Atherothrombotic
coronary artery disease

Figure 1: Acute and chronic coronary syndrome definitions and classification [14, 17].
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infiltrative diseases, amyloidosis, sarcoidosis, chemotherapeu-
tic agents, critically ill patients, and strenuous exercise [15].

The leading symptom that initiates the diagnostic and
therapeutic cascade in patients with suspected ACS is chest
pain. Two groups of patients should be differentiated based
on the electrocardiogram (ECG): those with persistent ST-
segment elevation and those without persistent ST-segment
elevation (transient ST-segment elevation, persistent or
transient ST-segment depression, T wave inversion, flat T
waves or pseudonormalization of T waves, or with normal
ECG). The pathological finding at the myocardial level is
cardiomyocyte necrosis or myocardial ischemia without cell
loss [16].

Criteria for type 1 MI and type 2 MI detection are rise
and/or fall of upper reference limit (URL) values with at least
one value above the 99th percentile URL, with at least one of
the following criteria: acute myocardial ischemia symptoms,
new ischemic ECG changes, pathological Q wave develop-
ment, and imaging evidence of new loss of viable myocardium
or new regional wall motion abnormality in a pattern consis-
tent with an ischemic etiology. For type 1 MI identification of
a coronary thrombus by angiography including intracoron-
ary imaging or by autopsy is needed as a one of the criteria,
while evidence of an imbalance between myocardial oxygen
supply and demand unrelated to acute coronary athero-
thrombosis for type 2 MI is a part of key definition [15].

The dynamic nature of the CAD results in various clinical
presentations, which can be categorized as acute and chronic
coronary syndromes. The diagnostic approach and man-
agement for patients with dyspnea and suspected ACS
include assessment of symptoms and signs of disease, eval-
uation of the patient’s general condition and quality of life,
comorbidities evaluation, basic testing and assessment of
LV function, risk assessment of obstructive CAD, diagnos-
tic testing for CAD, and further event risk determination
and treatment [14].

Management—including diagnosis and treatment—of
acute ACS starts from the point of first medical contact.
Out- and in-hospital treatment in acute setting is obligatory:
relief of pain, breathlessness, and anxiety; arrhythmia man-
agement; reperfusion with PCI alone or/with fibrinolysis
strategy, and periprocedural pharmacologic and nonphar-
macologic therapy in a coronary unit [13].

Long-term management following acute treatment
includes life style intervention, risk factor control, blood
pressure and dyslipidemia treatment, glucose lowering ther-
apy, antithrombotic therapy in acute and long-term settings,
possible heart failure treatment, and arrhythmia manage-
ment. Cardiac rehabilitation should be recommended [13].

CAD is a chronic, progressive disease with a predomi-
nantly serious prognosis. The outcome of MINOCA strongly
depends on the underlying cause, and its overall prognosis is
serious, with a 1-year mortality of about 3.5% [13, 14].

3. Endothelial Dysfunction and Oxidative Stress

Endothelial dysfunction caused by oxidative stress is an early
event in the pathogenesis of many cardiovascular diseases
including atherosclerosis, dyslipidemia, hypertension, diabe-

tes, chronic kidney disease, heart failure, and ischaemia/
reperfusion injury [18–23], and it is a hallmark of vascular
diseases. An imbalance between NO bioavailability and
ROS, also called oxidative stress, promotes endothelial dys-
function [24, 25] which is characterized by an altered modu-
lation of vasomotor tone and vascular growth, impaired anti-
inflammatory and antithrombotic endothelial characteristics,
and disturbances of vascular remodeling [26].

The endothelium is a simple squamous layer of cells that
forms an interface between the circulating blood and the vas-
cular wall. A healthy endothelium provides endothelium-
dependent vasorelaxation in response to vascular stress,
controls vascular permeability, and prevents platelet aggrega-
tion [27]. It is very reactive to mechanical stimuli, chemical
factors, and humoral agents by producing several mediators,
such as NO, to maintain vasomotor tone and structural
integrity. NO has a major role in endogenous antioxidant
defense because of its potent vasodilatory, anti-inflamma-
tory, and antithrombotic characteristics [28, 29]. Most of
the vascular NO is produced by endothelial nitric oxide syn-
thase (eNOS), a cytochrome p450 reductase-like enzyme
which uses tetrahydrobiopterin to form NO from L-arginine
[19]. The main causes of reduced NO bioavailability include
increased NO degradation caused by ROS, decreased expres-
sion of eNOS, deficiency of substrates or cofactors for eNOS,
and an inappropriate activation of eNOS caused by impaired
cellular signaling [19, 30, 31]. Also, previous studies exam-
ined the phenomenon called eNOS uncoupling, causing
reduced NO bioavailability by eNOS switching its enzymatic
activity to generate superoxide (O2

-) and H2O2 instead of NO
[32, 33]. This occurs, for example, in the absence of NOS sub-
strate L-arginine or the cofactor tetrahydrobiopterin in that
process [34, 35]. Besides eNOS, which is mostly expressed
in endothelial cells, there are two more isoforms of NO
synthase with other functions—neuronal NOS (nNOS) and
inducible NOS (iNOS) [36], which can also be a subject to
uncoupling [33].

ROS are the products of the normal cellular aerobic
metabolism generated during the reduction of oxygen [19].
ROS include unstable free radicals such as superoxide anion
(O2

-), hydroxyl radical or lipid radicals, and nonfree radicals
such as hydrogen peroxide (H2O2), hypoclorous acid, or per-
oxynitrite which also have oxidizing effects that contribute to
oxidative stress [19]. At moderate concentrations, ROS exert
some physiological roles such as signaling [19, 37], but
increased production of ROS which exceeds endogenous
antioxidant defense mechanisms causes oxidizing of DNA,
proteins, carbohydrates, lipids, and other biological macro-
molecules, leading to oxidative stress [6]. Enzymatic sources
of ROS that are important in the cardiovascular system are
NADPH (reduced form of nicotinamide adenine dinucleo-
tide phosphate) oxidase, xanthine oxidase, and uncoupled
eNOS with an addition of the mitochondrial electron trans-
port chain, cyclooxygenase, and lipoxygenase as additional
possible sources [6, 19, 32, 37]. Furthermore, production of
ROS may be enhanced by free radical chain reactions. Several
studies showed a very important role of NADPH oxidase,
including Nox family oxidases Nox1, Nox2, Nox4, and
Nox5, in endothelial dysfunction [19, 32]. NADPH oxidase
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is an enzyme located in the membrane of endothelial cells,
smooth muscle cells, and fibroblasts, and it is the most
powerful source of O2

- production [38]. Angiotensin II,
thrombin, platelet-derived growth factor, tumor growth
factor-α, and lactosylceramide upregulate this enzyme and
cause excessive ROS production [19]. Previous studies
regarding angiotensin II-induced hypertension, diabetes
mellitus, and hypercholesterolemia demonstrated the impor-
tant impact of NADPH oxidase [23, 38, 39]. Xanthine
oxidase is an enzyme that has a role in oxidation of hypoxan-
thine and xanthine in the metabolism of purines, leading to
production of O2

- and H2O2. The activity and expression of
this enzyme are increased by interferon-γ [19]. The role of
xanthine oxidase in ROS production in hypertension and
hypercholesterolemia has been discovered in previous
research [40–42]. As mentioned before, all three isoforms
of NOS can be a source of ROS when uncoupling occurs,
and NOS starts producing O2

- and H2O2 instead of NO,
but uncoupled eNOS products play a critical role in the path-
ogenetic processes of cardiovascular diseases [33]. This was
shown in previous studies regarding hypertension, hypercho-
lesterolemia, smoking, and diabetes mellitus [6, 43, 44].
Mitochondrial oxidative phosphorylation normally produces

physiological levels of superoxide, which is converted to
hydrogen peroxide and afterwards to water. Mitochondrial
oxidative stress can be a consequence of excessive ROS
production or insufficient ROS detoxification [39].

Excessive ROS production exceeding antioxidant defense
systems leads to endothelial oxidative stress. The first step of
endothelial dysfunction is called endothelial activation,
which represents the expression of abnormal prothrombotic
and proinflammatory characteristics of the endothelial cells,
leading to other chronic changes [45]. Endothelial dysfunc-
tion includes impaired endothelium-mediated vasodilation;
abnormal vascular reactivity and vasospasm; greater expres-
sion of chemotactic and adhesive molecules; increased
platelet activation and thrombus formation; increased per-
meability of endothelium, leucocyte adhesion, and monocyte
migration into the vascular wall; and impaired regeneration
of endothelial cells with proliferation and migration of
smooth muscle cells, leading to vascular damage [32, 46]
(Figure 2).

Many studies have demonstrated an important role of
oxidative stress in endothelial dysfunction under the condi-
tions of excessive oxidative stress. Cardiovascular risk factors
cause imbalances between NO and ROS, so prevention of
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Figure 2: Endothelial dysfunction and development of vascular damage.
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endothelial dysfunction by reducing oxidative stress and
enhancement of endothelial NO production is seen as a rea-
sonable therapeutic strategy in cardiovascular diseases [6, 46].

4. Oxidative Stress in Atherosclerosis

Atherosclerosis is a multisystemic, progressive, chronic
inflammatory disease characterized by the interaction of
immune and endothelial cells that is mediated by adhesion
molecules on the surface of the vascular endothelium leading
to the release of numerous proinflammatory mediators [47].
Specifically, it has been demonstrated that there is a close
interaction between vascular endothelial inflammation and
intense oxidative stress in triggering the atherosclerotic
process [48].

The imbalance between the generation of excess reactive
oxygen species (ROS) and the antioxidant mechanism leads
to increased oxidative stress resulting in the formation of
atherogenic oxidized low-density lipoprotein (Ox-LDL)
which is a major determinant of atherogenesis [49].

Production of ROS from various sources (xanthine
oxidase, lipoxygenase, nicotinamide adenine dinucleotide
phosphate oxidase, eNOS, nNOs, and iNOS) leads to damage
to mitochondrial capacity and to the development of mito-
chondrial dysfunction [50]. Free fatty acids in endothelial
cells enter the tricarboxylic acid cycle during which oxidation
results in the overformation of NADH, which is an impor-
tant driver of ROS during oxidative phosphorylation [51].
Mitochondrial dysfunction leads to increased ROS formation
and oxidative stress and thus plays a role in the initiation,
formation, and progression of an atherosclerotic lesion [51].

Studies have shown that increasing ROS production in
mitochondria is induced by age, obesity, smoking, hyperten-
sion, diabetes, and dyslipidemia [52]. Numerous studies have
found that mitochondrial dysfunction significantly affects the
regulation of inflammation, proliferation, and apoptosis in
the onset and progression of atherosclerotic plaques [53–57].

During the atherosclerotic process, the accumulated neu-
trophils produced an additional amount of ROS [58]. ROS
enhance the activation of poly (ADPribose) polymerase 1
(PARP1), which damages mtDNA and thus the mitochon-
drial transport chain, further enhancing ROS formation
and further damaging endothelial cells [59]. The resulting
ROS trigger the synthesis of inflammatory cytokines by dif-
ferent cellular pathways resulting in vascular inflammation
and participating in the oxidation process of LDL [58]. Ox-
LDL has a cytotoxic effect on vascular cells, and macrophage
removal receptors can phagocytose them, forming foaming
cells that deposit in the blood vessel wall forming an athero-
sclerotic plaque [60]. Ox-LDL exerts its various effects on
cells such as endothelial cells, macrophages, platelets, fibro-
blasts, and smooth muscle cells through transmembrane
glycoproteins such as SR-A, CD36, and LOX-1 [61]. The
resulting Ox-LDL increases the NADPH oxidase activity,
leading to an increase in ROS synthesis and to NO inactiva-
tion. It also causes eNOS dysfunction by displacing it from
the alveolar membrane site and enhances the arginase II
activity thereby reducing the amount of L-arginine cosub-
strate for eNOS resulting in an additional decrease in NO

synthesis [62]. Ox-LDL increases the synthesis of matrix
metalloproteinases (MMP), namely MMP-1, MMP-3, and
MMP-9, leading to a breakdown of the fibrotic cap and to a
consequent rupture of the atherosclerotic plaque. LOX-1 is
expressed on macrophages, vascular endothelial smooth
muscle cells, cardiomyocytes, platelets, and fibroblasts. The
binding of Ox-LDL to LOX-1 in macrophages and vascular
smooth muscle cells results in the formation of foam cells
[63]. The main inducers of the LOX-1 expression are
tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1),
interferon-gamma (IFN-γ), CRP, and modified lipoproteins
such as glyxidized LDL, lysophosphatidylcholine, and ROS,
while the mediators and conditions regulating the gene
expression are numerous: angiotensin II, cytokines, glycation
end products, diabetes mellitus, hypertension, dyslipidemia,
ischemia reperfusion injury (IRI), heart failure, psychological
stress, and HIV infection [61]. TNF-α and NF-kB increase
Ca2+ levels in the mitochondria and consequently increase
ROS production. SR-A and CD36 take up 75% to 90% of
LDL [64]. SR-A is expressed in the presence of oxidative
stress and growth factors in endothelial and smooth muscle
cells, while normally found only in myeloid cells [65].
CD36 is found on monocytes, macrophages, platelets, and
adipocytes [63]. Human macrophages lacking CD36 have a
40% reduction in Ox-LDL binding and uptake [66]. Toll-
like receptors (TLRs) constitute a major subset of pattern
recognition receptors (PRRs) that are significantly expressed
on different immune cells during atherogenesis in the coro-
nary circulation [67]. TLR signaling cascades can be activated
by a wide range of endogenous ligands associated with tissue
damage, which plays a central role in the development of
atherosclerotic plaques [67]. The main culprits involved in
the immune response to oxLDL are TLR4 [67]. Ox-LDL
has been shown to lead to increase the expression of TLR4
in macrophages, neutrophils, and dendritic cells with which
it plays an important role in the development of atheroscle-
rotic plaques in the coronary circulation by activating MAPK
and NF-κB pathways [68, 69]. Activation of MAPK and NF-
κB transcription factors results in enhanced activation of
genes encoding proinflammatory cytokines and chemokines
important for the progression of the atherosclerotic process,
including TNF-α, IL-1, and Il-6 [67]. miR-590 has antiapop-
totic effects on endothelial cells attacked by the atheroscle-
rotic process by inactivating the TLR4/NF-κB pathway,
which may be a potential therapeutic target [70]. TLR4 is
required for Ox-LDL-induced differentiation of macro-
phages into foam cells in the early stages of atherosclerosis
[71]. It plays a crucial role in plaque progression and rupture
leading to occlusive thrombus formation in human coronary
arteries [72]. Specific Ox-LDL derivatives act as TLR4 ligands
by enhancing the MMP-9 expression [73]. Also, minimally
modified low-density lipoproteins (mmLDL) via CD14 and
TLR4 induce actin polymerization which together with
MMP-9 leads to remodeling of the coronary artery wall,
resulting in instability of atherosclerotic plaques and their
rupture [74]. Cellular fibronectin (cFN) is an extracellular
matrix protein (ECM) that is overexpressed only in chron-
ically inflamed tissues and is synthesized by vascular
smooth muscle cells and endothelial cells [75]. cFN activates
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macrophages and platelets via TLR4 resulting in platelet
aggregation and arterial thrombosis within atherosclerotic
lesions in the coronary arteries [75]. TLR2 activation
stimulates VSMC migration from the intima in an IL-6-
dependent manner, regulates inflammatory processes and
ROS production after vascular injury, and contributes to cor-
onary endothelial dysfunction after ischemic-reperfusion
injury by activating neutrophils and creating ROS [67]. Ox-
LDL can induce the expression of mRNAs of Wnt5a (Wnt
family of glycoproteins) that are coexpressed with TLR2
and TLR4 and play a key role in the formation of foam cells,
especially in advanced atherosclerotic plaques, which corre-
lates with the severity of atherosclerotic lesions in human
studies [76, 77]. TLR9 is expressed in the endoplasmic retic-
ulum and not on cell surfaces such as TLR2 and TLR4 [67].
TLR9 is activated by CpG motifs in nucleic acids released
during vascular necrosis and stimulates the transformation
of macrophages into foam cells in a manner dependent on
NF-κB and IRF7 (interferon regulatory factor 7) and stimu-
lates the secretion of INF and increases cytotoxic activity
CD4+T cell versus coronary artery smooth muscle cells [78].

VSMCs are important components of atherosclerotic
plaques that, under the influence of biostimulation or
mechanical damage triggered by oxidative stress, change
their phenotype and, through differentiation, become syn-
thetic VSMCs that produce significantly less contractile pro-
teins, increase proliferation and migration, and thus
participate in the development of atherosclerosis [79].
Increased concentrations of Ox-LDL via LOX-1 cause
smooth muscle cell apoptosis as they increase the expression
of a proapoptotic protein such as the bcl-2-associated X pro-
tein (Bax) leading to instability and rupture of the atheroscle-
rotic plaque. In addition, through inducers, CD147 can cause
plaque instability by releasing extracellular MMP [52].

Oxidative stress caused by the production of ROS and
RNS (nitric oxide (NO), peroxynitrite (ONOO−)) and S-
nitrosothiol (RSNO)) can damage macromolecules because
it reacts with specific amino acid residues and DNA and
chromatin cause mutations or double-stranded breaks in a
phenomenon overall known as “oxidative damage” [80].
The selenoprotein family is involved in the control of
oxidative stress in the cardiovascular system by inhibiting
oxidative stress, modulating inflammation, suppressing
endothelial dysfunction, and protecting vascular cells from
apoptosis and calcification [81]. Potent selenoproteins of
particular importance to the cardiovascular system are gluta-
thione peroxidase (GPX), thioredoxin reductase 1 (TXNRD),
methionine sulfoxide reductase B1 (MSRB1), selenoprotein P
(SELENOP), selenoprotein S (SELENOS), and selenoprotein
T (SELENOT) [81]. Dysfunction of various selenoproteins
can lead to congestive heart failure, coronary heart disease,
and to damaged heart structure and function [80]. The main
catalytic site of selenoprotein is called Sec [80]. GPXs are the
major components of the antioxidant system that maintain
oxidative homeostasis, using glutathione as a cofactor for cat-
alyzing the reduction of hydrogen peroxide (H2O2) and/or
phospholipid hydroperoxide [80]. GPX3 controls vascular
tone and the thrombotic properties of vascular endothelium
[80]. TXNRD, along with thioredoxin (Trx) and NADPH,

represents the major disulfide reduction system in the cell
[82]. MSRB1 acts synergistically with GPX and TXNRD
primarily in the liver, kidneys, and heart [80]. Selenoprteins
P, S, and T predominantly contribute to calcium ion (Ca2+)
signaling, protein folding, and ER-related degradation [80].
SELENOS, SELENOK, SELENOM, SELENON, SELENOF,
and SELENOT are involved in maintaining the homeostasis
of oxidative stress in the ER of cardiac myocytes [80]. Studies
have shown that decreased selenoprotein levels are associated
with the increased Nrf2 expression which may represent an
important compensatory response to the maintenance of
homeostasis [83]. Selenoproteins play an important role in
embryogenesis, since it was found that mice that had a
genetic disorder of cytosolic TXNRD1, mitochondrial
TXNRD2, and GPX4 experienced embryonic mortality [84].

Polyunsaturated fatty acids (PUFAs) exert anti-inflam-
matory, antiatherogenic, and antioxidant properties on the
cardiovascular system [85–87]. These important effects are
achieved by competing with arachidonic acid (AA) for
enzymes involved in the biosynthesis of proinflammatory
mediator molecules, by suppressing proinflammatory NF-
κB by modulating TLR4 signaling, by activating PPAR-γ,
and FFA4 receptors (before GPR120 d) in macrophages
and metabolites such as esolvins, maresins, and protectins
that have anti-inflammatory and antioxidant effects [88,
89]. The most studied molecular mechanisms are the activa-
tion of Nrf2 in the vascular tissue, leading to the production
of antioxidant enzymes (HO-1, GPx) and the activation of
FFA4 receptors, resulting in the preservation of κB inhibitors
(IκB) and the prevention of NF-κB nuclear translocation
[90–93]. F2-isoprostanes are prostaglandin-like molecules
formed as a result of peroxidation of ROS-mediated esterified
arachidonic acid [94]. n-3 PUFAs reduce 8-isoprostane levels
in macrophages and reduce oxidative stress [88]. The perox-
idation products of ω-3 PUFAs and ω-6 PUFAs can also have
toxic effects in oxidative stress, and a diet rich in PUFAs can
lead to tissue hypersensitivity to lipid peroxidation induced
by oxidative stress [95, 96]. Therefore, in the future, it will
be necessary to investigate individually each potential PUFA
that has been shown to be an important protective factor in
oxidative stress.

The most important antioxidants are glutathion peroxi-
dase (Gpx), glutathion reductase, catalase, and superoxide
dismutase [97]. Numerous studies have shown that efficient
elimination of ROS from cells reduces the formation and
progression of atherosclerotic plaques [98, 99]. The role of
antioxidants on the progression of an atherosclerotic lesion
needs to be further investigated as there are studies that
confirm that certain antioxidants have no effect on the devel-
opment of an atherosclerotic lesion [100]. A transcriptional
coactivator that regulates a gene involved in energy metabo-
lism in mitochondria called peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α)
which is an important mitochondrial protector that pro-
motes the synthesis of NO enzymes, mitochondrial protein
2 (UCP-2), and the antioxidant defense of mitochondria
(manganese SOD, catalase, and thioredoxin 2), and this
way limits endothelial dysfunction [52, 101]. PGC-1α also
reduces the activity of the inflammatory factors NF-κB and
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TNF-α and prevents the entry of Ox-LDL into cells [62, 102].
Twinkle mtDNA helicase plays a major role in stabilizing
atheromatous plaques and reducing the development of ath-
erosclerosis as it decreases apoptosis of VMSCs and macro-
phages [52]. Mitofusini 1 (Mfn1) is an important GTPase
that regulates VMSC proliferation and apoptosis and acts as
an important endogenous inhibitor of VSMC proliferation
by inhibiting the Ras-Raf-ERK 1/2 pathway during the ath-
erosclerotic process [103, 104]. Thus, prevention of vascular
oxidative stress and improvement of NO production may
be key future targets of new therapeutic strategies for the
treatment of atherosclerosis [61]. Figure 3 summarizes the
interactions of pathogenetic mechanisms linking oxidative
stress to atherosclerosis, coronary artery disease, and conse-
quently heart failure.

5. Oxidative Stress in Coronary Artery Disease

Dyslipidemia, as well as an imbalance between ROS
production and enzymatic and nonenzymatic antioxidant
protection systems, leads to endothelial dysfunction and ath-
erosclerosis of the coronary arteries [1]. Numerous studies
have shown impaired balance of prooxidants and antioxi-
dants in patients with CAD [105–108]. Oxidative stress is

today considered a new risk factor responsible for the devel-
opment of CAD that affects the onset, prognosis, quality of
life, and survival of patients [109].

In addition to being associated with atherosclerosis,
oxidative stress can create oxidative modification or damage
to lipid peroxidation at the level of deoxyribonucleic acids
(DNA) and proteins with deleterious effects on the structure
and function of the vascular system [110]. In addition to
classical free oxygen radicals (superoxide radical (O2-),
hydrogen peroxide (H2O2), hydroxyl (OH), peroxyl (RO),
hydroperoxyl (HRO-)), reactive oxidative stress has also been
shown to be involved in the oxidative stress process of nitro-
gen species (RNS), especially peroxynitrite (ONOO-) [111].
We know that ROS damages key molecules in signaling path-
ways involved in vascular inflammation, and it damages
essential biomolecules in cells and participates in oxidative
modification of lipids that make them atherogenic [112].
The most important sources of oxidative stress are the
phagocytic isoform of NADPH oxidase (Nox2 and to a lesser
extent Nox1) with its regulatory subunit p47phox, xanthine
oxidase (XO), and dysregulated eNOS [113].

Common risk factors (hyperlipidemia, hyperglycemia,
smoking, hypoxia, etc.) activate NADPH oxidase via differ-
ent signaling pathways. It is now known that enhanced
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release of reactive oxygen species (ROS) by NADPH oxidases
and mitochondrial enzymes results in cardiomyocyte hyper-
trophy, fibrosis, and an increase in metalloproteinase. The
most studied mechanism of NADPH activation is mediated
by one of the mechanisms of the PKCα/β2 signaling pathway
in which protein kinase C plays a key role [114]. The
p47phox subunit is the major Nox2 (gp91phox) regulatory
subunit whose phosphorylation is required for Nox2 activa-
tion. The expression of p47phox was significantly increased
in patients with CAD and overweight by about 60% and in
obese patients with CAD by about 80%. So far, XO is known
to be significantly elevated in CAD patients, and overweight
is thought to be a potent driver of the enhanced XO
expression [113].

In patients who have a BMI increase, suffer from CAD
and will undergo CABG, increased ROS levels, increased
expression of ROS-producing enzymes (P47phox, xanthine
oxidase), decreased expression of antioxidant enzymes
(mitochondrial aldehyde dehydrogenase, heme oxygenase-
1, and eNOS), and increase in markers of inflammatory pro-
cesses in serum and right atrial myocardial tissue (sVCAM-1
and CCL5/RANTES) have been demonstrated [115].

Endoplasmic reticulum stress (ERS) occurs in cardiac
myocytes and cardiac tissue in response to various stressors,
such as ischemia, hypoglycemia, hyperlipidemia, inflamma-
tion, and osmotic stress [116]. The resulting oxidative stress
leads to changes in the redox status of the ER that interfere
with the formation of protein disulfide and cause misfolding
of the protein [116]. High cholesterol, fatty acids, and oxida-
tive stress may induce ERS-induced apoptosis of macro-
phages and endothelial cells in atherosclerotic plaques
[117]. ERS is associated with the development and progres-
sion of cardiac hypertrophy, ischemic heart disease, and
heart failure [118]. The consequences of ERS are the accumu-
lation of incorrectly posttranslationally modified secretory
and transmembrane proteins that have important cellular
functions [116]. During ERS, intracellular signaling pathways
called unfolded protein response (UPR) are activated, restor-
ing ER homeostasis, but if ERS persists chronically at high
levels, terminal UPR activates cell apoptosis, which may be
one of the important pathophysiological mechanisms for dis-
ease development [116]. Terminal UPR makes an important
contribution to myocyte loss during myocardial infarction
[119]. Also, it has been discovered that ER autophagy may
be the last resort to restore ERS homeostasis [120]. There is
also evidence that activation of UPR also activates Nrf2,
which has been shown to be an important cardioprotective
factor [121]. Improved understanding of the molecular
mechanisms of regulated ERS in the future may lead to the
discovery of new therapeutic targets [118].

ROS leads to the activation of the nuclear transcription
factor kappa B (NF-κB), which regulates key genes for
the encoding of proinflammatory cytokines, chemokines,
and leukocyte adhesion molecules. Two important tran-
scription factors—nuclear factor erythroid 2-related factor
2 (Nrf2) and peroxisome proliferator-activated receptor-
β/δ (PPARβ/δ)—have been shown to protect coronary
blood vessels from excessive exposure to oxidative stress.
Oxidative stress and inflammation are thought to be major

activators of these protective transcription factors [122].
Nrf2 stimulates genes for the synthesis of antioxidant and
detoxifying enzymes and indirectly antagonizes the proin-
flammatory effects of NF-κB by removing ROS [123–125].
PPARβ/δ is predominantly located in the heart and has car-
dioprotective effects by suppressing the activity of several
transcription factors, including NF-κB [126].

Bone marrow endothelial progenitor cells (EPCs) are
responsible for neovascularization and reendothelialization
after ischemia and/or tissue injury, and a decrease in EPC
numbers and their function has been demonstrated in CAD
patients [114, 127]. High levels of oxidative stress in CAD
patients are thought to be closely related to the enhanced
activation of NDPH oxidase mediated by the membrane
component p47phox, which plays a major role in the regula-
tion of the NADPH activity and thus reduced vascular capac-
ity of EPCs in CAD patients [114]. Medications used today,
such as AT blockers, ACE inhibitors, statins, and tazolidin-
diones, have a beneficial effect on the bioactivity of EPCs that
maintain vascular homeostasis [2]. During oxidative stress,
serum EPC levels drop significantly, suggesting that this
may serve as a good biomarker of oxidative stress [128].

Cytotoxic products of the enzyme myeloperoxidase
(MPO), such as hypochlorous acid, lead to oxidative damage
to blood vessels. Human MPO is an important pathophysio-
logical mediator and biomarker in CAD patients whose levels
are significantly elevated, leading to the formation of dys-
functional lipoproteins with increased atherogenic potential,
decreasing NO availability, weakening vasoreactivity, and
leading to atherosclerotic plaque instability [129]. Malonyl-
dialdehyde (MDA) is one of the last products of peroxidation
of polyunsaturated fatty acids in cells whose levels increase
significantly during oxidative stress. Therefore, the level of
human MDA in blood plasma is a very important biomarker
of ROS-induced lipid peroxidation [130]. In a study on 30
patients with angiographically defined CAD and 30 healthy
control subjects, serum MDA levels were increased, although
these values did not differ depending on the number of
affected coronary vessels and were not correlated with the
severity of vascular lesions [131]. The level of MDA and the
percentage of MDA release were significantly elevated, while
the level of glutathione (GSH), erythrocyte GPx activity, and
total plasma antioxidant capacity (TAC) was significantly
reduced in patients with acute coronary syndrome and with
CAD, compared to healthy subjects (n = 30/group) [112].
The study thus found that in patients with CAD, there was
a significant decrease in glutathione in erythrocytes and con-
sequently elevated levels and increased release of MDA, con-
firming that the susceptibility of erythrocyte membranes to
oxidative stress was significantly higher in patients with
CAD than in healthy subjects. Also, the same study showed
results in which the erythrocyte level and total antioxidant
capacity (TAC) value were significantly lower compared to
healthy controls [112].

Various study groups have reported significant decreases
in the parameters of antioxidants in patients with CAD. It is
important to emphasize that, according to current data,
patients with multivessel coronary artery stenoses have sig-
nificantly higher levels of MDA and significantly lower levels
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of GSH, TAC, and GPx activity than patients with double
and single coronary artery disease, which clearly leads to
the conclusion that the greater the number of coronary artery
stenoses, the higher the level of oxidative stress [112].

Abolhasani et al. conducted a study showing that the
serum concentrations of high-sensitivity C-reactive protein
(hs-CRP), sialic acid (SA), vitronectin (VN), plasminogen
activator inhibitor-1 (PAI-1), Ox-LDL, and MDA were signifi-
cantly elevated in patients with CAD relative to the healthy
control group [132]. ROS-mediated lipid peroxidation leads
to the formation of unsaturated aldehydes, including acrolein
and MDA, which have toxic effects [112]. A study conducted
by Yilmaz et al. showed that serum MDA was significantly
higher, and TAC was significantly lower in CAD patients
[133]. A study by Ninic et al. showed that the major lipid per-
oxidation product thiobarbiturate acid-reactive substances
(TBARS) was significantly higher in patients with CAD than
in the control group, while the antioxidant effect of many
serum antioxidants was significantly lower [1]. TBARS leads
to further formation of ROS and acts on proteins andDNA that
exert proatherogenic and mutagenic effects [134]. Tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) is
a cytokine that acts as an apoptosis-inducing ligand, and
research has shown that TRAIL levels are significantly
reduced in animal CAD models, and that the unknown
mechanism of TRAIL reduces oxidative stress and endothe-
lial dysfunction [135].

Below, we present new insights into the numerous mole-
cules, signaling pathways, and antioxidants involved in the
highly complex development of oxidative stress in the coro-
nary circulation. Iranian researchers have shown in a study
that the increased expression of HSP27 mRNA in the periph-
eral blood mononuclear cell (PBMCs) is significantly associ-
ated with the severity of CAD and can serve as an important
prognostic biomarker, indicating the degree of total oxidative
stress [136]. A large study conducted by Khaper et al. showed
that one week after acute myocardial infarction, the mRNA
level for mitochondrial manganese superoxide dismutase
(Mn SOD) decreased by 40% and after sixteen weeks by
73% compared with healthy subjects, an indicator of depleted
antioxidant protection in patients with CAD [137].

In the animal model, the growth arrest-specific 5 (GAS5)
overexpression in CAD rats has been shown to inhibit abnor-
mal activation of the Wnt/β-catenin signaling pathway, lead-
ing to improvement of hyperlipidaemia, attenuation of
myocardial injury, inhibition of cardiomyocyte apoptosis,
and reduction of oxidative stress [138]. Decrease in leukocyte
telomere length (TL) and mitochondrial DNA copy number
(mtDNA-CN) are important indicators of the development
of CAD, which are involved in the modulation of oxidative
stress as independent risk factors, but this needs further
investigation [139]. Polymorphisms in NRF2 and its target
antioxidant genes: HMOX-1, NQO1, and MT significantly
influence the level of oxidative stress in CAD formation
[51, 140]. Inhibition of SAH hydrolase (SAHH) adenosine
dialdehyde inhibitor in CAD patients leads to a significant
increase in plasma S-adenosylhomocysteine (SAH) that pro-
motes the production of free oxygen radicals and leads to
endothelial dysfunction by epigenetic regulation of the oxi-

dative stress pathway mediated by the p66shc gene promoter
expression [141].

An antioxidant and an important component of the elec-
tron transport chain, coenzyme Q10 (CoQ10), has an effect
on biomarkers of inflammation and oxidative stress, and
the study found that CoQ10 significantly increased SOD
and catalase (CAT) levels in CAD patients, significantly
reduced MDA and dienes, and had significant effect on
C-reactive protein (CRP), tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), and GPx levels [142]. Sup-
plementation with L-carnitine at a dose of 1000mg/d after
12 weeks reduces oxidative stress (MDA level by 7%) and
increases the activity of antioxidant enzymes (CAT by
16%, SOD by 47%, and GPx by 12%) in patients with
CAD [143], while the administration of doses higher than
2000mg/d showed a cardioprotective effect and reduced
mortality rates in CAD patients [144].

Protein phosphatase and actin regulator 1 (PHACTR1),
which regulates the reorganization of the actin cytoskeleton,
is significantly expressed in atherosclerotic plaques of the
coronary arteries. Inhibition of PHACTR1 synthesis led to
a decrease in the Ox-LDL-induced expression of VCAM-1,
ICAM-1, and VE-cadherin; attenuation of p47phox phos-
phorylation; and attenuation of the p65 and NF-κB activity
without affecting IκBα and IKKα/β phosphorylation, all
resulting in a decrease of intracellular oxidative stress [145].

Sirtuin 1 (SIRT1) is a protein that plays a role in mito-
chondrial biogenesis and deacetylation of proteins important
for stimulating antioxidant defense. SIRT1 enhances the
antioxidant enzyme activity and inhibits free radical-
mediated oxidative injury by reducing NADPH oxidase
activation, also reducing endothelial cell death caused by
oxidative injury [146]. The main mechanism of its action is
the inhibition of the LOX-1 expression by modulation of
the LOX-1 promoter [147]. The SIRT1 expression level is
suppressed, while the acetylated p53 expression levels are
increased in monocytes of CAD patients. The mitochondrial
function is significantly impaired in monocytes in patients
with CAD, and it is thought that SIRT1 may increase the
mitochondrial function. Also, a consequence of the decreased
expression of SIRT1 is the increased adhesion of monocytes
to endothelial cells [148].

We can conclude that oxidative stress plays a key role in
the development and pathogenesis of CAD and the emer-
gence of its complications [2]. By modulating very complex
and numerous singular pathways and various biomolecules,
oxidative stress can be reduced. In the future, there is a pos-
sibility and need to investigate more thoroughly all molecules
involved in this highly complex biological process, which
may open up new therapeutic targets and ultimately reduce
the onset and complications of CAD.

6. Coronary Microvascular Dysfunction

Coronary microvascular dysfunction (CMD) is a disorder
that leads to the development of myocardial ischemia,
although there is no proven obstruction in coronary arteries
on coronary angiography [149] (Figure 4). Risk factors
that can trigger oxidative stress in coronary microvascular
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dysfunction are obesity, dyslipidemia, diabetes, and the
metabolic syndrome. Some disorders such as hypertrophic
cardiomyopathy, hypertensive heart disease, myocarditis, and
vasculitis are examples wheremyocardial ischemia can develop
without the presence of coronary artery obstruction. In addi-
tion to these conditions, structural and functional alterations
in the coronary microcirculation may be responsible for the
occurrence of myocardial ischemia, in up to 20% of patients
with acute coronary syndromes (ACS) and up to 50% of
patients with chronic coronary syndromes (CCS) [150].

6.1. CMD in Nonobstructive ACS. MINOCA is a term that
refers to myocardial infarction with nonobstructive coronary
arteries [13]. Today, the pathophysiology of MINOCA is not
very well understood. Some studies show that MINOCA has
two causes: epicardial causes which are represented by
coronary plaque disease, coronary dissection, coronary artery
spasm and micorvascular causes such as coronary microvas-
cular spasms, Takotsubo syndrome, myocarditis, or coronary
embolism [17, 151]. Conditions such as myocarditis and
Takotsubo syndrome are considered nonobstructive ACS,
but cardiac nonischemic aetiologies [152, 153].

6.2. CMD in Nonobstructive CCS. INOCA is a term denoting
ischemia with non-obstructive coronary arteries, where
endothelial dysfunction is a key mediator in the pathogenesis
of CMD [154, 155]. Studies have shown that INOCA is pres-
ent in approximately one-third of men and two-thirds of
women undergoing angiography for suspected ischemic
heart disease [155, 156]. Some studies show that factors orig-
inating from the blood and endothelium, as well as metabolic
and neurohumoral influences, affect the regulation of the
coronary microvascular tone. These include the influence of

passive mechanical factors (extravascular contraction of con-
tracting myocardium, distension by intravascular pressure)
as well as active changes in the smooth muscle tone by myo-
genic responses (in response to changes in perfusion pressure)
[157, 158]. An important role in the development of this dis-
order is played by the vascular endothelium where if there is
dysfunction, inadequate release of NOS would result in coro-
nary artery vasoconstriction [149]. More specifically, reduced
endothelial NO synthesis or increased inactivation will result
in endothelial dysfunction and vasoconstriction of blood ves-
sels [159–161]. Endothelial dysfunction is also present as an
imbalance between the release of vasorelaxant substances,
such as prostacyclin (PGI2), endothelium-derived hyperpolar-
izing factors (EDHF), and vasoconstricting substances, such as
endothelin-1, superoxide, hydrogen peroxide, and thrombox-
anes [162]. Endothelin-1 (ET-1), as a potent vasoconstrictor,
plays a significant role in the pathogenesis of coronary micro-
vascular dysfunction by acting through endothelin A receptors
located on coronary vascular smooth muscle cells. Also, ET-1
participates in the regulation of vascular tone via endothelin B
receptors located on coronary vascular smooth muscle cells
and on endothelial cells where it has an effect on NO release
and vasodilation [163]. Endothelium-derived NO is produced
from L-arginine using NO synthase and released to the vascu-
lar smooth muscle layer, ultimately causing vasodilation. NO
occurs in response to an increase in shear stress [164]. Endo-
thelial NO has an effect on mitochondrial metabolism, reduc-
ing the production of ROS and thus inhibiting inflammation.
In addition, it inhibits myocyte hypertrophy by activating
cGMP-dependent protein kinase (PKG). It also prevents
thrombosis and vascular inflammation by inhibiting platelet
activation. Therefore, in conditions such as ischemia and
metabolic diseases, there is an increased release of ET-1,
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thromboxane A2, and ROS, which ultimately results in
increased cardiomyocyte apoptosis [165].

Corban et al. have combined numerous studies, pointing
out that mutations of eNOS and ET-1 genes are crucial for
the development of coronary microvascular dysfunction
[162]. For example, an eNOS gene missense Glu298Asp var-
iant is associated with reduced NO production and impaired
endothelial cell response to physiological stimuli such as
shear stress, then the T786>C mutation in the eNOS gene
compromises endothelial NO synthesis [166, 167].

Ford et al. conducted a multimodality investigation on
patients with angina, investigating the role of ET-1 and the
gene variant (rs9349379-G allele), chromosome 6 (PHAC-
TR1/EDN1)] in the pathogenesis of CMD. Their goal was
to investigate whether the G allele associates with noninva-
sive parameters of myocardial ischaemia. The second goal
was to examine vascular mechanisms using isometric tension
recordings in small peripheral resistance vessels isolated
from patients according to genotype. In conclusion, periph-
eral small artery reactivity to endothelin-1 and ETA receptor
antagonist affinity was conserved in the rs9349379-G allele
group. Zibotentan tested at clinically relevant concentrations
completely prevented the effect of endothelin-1. This study
indicates that ETA receptor antagonism in this group of
patients may have therapeutic benefits [168, 169].

Experimental studies conducted to date on large animal
models such as swine, given that they show a remarkably
similar cardiovascular anatomy as humans, have significantly
helped in the understanding of the regulation of coronary
microvascular function [170]. Experimental studies on ani-
mal models, with an emphasis on metabolic derangements
as risk factors—in dogs, swine, rabbits, rats, and mice—today
help to understand the pathophysiology of CMD. Metabolic
derangements in animals are most commonly caused by a
high-fat diet (HFD) and/or diabetes mellitus through an
injection of alloxan or streptozotocin. There are also trans-
genic animal models in which metabolic derangements
develop. All these animal models show disturbances in the
function and structure of the coronary microvascular bed.
Therefore, the application of these animal models will be
useful in identifying novel therapeutic targets for the pur-
pose of combating ischemic heart disease [171]. Experi-
mental studies have shown that adipocytes, leptin,
interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)
are crucial in the development of oxidative stress [172,
173]. In patients with metabolic syndrome, the increased
sympathetic activity produces exaggerated alpha-adrenergic
coronary vasoconstriction and thus contributes to the devel-
opment of coronary microvascular dysfunction [174]. Also,
in patients with metabolic syndrome and prehypertension,
the RAAS system is activated resulting in the formation of
angiotensin II—causing vasoconstriction in the coronary
circulation [175].

In spite of the conducted research efforts to date, there
is still insufficient knowledge about the role of oxidative
stress in the pathophysiology of coronary microvascular
dysfunction, as a disorder leading to the development of
myocardial ischemia despite a normal finding of coronary
angiography.

7. The Impact of Environmental
Factors on CAD

Research to date has shown that environmental factors may
play an important role in the development of cardiovascular
disease (CVD), but the mechanisms by which environmental
factors affect CVD have not been fully explained [176].
Knowing how different environmental factors affect CVD
risk would greatly improve the development of therapeutic
and preventive strategies to combat CVD. In addition to
the previously known fact that genetics, combined with envi-
ronmental factors, is contributing to the development of
CVD, the results of many studies have shown that environ-
mental factors play a more dominant role, as many subjects
have prevented CVD by maintaining a healthy lifestyle [177].

The study by Hill et al. investigated the influence of
selected genetic and environmental factors on the clinical
expression of heterozygous familial hypercholesterolemia.
Men were shown to have a higher risk of developing CAD
because they had lower high-density lipoprotein (HDL) cho-
lesterol levels and were smokers. In women, CAD has been
associated with elevated triglycerides and the presence of
hypertension [178].

In order to understand how the environment affects
CVD or how that risk is transmitted, we need to understand
the complexity of the human environment. According to
research, it has been shown that there is a mismatch between
ancient human genes and the current human environment,
and that the mismatch is the result of a rapid change in the
human environment relative to genetic adaptation. First of
all, the circadian rhythm is a fundamental feature of the
natural environment and has an impact on the levels of neu-
rohormones that regulate cardiovascular function, such as
angiotensin II, renin, aldosterone, growth hormone, and
atrial natriuretic peptide [179–181]. Therefore, an interesting
link is that the frequency of adverse cardiovascular events
varies with time. For example, myocardial infarction most
commonly occurs between 6 a.m. and 12 p.m. and is more
likely to occur early in the morning than at night [182, 183].
Also, a disturbed circadian rhythm increases the risk of diabe-
tes mellitus, obesity, and hypertension [184–186].

The change of seasons has an impact on the develop-
ment of CVD which is shown by research which found
that in the northern and southern hemispheres, and the
levels of blood pressure, HDL, LDL, and glucose are
slightly higher in winter than in summer. More patients
on statin therapy reach the target LDL level in summer
than in winter [187–189]. Likewise, exposure to cold
ambient temperature increases vascular resistance and
blood pressure and can induce coronary vasospasm and
lead to the development of myocardial infarction [190].
Also, heat waves, especially in the elderly who cannot
adapt quickly to changes in temperature, can promote
the development of CVD [191]. That high levels of sun-
light early in life can delay CVD by 0.6 to 2.1 years has
been shown by some studies [192, 193]. Vitamin D defi-
ciency is associated with an increased risk of adverse
cardiovascular events such as myocardial infarction, stroke,
heart failure, and sudden cardiac death [194, 195].
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Studies have shown that short-term irradiation of the
whole body of healthy people with UVA has the effect of low-
ering blood pressure, on the principle of releasing NO, and
increasing the level of S-nitrosoglutation, which reduces
blood pressure [196–200]. Also, differences in solar exposure
to UV radiation and synthesis of vitamin D increase at high
altitudes [201]. Studies show that the proximity of vegetation
is associated with lower levels of stress, diabetes mellitus, and
CVD [202, 203]. Children who live in greener areas have
lower levels of asthma, blood pressure, and insulin resistance
[204, 205]. Socioeconomic conditions have an impact on
CVD as evidenced by higher data on the incidence of the dis-
ease among the poor population. Which is also related to the
supply of food and the availability of health care [206]. Expo-
sure to synthetic chemicals and environmental pollutants can
have an impact on the health of the population and is ubiqui-
tous and unavoidable today [207]. There is evidence to
suggest that chronic and persistent exposure to air pollution
increases the progression of atherosclerotic lesions and has
adverse effects on blood pressure regulation, peripheral
thrombosis, endothelial function, and insulin sensitivity
[201, 208–210]. Some studies have shown that constant
exposure to noise induces stress and has an impact on cogni-
tive function, autonomic homeostasis, and sleep, and that it
increases the risk of CVD [211]. In animal models, chronic
exposure to continuous noise (80-100 dB) has been shown
to increase the heart rate and mean systemic arterial blood
pressure, functional changes associated with increased
plasma corticosterone, adrenaline, and endothelin-1 [212].

Smoking, as one of the environmental factors, has a great
influence on the development of CVD. Data show that smok-
ing reduces regional left ventricular function even in asymp-
tomatic individuals and significantly (45% –80%) increases
the risk of heart failure [213]. The reasons for the high vulner-
ability of cardiovascular tissue remain unclear, but may relate
to poor xenobiotic metabolism in these tissues and their direct
exposure to blood-borne toxins. Although the mechanisms by
which smoking increases the risk of CVD are not fully known,
they appear to affect CVD independently of other factors
[214]. A meta-analysis of 54 different studies suggests that
smoking increases LDL-C and decreases HDL, but lipid
changes account for <10% of the excessive risk of CVD in
smokers [215]. Similarly, although acute smoking affects
blood pressure, smokers tend to maintain lower blood pres-
sure. Smoking leads to coronary occlusion causes endothelial
dysfunction and platelet adhesion to subintimal layers,
thereby increasing lipid infiltration and platelet-derived
growth factor- (PDGF-) mediated proliferation of smooth
muscle cells [216].

Studies have shown that people with homocystinuria,
which is one of the inherited recessive disorders in methionine
metabolism, have a tendency to develop cardiovascular dis-
ease. Such persons have high levels of homocysteine in the cir-
culation and urine, which has an impact on the development
of atherosclerosis and in the coagulation system [217–219].

Also, patients with hyperuricemia have a tendency to
develop CAD because serum uric acid levels are positively
associated with arterial intima-media thickness, which is a
precursor to atherosclerosis [220, 221]. In conclusion, we

can greatly contribute to the prevention and severity of
CVD by influencing environmental factors.

8. Pharmacological Therapeutic Possibilities

The therapeutic approach in patients with or without evi-
dence of coronary atherosclerosis involves, first and fore-
most, lifestyle changes and the management of risk factors,
including an effort to influence environmental factors. Beta-
blockers are a class of medications that are used to protect
the heart from a myocardial infarction because they may
reduce myocardial oxygen consumption [222]. Potential
therapeutic strategies are focused on the NO-cGMP (nitric
oxide-cyclic guanosine monophosphate) pathway. Given
that the NO-cGMP pathway has been implicated in the
pathophysiology of heart failure, it is a promising target
for therapy; although unfortunately, clinical data are not
yet fully conclusive [222]. A beta-blocker such as nebivolol
exerts its effect through beta-adrenoreceptors located on
endothelial cells. In this way, it stimulates eNOS, which
ultimately results in NO release and vasodilation. Data on
the effect of nebivolol have been supported by studies such
as the SENIORS (the Study of the Effects of Nebivolol
Intervention on Outcomes and Rehospitalization in Seniors
with Heart Failure) study conducted in elderly patients with
heart failure [223–225].

Mihai et al. investigated the effect of vericiguat, a soluble
guanylate cyclase (sGC) stimulator, on N-terminal prohor-
mone of brain natriuretic peptide (NT-proBNP) levels in
patients with chronic heart failure and reduced ejection frac-
tion. The study concluded that among 351 patients with
heart failure (HF) and reduced ejection fraction, compared
with placebo, vericiguat did not have a statistically significant
effect on NT-proBNP levels at 12 weeks. Therefore, the
researchers suggested additional clinical trials of vericiguat
based on the dose-response relationship to determine the
potential role of this drug, and that phase III outcome trial
is still ongoing [222]. Natriuretic peptides (NPs) via the
natriuretic peptide receptor-A are known to increase intra-
cellular cyclic guanosine monophosphate (cGMP) levels
[226]. A drug such as sacubitril/valsartan that simultaneously
inhibits neprilysin (neutral endopeptidase) via LBQ657 and
the angiotensin II receptor has its effect in chronic heart fail-
ure with a reduced ejection fraction. The benefits of this drug
are attributed to the increase in the amount of peptides that
neprilysin breaks down, such as NPs, by LBQ657 and the
simultaneous inhibition of the effects of angiotensin II by
valsartan. NPs exert their effects by activating membrane-
bound receptors paired with guanylate cyclase, which results
in an increase in the second messenger cGMP and ultimately
leads to vasodilation, natriuresis, diuresis, and decreased
sympathetic activity. These insights are supported by the
PARADIGM-HF administration trial [227]. Also, research
such as PARAMOUNT, designed as a randomized, paral-
lel-group, double-blind study in a phase II clinical trial of
sacubitril/valsartan in the clinical syndrome of HF with
preserved ejection fraction (HFpEF), suggested benefits in
HFpEF at least in terms of NT-proBNP reduction [228].
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Medication groups such as angiotensin-converting
enzyme (ACE) inhibitors and statins are used in patients
who have evidence of endothelial dysfunction and evidence
of atherosclerosis. ACE inhibitors exert vasoprotective effects
by inhibiting the renin-angiotensin axis. Statins, in addition
to reducing cholesterol levels, also have an inhibitory effect
on vascular inflammation, they upregulate eNOS, and
enhance vascular NO bioavailability [229].

Studies to date have shown that antioxidants such as fla-
vonoids and vitamins reduce the risk of stroke [230, 231].
Since ROS are known to occur during ischemia, reperfusion,
and bleeding in the brain, several antioxidants of different
chemical structures have been investigated as neuroprotec-
tive therapeutic agents for brain injuries. An example of this
is the use of Vaccinium berries that have high antioxidant
activity and that have been used in an animal model. They
showed their neuroprotective effect due to the high total
content of polyphenols [232–234]. It would be interesting
to consider such antioxidants in ischemic heart disease,
although conclusive evidence is lacking for now.

Resveratrol (chemical name: 3,5,4′-trihydroxy-trans-
stilbene) is another polyphenol abundantly found in the
skin and seeds of grapes [235, 236].

NXY-059 (chemical name: α(2,4-disulfophenyl)-N-tert-
butylnitrone) is a novel nitrone free radical trapping (anti-
oxidant) agent. This compound is a stable form of NO,
capable of inhibiting the reaction of O2 - and NO to
produce ONOO-. This chemical agent might thus be able
to neutralize ROS [237, 238].

Therapeutic options for CMD are limited. Some studies
show that inhibition of Rho-kinase might constitute one of
the treatment options in patients with CMD and vasospastic
angina, but this has not yet been proved [239]. Some studies
show that targeting of perivascular adipose tissue to stimulate
the production of vasoactive factors such as hydrogen sul-
phide [240] and adiponectin could be of benefit [241].

Studies show that the use of platelet inhibitors such as
aspirin may have an effect on treatment in CAD but they
have not been sufficiently implicated in the treatment of
CMD [241]. Studied of Zhang et al. showed aspirin provides
a new potential strategy for regulating cardiac microcircula-
tion, preventing heat stress- (HS-) induced heart failure. In
this study, they used a heat stress model of rat cardiac micro-
vascular endothelial cell cultures in vitro and investigated
the cell injuries and molecular resistance mechanisms of car-
diac microvascular endothelial cells (CMVECs) caused by
heat stress. In conclusion, aspirin treatment of CMVECs
induced a significant expression of heat shock proteins
(Hsp90), which promoted both Akt and M2 isoform of
pyruvate kinase (PKM2) signals, which are beneficial for
relieving HS damage and for maintaining the function of
CMVECs [242].

Clinical research on the use of ticagrelor for microcircu-
lation protection is still ongoing [243]. Nitrates are effective
in inducing vasodilatation, and they relieve angina symp-
toms, but not in patients with nonobstructive CAD [244].
L-arginine is as precursor of NO, with attempted use in
subjects with nonobstructive CAD [245, 246], but its use is
controversial. Zibotentan and atrasentan are ETA receptor

antagonists, and there are studies that have suggested them
to be a potential therapeutic option in patients with micro-
vascular dysfunction [247, 248].

Drugs or substances that modify TLR4 signaling can be
very useful in treating the atherosclerotic process in the cor-
onary arteries [249]. Some already known cardiovascular
drugs may have pleiotropic anti-inflammatory and antiather-
osclerotic effects achieved through TLR4 (). The well-known
statin atorvastatin [249] and angiotensin-converting enzyme
(ACE) inhibitors fosinopril [250] showed their antiathero-
sclerotic properties because they reduced the expression of
the TLR4 protein in atherosclerotic lesions. Furthermore,
combination treatment with atorvastatin and telmisartan
(angiotensin II receptor blocker) or atorvastatin and enala-
pril (ACE inhibitors) in human PBMCs (peripheral blood
mononuclear cells) resulted in decreased TLR4 receptor
expression in patients with CAD [251]. Some studies have
shown that thiazolidinediones (TZDs), such as rosiglitanose
and pioglitazone, can exert their antiatherogenic effect by
inhibiting the TLR4 singular pathways [252–254]. Carve-
dilol, a third-generation beta-blocker, decreased the TLR4
expression in AIM-induced rats [255]. Paclitaxel, an antican-
cer drug, has also been shown to inhibit TLR4 signaling
[256]. The anesthetic propofol and ketamine have the ability
to reduce ROS production and suppress the NF-κB expres-
sion and reduce IL-6 [256]. The exact mechanisms of action
of these already known cardiological drugs remain to be
explored in the future. Of course, there are a number of newly
discovered potential TLR4 antagonists (eritoran, cyanobac-
terial product (CyP), EM-163, epigallocatechin-3-gallate,
6-shogaol, cinnamon extract, N-acetylcysteine, melatonin,
molecular hydrogen, monoclonal antibody anti-hTLR4-
IgG) which could be useful in preventing atherosclerosis
in patients with CAD [257].

Also, epigenetic regulation (DNA methylation and
histone acetylation) could become the most promising thera-
peutic target for the treatment of TLR4-mediated inflamma-
tory disorders [258].

Tsai et al. conducted research in rat and in vitro models
examining the role of IL-20 in the infarcted heart following
ischemia/reperfusion injury, with the aim of discovering new
therapeutic options in the treatment of ischemic heart disease.
This study revealed that IL-20 and its receptors, IL-20R1 and
IL-20R2, were increased in H2C2 cardiomyoblast cells and
ventricular tissues subjected to prior hypoxia/reoxygenation
(H/R) stimulation. The obtained results suggest that IL-20
causes an increase in Ca2+ and activation of the PKC/NADPH
oxidase pathway, leading to an increase in oxidase stress and a
decrease in AKT regulation. Also, IL-20 can mediate H/R-
induced apoptosis via PKC/NADPH oxidase/AKT signaling.
Therefore, regulation of IL-20 may contribute to cardiomyo-
cyte apoptosis, and this might be helpful in future consider-
ations of new therapeutic targets in the treatment of
ischemic heart disease [259]. In their work, Samakova et al.
combined insights into the phosphatidylinositol-3-kinase-
(phosphoinositide-3-kinase-) protein kinase B (serine-threo-
nine protein kinase) (PI3k/Akt) pathway and the association
with oxidative stress, angiogenesis, andmesenchymal stem cell
survival in pathophysiologic conditions in ischemia [260].
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Cell therapy has long been known to be one of the
options for treating ischemic heart disease when, in 1974,
Friedenstein and his associates first isolated and character-
ized the use of mesenchymal stem cells (MSC) [261, 262].
Since then, numerous studies have been conducted to
improve the use of mesenchymal stem cells in regenerative
therapy. Also, the influences of biologically active molecules
such as cytokines, growth factors, and chemokines were
found to be important for any attempts at successful cell ther-
apies. In addition, the PI3K/Akt pathway was determined to
be one of the mechanisms of intracellular signaling that plays
a role in regulating cell proliferation, differentiation, apo-
ptosis, and migration. Therefore, the aforementioned con-
tributors emphasized that preconditioning of MSCs is an
important process for the improvement of the efficiency
of signaling mechanisms [260].

Some studies show that fisetin protects against cardiac
cell death through reduction of ROS production and caspase
activity. In vitro studies of mammalian cardiac cell models
have shown that fisetin increases the vitality of rat cardio-
myocytes after hypoxia or starvation or reoxygenation. It also
reduces ROS formation, activates caspases, protects from
DNA damage, and ultimately inhibits apoptosis. Fisetin is a
very promising drug for protection against ischemic damage
after myocardial infarction and for counteracting ischemia
reperfusion injury because it can, in addition, activate genes
involved in cell proliferation [263].

Experimental studies in rat models have shown that cocoa
flavonoids reduce inflammation, oxidative stress, and myocar-
dial apoptosis after acute coronary ischemia-reperfusion. In
these studies, cocoa extract treatment reversedmembrane per-
oxidation and nitro-oxidative stress as well as lead to reduc-
tion of inflammatory marker levels such as IL-6 and NF-κB
[264]. Verma et al. conducted an experimental study in rats
that showed that morin, a bioflavonoid, has antioxidant and
anti-inflammatory effects, and that it prevents apoptosis. It
exerts its effects by regulating RISK/SAPK pathways. Extracel-
lular regulated kinase (ERK), protein kinase A (Akt), and
eNOS are involved in the RISK pathways. The p38 proteins
and c-Jun N-terminal kinase (JNK) are involved in the SAPK
pathway [265]. Syeda et al. in their study in mice investigated
the cardioprotective potential of anthocyanidin against myo-
cardial ischemia injury. In in vivo conditions, the left anterior
descending coronary artery was ligated to induce myocardial
ischemia in mice, whereas in in vitro conditions, neonatal
mice cardiomyocytes were treated with H2O2 to induce oxida-
tive stress. It was concluded that, in vivo and in vitro, antho-
cyanidin can induce a state of myocardial resistance against
ischemic insult. Inhibition of the ROS/p-JNK/Bcl-2 pathway
is the underlying mechanism of action of anthocyanidin
[266]. Table 1 summarizes the discussed pharmacological
therapeutic possibilities.

9. Biomarkers of Oxidative Stress in Ischemic
Heart Disease

Many oxidative stress-related biomarkers have been recently
proposed, reflecting different and independent pathways,
including oxidative and antioxidant ones [267]. Some reliable

and simple tests have been presented to estimate oxidative
stress in vivo, and also a calculation of a global oxidative
stress index (OSI) is described, which represents the ratio of
total oxidant status to total antioxidant status [268], and it
showed higher values in patients with CAD [269]. Some of
the oxidative stress-related biomarkers seem promising for
future clinical use in understanding the pathogenesis and
predicting clinical outcomes of ischemic heart disease.
Although there are a lot of common biological features
between ACS and stable CAD, there are also many differ-
ences resulting in variation of levels of biomarkers included
in different oxidative stress-related pathways [270].

Measurement of reactive oxygen metabolites (ROM)
based on the conversion of hydroperoxides to alkoxyl and
peroxyl radicals under acidic conditions in combination with
estimation of total antioxidant capacity (OXY) can quantify
oxidative stress levels [271, 272]. Previous studies evaluated
levels of ROM and OXY in patients with cardiovascular
disease in comparison with the general population and
evaluated their prediction value in adverse CV events
[268, 271, 273]. Lubrano et al. examined ROM and OXY
levels during acute myocardial infarction (AMI) which
showed a progressive increase and then decrease suggest-
ing significant rise of oxidative stress level during AMI
[270]. The level of ROM values was higher in stable
CAD in comparison with ACS patients, indicating that
this parameter reflects the chronic oxidative stress status
[270]. OXY was progressively reduced in stable CAD and
more in ACS compared with the control group, showing
severe acute harm to the antioxidant system in ischemic
disease, especially during myocardial reperfusion injury
[270]. This fact is further enhanced by findings that differ-
ent vitamins and antioxidant enzymes were also reduced
during acute myocardial infarction [270, 274].

Low levels of NO are related to endothelial dysfunction
and many CV events, but its direct quantification is difficult
so it can be estimated by measurements of its stable metabo-
lites—nitrite/nitrate (NOX) [275]. NOX are end-products of
NO metabolism and a reliable index of NO production. In
previous studies, there are controversial results regarding
NOX levels in CV disease and CV risk. Some of them
revealed higher levels of NOX in a group with CAD and
AMI, which can be explained by the fact that increase in sys-
temic NOX can be a consequence of activation of inducible
NO synthase as a result of vascular injury, without restora-
tion of endothelial NO release [276, 277]. Other studies
showed reduced levels of NOX during acute myocardial
infarction, pointing to deteriorated NO levels during an acute
ischemic event. Further researches are needed to understand
meaning of different levels of NOX [270].

Several studies suggested that Ox-LDL may play an
important role in the pathogenesis of atherosclerosis, plaque
rupture, and onset of ACS [278, 279]. Uptake of Ox-LDL by
macrophages and activated smooth muscle cells probably
transforms these cells into foam cells which are found in
the atherosclerotic intima. Endothelial uptake of Ox-LDL
depends on receptors expressed on the cell surface. LOX-1
is a major receptor for Ox-LDL, and its expression is induced
by oxidative stress, hemodynamic stimuli, and inflammatory
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cytokines, and it is related to development of atherosclerosis
and plaque instability. It is highly expressed in luminal endo-
thelial cells in the early stage of atherogenesis as well as in
intimal neovascular endothelial cells of advanced plaques
and released during plaque rupture, promising to be a good
marker of plaque instability [280]. Soluble LOX-1 (sLOX-1)
is proposed as a potential marker for identification of ACS
in the early stage [281, 282] with the peak time being even
earlier than troponin T [281]. Some studies suggest that
levels of sLOX-1 might begin to rise before onset of ACS
but that could be a subject of further research [282].

In addition to these biomarkers, there is a large cohort
study that found an association of urinary oxidized guanine/
guanosine (OxGua) and 8-isoprostane levels with CVD mor-
tality prediction and with myocardial infarction incidence in
obese subjects [283]. Other studies also showed that elevated
plasmatic levels of 8-isoprostane are associated with acute
myocardial infarction and also with the severity and extent
of CAD [284, 285].

10. Epigenetic (Dys)regulation
MicroRNA in CAD

Small noncoding RNAs (microRNAs or miRs) of 19–25
nucleotides (nt) regulate the expression of more than 30%
of human genes at the posttranscriptional level [286]. They
are involved in intracellular and intercellular signaling and
circulate in the blood in stable forms due to packaging into
apoptotic bodies, microvesicles (MV), exosomes, and lipo-
proteins (Lp) [287]. Each miR from RNA is transcribed by
RNA polymerase II and, less frequently, by RNA polymerase
III [288, 289]. First, Pri-miRNA is formed, containing a
canonical hairpin structure, a 50 cap, and a 30 poly-A tail,
which is processed in the nucleus by Drosha-DGCR8 (Di
George Syndrome Critical Region Gene 8), then pre-
miRNA is formed to a hairpin form which is exported to
the cytoplasm via Exportin-5 and then further truncated by
the RNase III enzyme complex Dicer/TRBP (TAR RNA-
binding protein), yielding a mature duplex of miRNA
(miRNA-5p and miRNA3p) [290]. Mature miRs bind at a
specific site of the messenger RNA (mRNA) in the Argonaute
protein multiprotein complex, known as RNA-induced
attenuation complex (RISC), providing sequence-specific
attenuation by degrading messenger RNA (mRNA) and/or
inhibiting its translation [286]. Each miR can target several
mRNAs that act in several important cellular functions such
as differentiation, proliferation, and apoptosis in the cardio-
vascular system [291]. MicroRNAs that can regulate cellular
homeostasis of oxidative stress by modulating the expression
of antioxidant genes and the expression of enzymes that
generate ROS are called redox sensitive micorRNAs or
redoximiR [292]. RedoximiR achieves its oxidative or antiox-
idant effects by directly regulating the posttranscriptional
level of the redox-sensitive nuclear factor Nrf2. Of course,
there are also miRs that achieve their effects independently
of Nrf2 [293]. Nrf is considered a major regulator of cell sur-
vival in oxidative stress because it controls the basal and
induced expression of a number of important antioxidant
genes via a cis-acting element, designated the antioxidant-

response element (ARE), in the promoter of target genes
[293]. Some of these genes are the genes for heme
oxygenase-1 (HO-1), gamma-glutamylcysteine synthetase,
thioredoxin reductase, glutathione-S-transferase, and NAD
(P) H: quinone oxidoreductase [293]. Protein kinase C
(PKC), mitogen-activated protein kinase (MAPK), and phos-
photidylinositol 3-kinase (PI3K) are involved in the regula-
tion of Nrf2/ARE signaling [293]. Numerous microRNAs
participate in the regulation of Nrf2 via certain coregulatory
proteins such as Kelch-like ECH-associated protein 1
(Keap1), BTB and CNC homolog 1 (Bach1), Parkinson’s
protein 7 (PARK7/DJ-1), and small masculoaponeurotic
fibrosarcoma (Maf) proteins. Most miRs act by the downreg-
ulation mechanism Nrf2 (miR-153, miR-27a, miR-142-5p,
miR144 miR-28, and miR-34a), while some act by the upreg-
ulation mechanism Nrf2 (miR 200-a, miR-136-3p, miR-128).
Also, miRs regulate the expression of key enzymes that gen-
erate ROS which can lead to modification of the biogenesis
of miRs. Cellular oxidative stress can alter miR biogenesis
during processing in the nucleus and cytoplasm, altering its
stability, functionality, and binding affinity for target
promoter sites [292] (Figure 5).

The primary pathological process that causes CAD is
atherosclerosis triggered by oxidative stress [291]. miR is
involved in almost all steps of atherosclerosis and CAD, such
as endothelial damage and endothelial dysfunction, oxidative
enzyme expression, inflammatory molecule expression,
monocyte invasion and activation, LDL oxidation, platelet
function, vascular smooth muscle response, and angiogenesis
[294]. The miRs involved in oxidative stress and associated
with CAD are miR-155, miR34a, and miR-136-3p.

miR-155 was expressed in mononuclear and endothelial
cells [295]. Ox-LDL can induce the expression of miR-155
[295]. miR-155 may inhibit the inflammatory response
thereby reducing enhanced lipid oxidation in macrophages
during oxidative stress [295]. Inhibition of endogenous
miR-155 in THP-1 macrophages resulted in increased lipid
uptake and release of several cytokines, including interleukin
(IL)-6, -8, and tumor necrosis factor-α (TNF-α) [296]. The
overexpression of miR-155 may induce apoptosis of Ox-
LDL attacked macrophages [295]. Levels of miR-155 were
decreased in plasma and peripheral blood mononuclear cells
(PBMCs) in patients with CAD. The study showed that miR-
155 levels in peripheral blood mononuclear cells or plasma
were inversely correlated with the severity of stenotic lesions
in the coronary arteries [297]. miR-155 acts on the Nrf2
pathway whose activation of Nrf2 can reduce the degree of
oxidative stress in mitochondria and can reduce oxidative
stress and the inflammatory response of vascular endothelial
cells [298]. Bach1 in association with the masculoaponeurotic
fibrosarcoma (Maf) protein dominantly hides ARE sequences
from Nrf2 binding of transcription factor [299, 300]. Oxida-
tive stress and inflammation-induced tumor necrosis factor-
α (TNF-α) activate TNFR (tumor necrosis factor receptor)
[301]. NF-κB is in an inactive state bound to the inhibitor
protein IκB, and activation of TNFR leads to activation of
IκB kinases (IKKs) which by phosphorylation dislocates IκB
with NF-κB [302]. Phosphorylated IB is degraded by the 26s
proteasome [303]. Nuclear translocation of NF-κB stimulates
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the expression of miR-155 which inhibits the production of
Bach1 protein, allowing the binding of the Nrf2 transcription
factor to the ARE sequence [299]. Under normal physiolog-
ical conditions, Nrf2 is bound to Kelch-like ECH-associated
protein-1 (Keap1) within the cytoplasm [304].When the
Bach1 expression is reduced and cells are attacked by oxida-
tive stress, phosphorylation of Nrf2 via (MAPK), protein
kinase C (PKC) and (phosphoinositide 3-kinase (PI3K) and
its transport into the nucleus and binding to the ARE
sequence together with Maf protein occurs [295]. Conse-
quently, there is an increased synthesis of HO-1 (heme oxy-
genase-1) [299]. HO-1 is a microsomal enzyme induced in
oxidative stress that metabolizes heme to biliverdin, carbon
monoxide (CO), and iron, and CO has antiapoptotic and
anti-inflammatory properties and may act as a vasodilator
in atherogenesis when NO bioavailability is reduced due to
ROS inactivation [305]. Numerous studies have shown a car-
dioprotective effect of HO-1 [306–308]. Thus, it is clear that
suppression of the Bach1 protein expression alters cellular
redox signaling and enhances the expression of antioxidant
enzymes induced by Nrf2 [309].

miR-34a induced by oxidative stress via PI3K signaling in
EPCs obtained from patients with CAD reduces the expres-

sion of the enzymes SIRT1 and SIRT6 involved in histone
deacetylation and DNA repair [310, 311]. Silencing the entire
miR-34 family may protect the heart from pathological myo-
cardial remodeling [312]. miR-34a induces postacute MI,
and inhibition of miR-34a improves recovery of cardiac con-
tractile function after acute MI [313].

miR-136-3p can reduce oxidative stress and inflamma-
tory response and consequent pathological damage to myo-
cardial tissue by inhibiting the expression of the target
EIF5A2 gene thereby blocking the Rho A/ROCK signaling
pathway in the CAD rat myocardial tissue and models of car-
diac microvascular endothelial cell (CMEC) injury [314].

Numerous studies have shown that miR can serve as an
important biomarker for early detection of CAD, differentia-
tion of patients with or without CAD, as well as patients with
stable CAD or unstable CAD, and assessment of disease
severity, as prognostic indicators and indicator of restenosis
after stenting (in-stent restenosis, ISR) [291]. miRNAs are
not specific because each miRNA can be elevated or
decreased in different disease conditions, so this is a big
challenge for researchers [291].

Increased levels of miR-31, miR-720, miR-181, and
miR-208a may have potential roles for early CAD detection
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[315–317]. miR-208a is a highly selective cardiac RNA that is
overexpressed 3 hours after myocardial infarction (MI) and
correlates with increased cardiac troponin (cTn) I levels
[318]. MiR-208a has been shown to have superiority in early
diagnosis of MI over cTn [318]. Devaux et al. argue that miR-
499-5p which is myosin gene-regulated has higher diagnostic
accuracy in correlation with cTN than miR-208a [319].

To distinguish CAD from non-CAD patients, numerous
miRNAs were detected that were significantly increased in
patients with CAD (miR-149, miR-765, miR-424, miR-133a
miR-206, miR-574-5p, miR-135a, miRNA-24, miRNA-33,
miRNA-103a, miRNA-122). On the other hand, levels of
miRNA-23a, miR-19a, miR-484, miR155, miR-222, miR-
145, miR-29a, miR-378, miR-342, miR-181d, miR-150, and
miR-30e-5p were found to be reduced in the blood of patients
with CAD compared to healthy controls [320]. Faccin et al.
state that the combination of three miRNAs (miRNA-155,
-145, and flight-7c) has better classification power than just
one miRNA [321]. Two studies have shown that increased
plasma levels of miRNA-133a, miR-126, and miR-1 are use-
ful for the diagnosis of unstable CAD [322, 323]. MiR-145 is
significantly elevated in unstable angina compared to stable
angina, but so far, no miR or cascade of miR has been
detected in the blood of patients by which we will distinguish
these two types of angina [287]. Another study showed that
miR-134, miR-198, and miR-370 were increased in unstable
versus stable angina pectoris [324]. Li suggested that six
microRNAs (miR-1/134/186/208a and 208b/233/499-5p)
have increased sensitivity and specificity in MI detection,
although miR208 and miR499 were significantly higher in
patients with pecotris angina compared to IM [325]. Ward
et al. demonstrated that myocardial infarction miRNA-25-
3p, miRNA-221-3p, and miRNA-374b-5p are highly present
in the blood of patients with STEMI and miRNA 221-3p and
483-5 in patient with NSTEMI [326].

To assess the severity of coronary artery disease, miR-
133a was presented as a potential biomarker showing the
presence of coronary artery stenosis and is a better indicator
of assessing the severity of CAD compared to cTn1 [327].
Other miRNA-208a, miRNA-155, and miRNA-223 strongly
correlated with the CAD severity assessment [291]. Levels
of miRNA-92a lipoprotein-2 (HDL-2) HDL-2 miRNA-92a,
and HDL-3 miRNA-486 could be signals of severe CAD
and threatened myocardial infarction [328]. Oxidative
stress-induced microRNA-92a (miR-92a) leads to endothe-
lial dysfunction caused by activation of sirtuin 1, Krüppel-
like factor 2, and Krüppel-like factor 4, leading to NOD-like
receptor family pyrin domain-containing 3 inflammasome
activation and endothelial nitric oxide synthase inhibition
[329]. The expression of miRNA-21 in the macrophages of
uncalcified coronary artery lesions was significantly higher
than in calcified lesions [330]. miR-100 can be released into
the coronary circulation from sensitive coronary plaques
and can therefore be useful as a biomarker of plaque vulner-
ability [331].

Some vascular miRs may have a prognostic potential
for coronary artery disease. The increased expression of
miRNA-126 and miRNA-199a in circulating microvesicles is
associated with a lower cardiovascular mortality rate [332].

Also, elevated levels of miRNA-197, miRNA-223, miRNA-
133a, and miRNA-208b were significantly associated with
higher mortality rates in patients with CAD [333, 334]. In
obese patients, miR-181a levels within polymorphonuclear
cells are increased, which is associated with an increased risk
of developing CAD [316].

As new noninvasive potential biomarkers for assessing
the occurrence of ISR, levels of circulating miRNA-143,
miRNA-145, and miRNA-181b and increased levels of
miRNA-185 and miRNA-155 were reduced compared to
non-ISR [335, 336].

During the development and progression of atheroscle-
rotic plaques, miR-92a, miR-100, miR-126, miR-127, and
miR-145 are mostly released as a result of vascular damage.
The miRNAs released from myeloid cells involved in the for-
mation of atherosclerotic lesions are miR-155 and miR-223.
During myocardial injury in patients with CAD, miR-133a,
miR-208a, and miR-499 are mostly released into the
coronary circulation [337].

RedoximiR is an important regulator of the cellular redox
status and new valuable biomarkers that constitute a key step
in the pathogenesis of CAD. Due to their cell-type specificity,
abundance, and stability in most solid and liquid clinical
specimens, they provide the opportunity for further study
to expand our understanding of CAD pathogenesis and open
up new innovative diagnostic and therapeutic approaches.
For now, the following therapeutic strategies are being
studied: inhibition of premicroRNA export from the nucleus,
inhibition of premicroRNA transcription into mature micro-
RNAs, or competitive inhibition via complementary binding
to specific microRNAs [287]. Whether we can block or
prevent the progression of atherosclerosis and CAD develop-
ment in the future remains to be patiently awaited.

11. Final Remarks

This review article discussed evidence associating oxidative
stress with the pathogenesis and occurrence of ischemic heart
disease. Since oxidative stress is an important group of pro-
cesses in a number of disorders connected with vascular
structure and function, it is not surprising that there are
many indications that some of the factors implicated in oxi-
dative stress play roles in vascular disease mechanisms. From
this review, however, it is likewise clear that the interactions
of the many factors of oxidative stress that contribute to vas-
cular disease mechanisms in ischemic heart disease are very
complex and not yet clearly nor completely understood. At
the same time, it would be desirable and interesting to thera-
peutically target oxidative stress, in hopes of developing bet-
ter therapeutic strategies for ischemic heart disease, which
after many years of various treatment approaches and strat-
egy changes is still not managed optimally and with satisfac-
tory results in a large number of affected patients. The main
prerequisite for the development of such therapeutic strate-
gies targeting oxidative stress is, however, a much better
understanding of all the specific roles of ROS in specific path-
ophysiological mechanisms, as well as the interactions of
ROS with other signaling systems. Only then can a targeted
therapeutic approach be successful, effective, and with a
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limited spectrum of adverse effects. To achieve such an
understanding of the roles of oxidative stress in ischemic
heart disease, more research in this area is warranted.
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