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Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with
hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor,
induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially
under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue
microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along
with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR,
Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the
HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis
efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-
dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional
activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-
Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could
suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a
promising therapy in the treatment of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) ranks sixth among the
most common carcinoma and is the fourth leading cause of
cancer-related death worldwide [1]. Hepatitis virus infection
(hepatitis B or C viruses), aflatoxins and aristolochic acid
exposure, alcohol intake, and metabolic liver disease are con-
sidered the principal risk factors resulting in the development

of HCC [2]. Surgical resection, orthotopic liver transplanta-
tion, and radiofrequency ablation are very effective therapeu-
tic strategies in the early stage of HCC whereas most HCC
patients are in an advanced stage of disease while diagnosed.
Because the details of the molecular mechanisms of HCC
progression are still unknown, there is currently a lack of
effective systemic therapies, which causes the 5-year survival
rate of advanced HCC to remain devastatingly low at 1% [3].
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Consequently, there is an urgent need to better understand
these mechanisms and develop new therapeutics for HCC
treatment.

Hypoxia is an established characteristic of all solid
tumors caused by aberrant vascularization and poor blood
supply. In HCC, the degree of tumor hypoxia appears to be
inversely related to the patient’s prognosis. Also, it is usually
resistant to traditional treatment [4, 5]. Hypoxia-inducible
factor- (HIF-) 1, a heterodimeric transcriptional factor
composed of HIF-1α and HIF-1β/ARNT subunits, is the best
studied among HIF-α subunits and has a crucial role in medi-
ating gene expression in order to maintain oxygen homeosta-
sis. The HIF-1α subunit is rapidly degraded under normoxic
conditions through two ways: von Hippel-Lindau tumor sup-
pressor (pVHL) and factor inhibiting HIF1 (FIH1) [6, 7].
However, when the oxygen concentration declines, expres-
sion of HIF-1α exponentially increases which allows it to
dimerize with the HIF-1β subunit to form hypoxia response
elements (HREs) regulating targeted genes involved in the
process of tumoral angiogenesis, proliferation, metastasis,
and apoptosis of cancer cells [8, 9].

Cyclooxygenases (COXs) are an enzyme that are respon-
sible for the formation of prostaglandin (PG) through rate
limiting with three isoforms: COX-1 [10], COX-2 [11], and
COX-3 (a splice variant of COX-1) [12]. It is widely accepted
that COX-2 has an important role in the stimulation of
inflammation and tumorigenesis in hypoxic cancer cells
[13, 14], and the COX-2-selective inhibitor has been consid-
ered a potential candidate which can disturb the angiogenic
signaling cascade upstream of HIF-1α-VEGF expression
[15–17]. Our previous studies also indicated that meloxicam,
a selective inhibitor of COX-2, has antiproliferative and proa-
poptotic effects in HCC [18–20]. However, the detailed
mechanisms of meloxicam for treating HCC have not been
fully explored, especially under a hypoxic microenvironment.
The main purpose of this study was to explore the potential
of meloxicam as therapy in HCC and to test the hypothesis
that its effect on cell proliferation, angiogenesis, and related
pathways might be involved in the treatment of meloxicam-
induced apoptosis under hypoxic conditions.

2. Materials and Methods

2.1. Clinical Samples and Animal Experimental Protocols.
Tissue microarrays (TMAs) from 90 HCC patients undergo-
ing immunohistochemistry (HLivH180Su18) were obtained
from Outdo Biotech Co., Ltd. (Shanghai, China). Ethical
evidence provided by the company confirmed the consent
procedures approved by the local ethics committee. The
ethical statement and experiment protocol were approved
by the institutional research ethics committee of Shandong
Cancer Hospital and Institute. Expressions of COX-2 and
HIF-1α in TMAs were detected by immunohistochemistry
(IHC). Survival time was calculated from the date of surgery
to the end of the follow-up or the date of death.

All animal experimental protocols (SDTHEC-
201912007) were carefully checked and approved by the
institutional research ethics committee of Shandong Cancer
Hospital and Institute, and the methods were described in

our previous studies [5, 21]. Huh-7 and Hep3B cells
(5 × 106/0.1ml) in PBS were inoculated into the dorsal area
near the front leg of 4-week-old BALB/c nude mice (10 mice
per cell type) (HFK Bioscience Company, Beijing, China).
The observation of mice continued until tumors developed
to a size of 100mm3. Then, the mice were randomly divided
into four groups (5 in each group) Two groups were mice
inoculated with Huh-7 cells, and two groups were mice
inoculated with Hep3B cells. The experimental groups were
managed by intraperitoneal injection of meloxicam
(30mg/kg) diluted in PBS every two days, while the control
group was managed by an identical volume of 0.9% normal
saline (0.9% NS). The tumors were harvested at the end of
the experiments.

2.2. Reagents and Cell Culture. Meloxicam was acquired
from Merck Millipore (Darmstadt, Germany). Cyclohexi-
mide, Z-VAD-FMK, JC-1, and MG-132 were purchased
from Sigma-Aldrich (San Diego, USA). Primary antibodies
to HIF-1α, VEGFA, von Hippel-Lindau, PARP1, cleaved
PARP1, Ki-67, CD31, and GAPDH were obtained from
Abcam (Cambridge, UK). Primary antibodies to caspase-3,
cleaved caspase-3, caspase-9, cleaved caspase-9, and histone
H3 were obtained from Cell Signaling Technologies (Dan-
vers, MA).

The 2 human HCC cell lines, Huh-7 and Hep3B, and the
normal human liver cell line, L-02, were obtained from the
American Type Culture Collection (ATCC, Manassas, VA)
and preserved in our laboratory. The cells were routinely cul-
tured in RPMI 1640 medium (Gibco, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum (Gibco)
and 1% antibiotics at 37°C in 95% air and 5% CO2. Human
umbilical vein endothelial cells (HUVECs) were purchased
from ScienCell Research Laboratories (Carlsbad, CA, USA).
The cells were cultured in endothelial cell medium (ECM,
ScienCell Research Laboratories) at 37°C in 95% air and 5%
CO2. For the hypoxia experiments, Huh-7 and Hep3B cells
were cultured in a hypoxic chamber (Billups-Rothenberg,
Inc.) with 1% O2, 5% CO2, and 94% nitrogen.

2.3. Flow Cytometric Analysis of Cell Cycle, Apoptosis, and
Mitochondrial Membrane Potential (ΔΨm). Cells
(4 × 105/well) were seeded with culture medium in a 6-
well plate, incubated at 37°C for 24 h, and then incu-
bated with fresh medium with various concentrations
of meloxicam (0 to 80μM) combined with or without Z-
VAD-FMK (50μM) in a hypoxic chamber. After washing
twice with cold PBS and resuspending with binding buffer,
the ANXA5-FITC/PI Detection Kit (BD Biosciences, San
Jose, CA) was used to analyze apoptotic cells and the cell
cycle distribution by flow cytometry according to the
manufacturer’s instruction. For JC-1 staining, cells were
resuspended in PBS, containing 0.1μM JC-1, and were incu-
bated at 37°C for 15min in the dark. Then, cells were detected
with flow cytometry.

2.4. Quantitative Real-Time RT-PCR (qRT-PCR) Analysis.
The detailed methodology was described in our previous
study [22]. Briefly, total RNA was prepared with Trizol
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(Invitrogen, Carlsbad, USA), and cDNA was synthesized
using a cDNA Synthesis Kit (Invitrogen). qRT-PCR was
performed with the SYBR Green Master Mix (Tiangen,
Beijing, China). The primers used were as follows: HIF-1α,
forward primer 5′-TCACCACAGGACAGTACAGGATGC-
3′ and reverse primer 5′-CCAGCAAAGTTAAAGCATCAG
GTTCC-3′; VEGFA, forward primer 5′-AGGAGGGCAGA
ATCATCACG-3′ and reverse primer 5′-CAAGGCCCACA
GGGATTTTCT-3′; and GAPDH, forward primer 5′-TTAC
TCCTTGGAGGCCATGTGGGC-3′ and reverse primer 5′
-ACTGCCACCCAGAAGACTGTGGATGG-3′.

2.5. Nucleoprotein Extraction and Western Blot Analysis.
Subcellular fractionation was performed as per the
manufacturer’s instructions (Thermo Scientific, San Jose,
CA, USA). Protein concentrations of cellular or nuclear
extracts were determined using a bicinchoninic acid
(BCA) assay kit (Bio-Rad Laboratories, Inc.). In brief,
equal amounts (20-25μg) of protein fractions of lysate
were resolved using SDS-polyacrylamide gel electrophore-
sis (SDS-PAGE), transferred to PVDF membranes (Milli-
pore, USA), and immunoblotted as previously described
in our study [23].

2.6. Gene Transfection and RNAi. The method was described
in our previous study [5]. Silencing of pVHL shRNA was
acquired by way of lentiviral transduction of the following
specific shRNA vectors, purchased from Santa Cruz Biotech-
nology: pVHL shRNA (sc-36816-V) and scramble shRNA
control (sc-108080).

2.7. Statistical Analyses. The data were analyzed with SPSS
software (version 21.0, Chicago, IL, USA) and expressed as
the mean ± standard deviation (SD). Chi-squared, Kaplan-
Meier, and Pearson’s correlation analyses were used to ana-
lyze TMA data. Student’s t-tests were used for comparisons
between 2 groups, and one-way analysis of variance was used
for comparisons between multiple groups. P < 0:05 was
considered to indicate statistically significant results.

3. Results

3.1. Expression and Correlation between COX-2 and HIF-1α
in HCC Specimens. We first examined expression of COX-2
and HIF-1α in HCC tissues in a TMA. As shown in
Figure 1(a), the IHC staining of COX-2 and HIF-1α, with
hematoxylin and eosin (HE), were classified as TNMI-IV.
The clinicopathological distribution features of COX-2 are
presented in Table 1. There was no significant correlation
between COX-2 expression and clinicopathological variables
including patient age, sex, histology grade, and lymph node
metastasis (Table 1). The association between patient sur-
vival and COX-2 or HIF-1α expression was measured
through the Kaplan-Meier analysis and log-rank test, respec-
tively. The data demonstrated that compared with low
expression of COX-2 or HIF-1α, the overall survival in
HCC patients with high expression of COX-2 or HIF-1α
has a downward trend (P = 0:002 and P = 0:007, respectively,
Figure 1(b)).

The univariate Cox proportional hazards regression
model was applied in order to evaluate the crude hazard
ratios (HRs) of COX-2 expression or each clinicopathological
variable on patient survival. According to the univariate Cox
regression analyses, COX-2 expression was closely related to
overall survival (P = 0:003, Table 2). Multivariate analysis
was conducted, and the significant factors are summarized
in Table 2 so as to further confirm the prognostic value of
COX-2. Expression of COX-2 was an independent prognos-
tic marker according to the Cox regression model. Moreover,
a positive correlation between COX-2 expression and the
level of HIF-1α was found in accordance with the results,
regardless of nuclear or cytoplasmic localization (Pearson’s
correlation, R2 = 0:061, P = 0:019, Figure 1(c)).

3.2. Meloxicam Exerts an Antitumor Effect under Hypoxic
Conditions in 2 HCC Cell Lines. Meloxicam, a selective
COX-2 inhibitor, exerts extensive antitumor effect on various
malignant tumors [24, 25]. Therefore, in our study, it was
hypothesized that meloxicam could inhibit HCC cell prolif-
eration and angiogenesis, especially under hypoxic condi-
tions. Huh-7 and Hep3B cells were exposed to meloxicam
for 24 h under normoxic or hypoxic conditions, and cell pro-
liferation was determined utilizing the CCK-8 and colony
formation assay. As shown in Figure 2(a), meloxicam signif-
icantly inhibited cell viability under normoxic conditions and
weakened the hypoxia-induced proliferation capability in
both HCC cells. However, meloxicam only mildly affected
the normal human liver cell line: L-02. The results of the col-
ony formation assay were consistent with the cell viability
assay. A notable increase induced by hypoxia in the clono-
genic survival of HCC cells could be reversed by meloxicam
(Figure 2(b)). Next, we investigated the effect of meloxicam
on angiogenesis. Human umbilical vein endothelial cells
(HUVECs) were incubated with or without meloxicam
(80μM) for 24 h under normoxic or hypoxic conditions. It
was found that capillary-like tube formation was remarkably
inhibited by meloxicam under hypoxic conditions
(Figure 2(c)).

3.3. Meloxicam Overcomes Hypoxia-Induced Apoptotic
Resistance Requiring Caspase Activities in HCC Cells. An
analysis of the cell cycle and apoptosis of Huh-7 and Hep3B
cells under hypoxic conditions was performed by flow
cytometry (FACS). As shown in Figures 3(a) and 3(b),
meloxicam markedly arrested both Huh-7 and Hep3B cells
in the G1 phase and increased cellular apoptosis in a
concentration-dependent manner. Caspase activation is
considered one of the apoptosis mechanisms in COX-2
inhibitor-treated tumor cells [26]. In the present study, we
used Western blot to detect expression of PARP1, caspase-
3, and caspase-9 after Huh-7 and Hep3B cells were exposed
to meloxicam under hypoxic conditions. As shown in
Figure 3(c), meloxicam dose dependently decreased the level
of full-length PARP1, procaspase-3, and procaspase-9 and
strengthened the cleavage of PARP1, caspase-3, and
caspase-9 in HCC cells. In addition, Z-VAD-FMK, a pancas-
pase inhibitor, notably decreased meloxicam-induced apo-
ptosis (Figure 3(b)). During apoptosis, another important
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Figure 1: COX-2 and HIF-1α expressions in HCC tissues. (a) IHC staining of COX-2 and HIF-1α and HE in HCC tissue (magnification
×200). (b) High COX-2 or HIF-1α expressions correlate with poorer overall survival (P = 0:002 and P = 0:007, respectively, log-rank test).
(c) Positive correlation between COX-2 expression and HIF-1α level (Pearson’s correlation, R2 = 0:061, P = 0:019).
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Table 1: Correlation between COX-2 expression and clinicopathological characteristics of HCC patients.

Variables
COX-2 expression

Total χ2 P value
Low High

Age (year)

0.729 0.393

≤54 17 28 45

>54 21 24 45

Sex

0.178 0.673

Female 6 10 16

Male 32 42 74

Grade

1.966 0.161

I/II 30 34 64

III 8 18 26

T stage

5.024 0.025∗

T1/T2 27 25 52

T3/T4 9 24 33

Dull

N stage

1

N0 36 47 83

N1 0 0 0

Dull

M stage

1

M0 36 47 83

M1 0 1 1

Dull

TNM stage

5.024 0.025∗

Ι/II 27 25 52

III/IV 9 24 33

Dull

Tumor size

4.819 0.028∗

≤5 cm 22 18 40

>5 cm 16 34 50
∗Statistically significant (P < 0:05).

Table 2: Univariate and multivariate analyses of the factors correlated with overall survival of HCC patients.

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Expression 2.780 1.406-5.494 0.003∗ 2.373 1.101-5.112 0.027∗

Sex 2.253 0.885-5.737 0.089

Grade 2.034 1.158-3.572 0.013∗ 1.414 0.741-2.696 0.293

Age 0.985 0.954-1.018 0.366

T stage 2.687 1.593-4.530 ≤0.001∗ 3.338 0.726-15.338 0.121

N stage 1

M stage 1

TNM stage 2.616 1.488-4.600 0.001∗ 0.449 0.079-2.559 0.367

Tumor size 1.085 1.036-1.137 0.001∗ 1.044 0.967-1.128 0.269
∗Statistically significant (P < 0:05).
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intracellular event is the occurrence of the disruption of
mitochondrial membrane potential (ΔΨm). We found, by
JC-1 analysis, that meloxicam notably weakened ΔΨm in
both HCC cells, which suggested that meloxicam causes dis-
ruption of ΔΨm, thereby triggering caspase-dependent apo-
ptosis (Figure 3(d)).

3.4. Meloxicam Downregulates HIF-1α Transcription Activity
and Expression in a VHL-Dependent Manner. Accumulated
evidence has demonstrated that HIF-1α has a dominant role
in tumor progression, and HIF-1α-regulation of expression
of VEGFA is regarded as the main inducer of angiogenesis
[27–29]. In the current study, we hypothesized if meloxicam
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Figure 2: Meloxicam has potent antitumor efficacy in 2 HCC cell lines but no toxicity in normal human liver cell lines in vitro. (a) Two HCC
cell lines and the normal liver cell line, L-02, were incubated with meloxicam at various concentrations (0 to 80μM) for 24 h in normoxic or
hypoxic conditions, and then, the cell viability was determined by CCK-8 assay. (b) Representative colonies formed are shown in the left panel
and the quantified results in the right panel. †P < 0:05 and ∗P < 0:05, compared with cells untreated with meloxicam under normoxic
conditions; #P < 0:05, compared with cells untreated with meloxicam under hypoxic conditions. (c) HUVECs were incubated for the tube
formation assay under normoxic or hypoxic conditions with or without meloxicam (80 μM) (magnification × 100). ∗P < 0:05. The
experiments were performed in triplicate. Data are presented as mean ± SD.
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Figure 3: Meloxicam induces caspase-dependent apoptosis in human HCC cells under hypoxic conditions. (a, b) Cells were treated with
meloxicam (0 to 80μM) or meloxicam (80 μM)+Z-VAD-FMK (50 μM) under hypoxic conditions for 24 h. The cell cycle and apoptosis
were analyzed by FACS flow cytometry. ∗P < 0:05 and ∗∗P < 0:01 vs. control. (c) Protein levels of PARP1, caspase-3, and caspase-9 were
detected by Western blot analysis. Levels of GAPDH served as a loading control. (d) Disruption of mitochondrial membrane potential
(ΔΨm) was determined by JC-1 analysis. ∗∗P < 0:01 vs. control. Data are presented as means ± SD of three independent experiments.
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could inhibit HIF-1α expression and its target gene VEGFA.
To answer this question, the two HCC cell lines were treated
with meloxicam (0 to 80μM) for 24 h under hypoxic condi-
tions. It was found that meloxicam significantly decreased
the level of HIF-1α and VEGFA protein expression com-
pared to the control group (Figure 4(a)). To investigate
whether meloxicam could inhibit the transcriptional activity
of HIF-1α in Huh-7 and Hep3B cells, a hypoxia-responsive
reporter including a luciferase gene with a hypoxia response
element (HRE) was introduced. As shown in Figure 4(b),
the HIF-1α transcriptional activities of Huh-7 and Hep3B
cells exposed to meloxicam were both weakened under hyp-
oxic conditions. qRT-PCR results indicated that the extent of
VEGFA mRNA was also suppressed when treated with
meloxicam. However, interestingly, it was found that incuba-
tion with meloxicam did not attenuate the extent of HIF-1α
mRNA, which suggested that meloxicam may regulate HIF-
1α at posttranscriptional levels but not at the transcriptional
level (Figure 4(c)).

As a negative regulator of HIF-1α, pVHL has an impor-
tant role in cellular oxygen sensing through ubiquitination
and subsequent proteasomal degradation [7]. The loss of
pVHL results in the accumulation and translocation of
HIF-α into the nucleus, which subsequently activates the
transcription of HIF target genes to participate in important
oncogenic pathways, such as angiogenesis [30, 31]. Here, we
explored whether meloxicam was involved in the process of
HIF-1α degradation through pVHL upregulation. As shown
in Figure 4(a), meloxicam notably upregulated the expression
of pVHL in a concentration-dependent manner. To further
ascertain the effect of pVHL in meloxicam-regulated sup-
pression of HIF-1α, a lentivirus-mediated pVHL shRNA to
knock down pVHL was introduced in Huh-7 and Hep3B cell
lines which were defined as Huh-7-pVHL shRNA cell and
Hep3B-pVHL shRNA cell, respectively. Western blot results
showed that pVHL silencing could attenuate the suppression
of HIF-1α by meloxicam, which suggested that meloxicam

downregulates HIF-1α signaling by augmenting pVHL
expression under hypoxic conditions (Figures 4(d) and 4(e)).

3.5. Meloxicam Attenuates HIF-1α Nuclear Translocation
and Promotes the Proteasomal Degradation of HIF-1α. The
effect of meloxicam in significantly decreasing HIF-1α tran-
scriptional activity urged us to further investigate whether
meloxicam could affect HIF-1α’s subcellular localization for
hypoxia-induced nuclear translocation protecting HIF-1α
against downregulation by way of pVHL as previously
reported [32]. Western blotting results revealed that meloxi-
cam repressed the nuclear localization of HIF-1α compared
with empty vector controls in both Huh-7-pVHL shRNA
and Hep3B-pVHL shRNA cell lines (Figure 5(a)). In order
to further confirm the effect of meloxicam on reducing
HIF-1α’s nuclear accumulation and sequestering it in the
cytoplasm, immunofluorescent (IF) staining was utilized
and the results showed that meloxicam treatment altered
the nuclear localization of HIF-1α in Huh-7-pVHL shRNA
and Hep3B-pVHL shRNA cell lines whose cytosolic localiza-
tion was increased and nuclear accumulation was suppressed
under hypoxic conditions (Figure 5(b)). Based on these find-
ings, we are eager to further explore the mechanisms through
which meloxicam downregulates HIF-1α. Proteasomal
degradation plays a crucial role in cellular protein turnover
[33, 34]. Cycloheximide (CHX) is an antifungal antibiotic
that inhibits protein synthesis in eukaryotes. Here, we used
CHX to inhibit de novo protein synthesis in Huh-7 and
Hep3B cell lines. In this way, changes in the expression of
HIF-1α will mainly reflect its protein degradation. We found
that the intensity of HIF-1α in the presence of CHX was dra-
matically diminished by meloxicam treatment which implied
that meloxicam may be involved in the degradation of HIF-
1α (Figure 5(c)). Next, we utilized a specific proteasome
inhibitor, MG132, to further test the hypothesis that meloxi-
cam targets HIF-1α for proteasomal degradation. It was
found that MG132 treatment in the presence of meloxicam
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Figure 4: Meloxicam downregulates HIF-1α transcriptional activity and expression in a pVHL-dependent manner. (a) Cells were treated
with meloxicam (0 to 80 μM) for 24 h under hypoxic conditions. Protein levels of HIF-1α, VEGFA, and pVHL were detected by Western
blot analysis. Levels of GAPDH served as a loading control. (b) An HRE-dependent reporter assay was used to detect the effect of
meloxicam on HIF-1α transcriptional activity. ∗∗P < 0:01 compared with untreated controls in hypoxia. (c) Total RNA was extracted, and
HIF-1α and VEGFA mRNA expressions were analyzed by qRT-PCR. ∗∗P < 0:01 vs. control. (d, e) pVHL-silenced or control cells were
treated with or without meloxicam (80 μM) for 24 h under hypoxic conditions. Protein expressions of pVHL and HIF-1α were determined
by Western blot. Levels of GAPDH served as a loading control. ∗∗P < 0:01 compared with the meloxicam-untreated control shRNA group;
##P < 0:01 compared with the meloxicam- (80 μM) treated pVHL shRNA group. Data are representative of 3 independent experiments.
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suppressed downregulation of HIF-1α which revealed that
meloxicam could induce HIF-1α proteasomal degradation
in a hypoxic environment (Figure 5(d)).

3.6. Meloxicam Arrests Tumor Growth and Angiogenesis In
Vivo. Considering meloxicam’s superior antitumor effects
in vitro, we investigated whether meloxicam could inhibit
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tumor development in vivo. As shown in Figure 6(a), meloxi-
cam notably suppressed growth of Huh-7 and Hep3B xenograft
tumors. Next, HIF-1α as well as hallmarks of growth and angio-
genesis was detected by IHC and IF analysis, which revealed
downregulation in HIF-1α, Ki-67, and CD31 in tumor tissues
treated with meloxicam, whereas TUNEL staining showed
opposite results (Figure 6(b)). The result of IF analysis revealed
the suppression of expression of VEGFA in meloxicam-treated
groups (Figure 6(c)). The data of Western blot showed that
meloxicam treatment remarkably blocked the level of HIF-1α
and VEGFA, while enhancing pVHL expression in Huh-7
and Hep3B cell-derived tumors (Figure 6(d)).

4. Discussion

Given that hypoxic HCC cells are proangiogenic and antia-
poptotic and that the HIF-1α signaling pathway has a crucial

role in regulating cellular adaptation to hypoxia, our study
investigated responses of Huh-7 and Hep3B cell lines to
meloxicam, a COX-2-selective inhibitor, which has been con-
sidered a potential candidate for targeting the HIF-1α-VEGF
axis [15], and investigated the potential mechanism involved
in regulating these responses. The present study initially uti-
lized TMA technology and IHC to explore expression of
COX-2 and HIF-1α in HCC. The data indicated a positive
correlation between COX-2 expression and the HIF-1α level
and high COX-2 or HIF-1α expression in connection with
poor prognosis in HCC patients. In the in vitro experiment,
it was demonstrated that meloxicam not only suppressed cell
growth and angiogenesis but also caused disturbance of
mitochondrial membrane potential (ΔΨm), leading to
caspase-dependent apoptosis under hypoxia. However, there
was no significant cytotoxicity in normal human liver cell
lines treated with meloxicam. We also found that meloxicam
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Figure 6: Meloxicam arrests tumor growth in vivo. (a–d) Nudemice bearing established Huh-7 and Hep3B tumors were treated with 0.9%NS
or meloxicam (30mg/kg) for 35 . (a) Tumors from mice after tumor implantation are shown. The average tumor volume for each group was
calculated. ∗∗P < 0:01. (b) Representative images of tumor sections stained with antibodies against HIF-1α, Ki-67, CD31, and the TUNEL
agent (magnification × 200). (c) Expression and distribution of VEGFA in xenograft tumor tissues were determined by immunofluorescent
photomicrography (magnification, ×200). (d) Western blot analysis of Huh-7 and Hep3B cell-derived tumors treated with 0.9% NS or
meloxicam (30mg/kg) for expressions of HIF-1α, VEGFA, and pVHL. GAPDH was measured as the loading control.
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had the ability of inhibiting tumor growth in subcutaneous
HCC mouse models in vivo.

In previous studies, it was found that HIF-1α was notably
stabilized in malignant tumor cells under hypoxic conditions,
along with upregulating its target gene, VEGFA, which is con-
sidered the principal inducer of angiogenesis [35]. This cur-
rent study showed that both the protein levels of HIF-1α and
VEGFA were decreased when treated with meloxicam. But
qRT-PCR analysis showed that the extent of HIF-1α was only
mildly changed after being exposed to meloxicam. To investi-
gate whether meloxicam could affect the transcriptional activ-
ity of HIF-1α, a reporter plasmid was introduced and the
results revealed that meloxicam treatment results in reduced
HIF-1α transcription activity. These data implied that melox-
icam decreased HIF-1α’s transcription activity but not via its
transcriptional level and therefore, meloxicam may be a post-
transcriptional regulator of HIF-1α. Moreover, the level of
HIF-1α in the presence of CHX, an inhibitor of protein syn-
thesis, was significantly reduced by meloxicam treatment.
MG132, which is a proteasomal inhibitor, exposed to meloxi-
cam prevented the degradation of HIF-1α. These data revealed
that meloxicam treatment alters the nuclear localization of
HIF-1α and promotes its degradation. Therefore, we thought
an important possibility that might explain the mechanisms
of inhibition of tumor growth is that HIF-1α cytoplasmic-

nuclear trafficking and proteasomal degradation by meloxi-
cam could counteract hypoxia-regulated drug resistance.

Previous studies reported that the pVHL is one of the
negative regulators of the HIF transcription factor [36–38].
Thus, modulating the extent of pVHL expression under hyp-
oxic conditions may offer an effective therapy for HCC. The
current work indicated that meloxicam inhibits the HIF-1α
signaling pathway and reduces its target gene VEGFA
through upregulating the pVHL protein both in vitro and
in vivo whereas VHL silencing suppresses meloxicam-
mediated HIF-1α downregulation. In conclusion, our results
provide direct and strong evidence that the HIF-1α signaling
pathway and its target genes can function as a powerful force
for HCC cells to remain alive in a hypoxic environment. We
further demonstrated that blocking HIF-1α by meloxicam
could overcome angiogenesis and apoptosis resistance in
HCC (Figure 7). These data provide strong evidence that
the COX-2-specific inhibitor exhibits promising potential
for the treatment of HCC, but further clinical investigation
is still required.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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