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Doxorubicin (DOX) is limited due to dose-dependent cardiotoxicity. Peptidomics is an emerging field of proteomics that has
attracted much attention because it can be used to study the composition and content of endogenous peptides in various
organisms. Endogenous peptides participate in various biological processes and are important sources of candidates for drug
development. To explore peptide changes related to DOX-induced cardiotoxicity and to find peptides with cardioprotective
function, we compared the expression profiles of peptides in the hearts of DOX-treated and control mice by mass spectrometry.
The results showed that 236 differential peptides were identified upon DOX treatment, of which 22 were upregulated and 214
were downregulated. Next, we predicted that 31 peptides may have cardioprotective function by conducting bioinformatics
analysis on the domains of each precursor protein, the predicted score of peptide biological activity, and the correlation of each
peptide with cardiac events. Finally, we verified that a peptide (SPFYLRPPSF) from Cryab can inhibit cardiomyocyte apoptosis,
reduce the production of reactive oxygen species, improve cardiac function, and ameliorate myocardial fibrosis in vitro and vivo.
In conclusion, our results showed that the expression profiles of peptides in cardiac tissue change significantly upon DOX
treatment and that these differentially expressed peptides have potential cardioprotective functions. Our study suggests a new
direction for the treatment of DOX-induced cardiotoxicity.

1. Introduction

Doxorubicin (DOX), a typical broad-spectrum and highly
effective antitumor drug, is widely used in the clinical treat-
ment of various malignant tumors, such as breast cancer,
lymphoma, and leukemia [1]. However, its widespread
clinical application is limited by cumulative dose-dependent
toxicity in multiple organs, especially cardiotoxicity [2].
Research has shown that DOX can induce chronic heart
failure when the cumulative clinical dose exceeds 400-
700mg/m2 (adult) or 300mg/m2 (child), which greatly limits
the dose of DOX for clinical treatment [3]. It is currently
recognized that the main mechanism of DOX-induced cardi-
otoxicity is oxidative stress and the apoptosis of cardiomyo-

cytes [4, 5]. DOX can induce cardiomyocyte apoptosis,
which can develop into chronic heart failure, through the
generation of a large amount of reactive oxygen species and
cell calcium overload because of its high affinity for myocar-
dial tissue and tendency for accumulation in cardiomyocytes
[6, 7]. Currently, no drugs except dexrazoxane can be utilized
clinically to prevent or cure DOX-induced cardiotoxicity.
Therefore, to find an intervention strategy, it is necessary to
explore the mechanism of cardiotoxicity caused by DOX
from a new perspective.

Peptidomics, an emerging field of proteomics [8], is a
method for comprehensively analyzing peptides in various
biological samples by mass spectrometry [9, 10]. It can
be used for systematically, qualitatively, and quantitatively
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studying the composition and content of endogenous pep-
tides in organisms under physiological or pathological con-
ditions. With the development of peptidomics, a class of
small-molecule peptides composed of 3-50 amino acids
has been found to be important participants in a variety
of life activities, including apoptosis [11], immune regula-
tion [12], cell differentiation [13], nervous system regula-
tion [14], and reproduction regulation [15], and because
of their advantages, such as easy synthesis, small molecular
weight, nontoxic metabolites, and easy access to cells, they
have become a new favorite in the field of drug research
and development [16]. Humanin, a 24 amino acid peptide,
is encoded by the open reading frame in the mitochondrial
16S rRNA region and has shown cardiomyocyte protection
and antioxidant and antiapoptosis properties [17, 18].
Humanin can enhance the cardioprotective effect of dexra-
zoxane on DOX-induced cardiotoxicity, which may indicate
its use as an adjuvant for dexrazoxane to reduce DOX-
induced cardiotoxicity [19]. Exenatide pretreatment inhibits
DOX-induced production of reactive oxygen species and
apoptosis in cardiomyocytes and improves cardiac dysfunc-
tion through the upregulation of autophagy, indicating its
therapeutic potential for preventing DOX-induced cardio-
toxicity [20]. Apelin is an endogenous peptide ligand of
the APJ receptor that can prevent the activation of cardiac
fibroblasts and the production of collagen by inhibiting
sphingosine kinase 1. In addition, the use of apelin in the
stage of reactive fibrosis can prevent myocardial structural
remodeling and ventricular dysfunction [21]. Therefore,
considering peptides, we may find new clues for the protec-
tion of DOX-induced cardiotoxicity.

In this study, we established a cardiotoxicity model by
continuous doxorubicin injection. Nano-LC-MS/MS mass
spectrometry was utilized to explore the dynamic changes
in the composition of the endogenous peptides in mouse
heart tissue and screen for potentially functional peptides
related to DOX-induced cardiotoxicity. Subsequently, we
analyzed the differentially expressed peptides using a bioin-
formatics approach and predicted 31 peptides that may have
cardioprotective functions. Finally, a peptide derived from
Cryab was verified to antagonize cardiomyocyte apoptosis
and reduce ROS production. This study used peptidomics
as an entry point to explore the means of preventing or ame-
liorating the cardiotoxicity caused by doxorubicin, providing
new ideas for the study of DOX-induced cardiotoxicity.

2. Materials and Methods

2.1. Mice. Six-week-old male C57BL/6 mice weighing 16-20 g
were purchased from the Shanghai Slake Experimental
Animal Co., Ltd., and raised at the SPF Laboratory Animal
Center of Nanjing Medical University. The experiment was
started one week after the animals were purchased. The
experimental animals were randomly allocated to two
groups: the control group and the DOX group, with 12 mice
in each group. In the DOX group, the mice were injected
intraperitoneally with 5mg/kg DOX a week for a total of 4
injections with a cumulative dose of 20mg/kg [22], while
the control group was injected intraperitoneally with an

equal volume of saline. All animal experiments were carried
out in accordance with the Guide for the Care and Use of
Laboratory Animals published by the National Institutes of
Health (NIH Publications No. 85-23, revised 1996) and
reviewed by the Animal Experiment Ethics Committee of
Nanjing Medical University (Nanjing, China).

2.2. Echocardiography and Histological Determination. After
DOX or saline administration, the animals were maintained
for 2 weeks; mice were lightly anesthetized with 1.5% isoflur-
ane and allowed to breathe spontaneously, and then echocar-
diography was performed to detect mouse cardiac function.
High-resolution small animal ultrasound imaging system
(Vevo 3100) was used to obtain M-mode ultrasound
measurements for the DOX injection group and normal
group mice. The main measurement indicators included
ejection fraction (EF) and fractional shortening (FS). Other
echocardiographic parameters including left ventricular end-
systolic diameter (LVEDs), left ventricular end-diastolic diam-
eter (LVEDd), left ventricular end-systolic anterior wall
thickness (LVAWs), and left ventricular end-diastolic anterior
wall thickness (LVAWd). Further, left ventricular fractional
shortening (FS%) was calculated as ½ðLVEDd − LVEDsÞ/
LVEDd� × 100; left ventricular ejection fraction (EF%) was
calculated as ½ðLVEDV − LVESVÞ/LVEDV� × 100, LVEDV =
½7 LVEDd3/ð2:4 + LVEDdÞ�, and LVESV = ½7 LVEDs3/ð2:4 +
LVEDsÞ�. After the mice were euthanized by carbon dioxide
asphyxiation, the ventricular tissue was collected and immedi-
ately fixed in 4% paraformaldehyde for 48 hours. Samples were
dehydrated, paraffin embedded, and sectioned into 5μm thick
slices on a sliding microtome (Leica, Nussloch, Germany).
Then, the myocardial sections were dewaxed, rehydrated,
and stained with Masson’s trichrome, and the degree of myo-
cardial fibrosis was observed under the microscope. Blue colla-
gen staining was quantified using ImageJ software (version
1.52t, National Institutes of Health, Bethesda, MD, USA).

2.3. Peptide Extraction. The heart tissue samples were added
with Tris-HCl according to the volume ratio of 1 : 3, heated
and boiled for 10min, then cooled in an ice water bath, and
then broken by ultrasonic wave at 100Hz for more than 5 s,
with an interval of 5 s and ultrasonication for 2min. Then,
the final concentration of 1M glacial acetic acid was added
into the sample tube, and vortex oscillation was performed
for 2min. Then, acetonitrile with final concentration of
about 50% was added. The sample tube was centrifuged
at 12000 × g at 4°C for 10min; after that, the supernatant
was transferred to a clean EP tube for freeze-drying. Next,
add 80% acetone solution, vortex, vibrate, ultrasonicate in
a water bath for 2min and 4°C, centrifugate at high speed
at20000 × gfor 30 min, and then take the supernatant and
transfer to a clean EP tube for freeze-drying. Finally, add
200μl of 0.1% TFA solution for redissolution and remove
salt with C18 with sample loading of 80μg, freeze-dry, and
set aside.

2.4. LC/MS and Peptide Identification. We considered that
the heart of mice was small. In order to make the sample
quality detected by mass spectrometry more sufficient, we
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used the hearts of four mice to mix into one sample. Four
mouse heart tissues of DOX treatment were mixed as one
DOX sample and four normal mouse heart tissues were
mixed as one control sample, a total of three groups of
DOX and three groups of control. The peptides were identi-
fied by nano-LC-MS/MS on a Q Exactive Plus mass spec-
trometer (Thermo) couple with LC1000. Solvent A (Milli-Q
[Millipore, Billerica, MA] water with 0.1% formic acid and
2% acetonitrile) and solvent B (90% acetonitrile with 0.1%
formic acid) were used for chromatographic separation.
The peptides were eluted with 5% solvent B for 5 minutes
at a rate of 300 nl/min, 5-40% solvent B for 65 minutes, 40-
80% solvent B for 1 minute, 80% solvent B for 4 minutes,
and then 5% solvent B over 20 minutes. Q Exactive Plus
(Thermo Fisher) was performed in an information-
dependent data acquisition mode to enable automatically
switching between MS and MS/MS acquisition. MS spectra
were obtained in the mass range of 350-2000m/z. Xcalibur
software (Thermo Scientific, version 3.1.66.10) was used for
automatic peak identification, 10 s dynamic exclusion, and
tandem mass spectrometry analysis of the top 20 precursor
protein ions at 30% normalized collision energy. The intensi-
ties of identified peptides were calculated by MaxQuant soft-
ware (version 1.6.6.0) and used label-free quantification.

All MS/MS data were analyzed by MaxQuant software,
and the UniProt_mouse database (UniProt release 2019_
11) was searched based on nonspecific digestion technology.
The mass tolerance of the fragment ion in MaxQuant was
0.050Da and that of the parent ion was 10.0 PPM. Oxidation
of methionine was designated as a variable modification. The
selection criterion for the differentially expressed peptides
was a fold change larger than 2 with a P value < 0.05 (Stu-
dent’s t-test).

2.5. Bioinformatics Analysis. The peptide isoelectric point
(PI) and molecular weight (MW) information were obtained
online (https://web.expasy.org/protparam/). First, the Uni-
Prot database (http://www.uniport.org/) was used to find
the source of differential peptides. Functional Annotation
Tool DAVID Bioinformatics Resources 6.8 (https://david
.ncifcrf.gov/) was used to elucidate the potential functions
of the precursor proteins of the identified peptides according
to the biological process, molecular function, and cellular
component categories of Gene Ontology (GO) annotations
and KEGG pathways. Second, the relationship of the
differential peptides’ precursor proteins with various cardio-
vascular diseases and apoptosis was analyzed using the
GeneAnalytics website (http://geneanalytics.genecards.org/)
and Cytoscape 3.5.1 software. Third, the biological activity
of peptides was predicted through Peptide Ranker [23, 24]
(http://bioware.ucd.ie/~compass/biowareweb/, ranker scores
greater than 0.5 indicate possible activity) in order to find
potential peptides. The protein interactions were analyzed
using the STRING website (https://string-db.org/, version:
11.0) and Cytoscape 3.5.1 software. The amino acid
sequences of the different species were analyzed using the
protein database on the NCBI website (https://www.ncbi
.nlm.nih.gov/homologene/), and the results were compared
with DNAMAN (version 9.0) software.

2.6. Peptide Synthesis and Administration. The following
peptide sequences were synthesized in this experiment:
PDCryab1: RKKRRQRRR-SPFYLRPPSF, PDCryab2: RKK
RRQRRR-SPFYLRPPSFLR, PDCryab3: RKKRRQRRR-SPF
YLRPPSFLRAPS, PDCryab4: RKKRRQRRR-TSLSPFYLRP
PSFL, and scramble peptide of PDCryab1: RKKRRQRRR-
LSFRFPSPYP. We used scramble peptide to serve as the
control peptide, which shares same amino acids with Cryab
but sequenced as a scramble peptide.

The RKKRRQRRR sequence is a cell-penetrating peptide
composed of nine amino acids in HIV-1 Tat (49-57). The
purity of all peptides was more than 95%. The peptides were
synthesized by the Shanghai Science Peptide Biological Tech-
nology Co., Ltd. (Shanghai, China). The peptide crystal was
dissolved in sterile water to obtain a storage solution of
10mM and diluted to the final concentration corresponding
to the experiment. For the cell experiments, peptides were
added to the culture supernatant 2 hours before DOX
treatment.

2.7. Cell Culture and Experimental Design. The H9c2 cell line
of rat cardiomyocytes was purchased from the Cell Bank of
the Shanghai Academy of Biosciences. H9c2 cells were
cultured in a sterile incubator (37°C, 5% CO2) with high-
glucose DMEM supplemented with 10% fetal bovine serum
and 1% penicillin and streptomycin. The H9c2 cells were
subcultured every 2 days and were in good condition for
use in the experiments.

For the initial cell experiments, the cells were allocated to
6 groups: (I) control group, (II) DOX (1μM) treatment
group (DOX), (III) DOX and PDCryab1 (50μM) [25, 26]
cotreatment group (DOX+P1), (IV) DOX and PDCryab2
(50μM) cotreatment group (DOX+P2), (V) DOX and
PDCryab3 (50μM) cotreatment group (DOX+P3), and (VI)
DOX and PDCryab4 (50μM) cotreatment group (DOX
+P4). In addition, for the subsequent cell experiments, the
cells were allocated to the following groups: (I) control group,
(II) PDCryab1 (50μM) treatment group, (III) DOX (1μM)
treatment group (DOX), (IV) DOX and PDCryab1 (10μM)
cotreatment group (10), (V) DOX and PDCryab1 (20μM)
cotreatment group (20), and (VI) DOX and PDCryab1
(50μM) cotreatment group (50). After 24 hours of these
treatments, the cells were collected for the appropriate
analysis.

2.8. Analysis of Cell Viability. Cell viability was determined
with a cell counting kit-8 (CCK-8) kit (Dojindo Molecular
Technologies, Inc., Kumamoto, Japan) according to the
following steps. The subcultured H9c2 cells were seeded in
96-well plates at a density of 1 × 104 cells/well, and upon
reaching the adherence stage, the cells were treated with
drugs as described above. Ten microliters of the CCK-8
reagent was added to each well and maintained away from
light in 37°C incubators. After incubation for 2 hours, the
intensity of the light absorption at 450nm wavelength was
measured by a microplate reader.

2.9. Western Blot Analysis. The protein in the H9c2 cells was
extracted with lysis buffer (including RIPA and 1% PMSF)
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and quantified by a BCA assay kit (23229; Thermo Fisher
Scientific). The protein samples were mixed with 1x SDS
loading buffer and denatured by boiling at 95°C for 5
minutes. After cooling on ice for 4 minutes, the protein
samples were separated by 10% SDS-PAGE gel and then
transferred to nitrocellulose membranes (Millipore, USA).
After being blocked with 5% skimmed milk at room temper-
ature for 1.5 hours, specific antibodies, namely, anti-PARP
(1 : 1000, #9542, CST), anti-caspase3 (1 : 1000, #9665, CST),
β-actin (1 : 2000, #4970, CST), and antitubulin α/β (1 : 2000,
#2148, CST), were incubated with the membrane overnight
at 4°C. The membrane was washed once with TBST buffer
5 times for 5 minutes each time. Protein expression was
quantitatively analyzed by Image Lab software (Bio-Rad,
Hercules, CA, USA). Western blot results were normalized
by tubulin or β-actin.

2.10. Detection of ROS, SOD, and MDA. Reactive oxygen spe-
cies (ROS) were detected by an ROS assay kit (Beyotime,
China) according to standard procedures. H9c2 cells were
passaged to a 6-well plate at a density of 2 × 105 cells/well.
After the cells reached 80% confluence, the cells were treated
with drugs for a specified time. The DCFH-DA fluorescence
probe was diluted to 10μM in DMEMwithout serum. The 6-
well plate medium was transferred to a clean centrifuge tube
for preservation, and 1ml of diluted DCFH-DA fluorescence
probe was added to each well and incubated at 37 °C in the
dark for 20 minutes. After incubation, the supernatant was
discarded, and the cells were washed twice with serum-free
DMEM medium and then washed twice with PBS. The
ROS fluorescence intensity in the cells was observed by
inverted fluorescence microscopy and quantified by ImageJ
software. SOD and MDA assay kits (Nanjing Jiancheng Bio-
company) are used to detect SOD and MDA levels in the cell
supernatant that has been retained according to the protocol.

2.11. Mitochondrial Membrane Potential. JC-1 Mitochon-
drial Membrane Potential Assay Kit (Beyotime, China) was
used to analyze mitochondrial injury according to the manu-
facturer’s instructions. In short, the cells were washed with
PBS and incubated with JC solution for 10min at 37°C.
And then, the cells were washed with dilution buffer again
and analyzed on a laser scanning confocal microscope.

2.12. TUNEL Assay. Cells were seeded (1 × 105 cells per well)
in 6-well plates. After DOX treatment, the cells were washed
twice with PBS and fixed with 4% paraformaldehyde. Apo-
ptotic cells were visualized with TUNEL staining according
to the manufacturer’s protocol (Promega). TUNEL fluores-
cence intensity/DAPI fluorescence density was used to
calculate the percentage of positive cells, and the density
was evaluated using ImageJ software 1.26 (Wayne Rasband,
National Institutes of Health, Bethesda, MD, USA).

2.13. LDH Release. The level of LDH was detected by LDH
Release Assay Kit (Beyotime, China). The reaction solution
was prepared according to the manufacturer’s instructions.
The cell supernatant or serum (120μl/well) was collected
and mixed with reaction solution (60μl/well), and then the
mixtures were added into 96-well plates. The cells were

wrapped in tin foil and incubated for 30min at RT on the
shaker. Finally, the absorbance was detected with a micro-
plate reader at 490nm wavelength.

2.14. Histological Staining. Hearts were harvested and
immediately fixed in 4% paraformaldehyde for 48 hours.
Samples were dehydrated, paraffin embedded, sectioned into
5μm thick slices on a sliding microtome (Leica, Nussloch,
Germany), and stained with Sirius red and hematoxylin
and eosin (H&E). The yocyte cross-sectional areas were
measured via fluorescein isothiocyanate-conjugated WGA
(L4895; Sigma, St. Louis, MO, USA) staining. A quantitative
digital image analysis system (Image-Pro Plus 6.0) was used
to measure the cross-sectional area of the cardiomyocyte
from images that had been captured from fluorescein isothio-
cyanate- (FITC-) conjugated wheat germ agglutinin- (WGA-)
(Invitrogen, Thermo Fisher Scientific) stained sections.

2.15. Real-Time PCR. Total RNA was extracted from cells
using TRIzol reagent (Thermo Fisher Scientific). The
concentration of RNA was determined by measuring the
absorbance ratio of 260/280 nm using a NanoDrop ND-
1000 spectrophotometer (Thermo Scientific). Reverse tran-
scription of RNA was performed using a PrimeScript™ RT
Reagent Kit with gDNA eraser (RR047A; Takara, Tokyo,
Japan), and cDNA was analyzed by qRT-PCR using SYBR®
Premix Ex Taq™ (RR420A; Takara, Tokyo, Japan). The data
were normalized to the levels of GAPDH and further ana-
lyzed using the 2−ΔΔCT method.

2.16. Statistical Analysis. The experimental data and statisti-
cal graphs were analyzed by GraphPad Prism 8 software.
All data are presented as the means ± standard deviation
(SD). Statistical differences were measured with an unpaired
2-sided Student t-test or 2-way ANOVA with Bonferroni
correction for multiple comparisons. When the P value <
0.05, the difference was considered significant.

3. Results

3.1. Peptidomics Research Process Using Mouse Heart Tissue.
We used male C57BL/6 mice to construct an animal model of
cardiotoxicity by intraperitoneally injecting DOX and then
collecting heart tissues to extract peptides for mass spectrom-
etry analysis. The schematic process is shown in Figure 1(a).
Dox-induced cardiac dysfunction was remarkably decreased
in the Dox injection group, which was indicated by a decrease
in EF and FS (Figures 1(b) and 1(c)). Masson’s staining
results showed the cardiac fibrosis alterations, as evidenced
by cardiac fiber rupture and decreased cardiomyocyte area
(Figures 1(d) and 1(e)). Thus, we established a cardiotoxicity
model induced by DOX injection.

3.2. Identification of Differential Peptide Expression Profiles
Related to DOX-Induced Cardiotoxicity. Mass spectrometry
results revealed 2945 detected peptides, 236 of which were
differentially expressed (P value < 0.05 and fold change ≥2)
(Supple. Table 1). In the DOX-induced cardiotoxicity
group, 22 peptides were upregulated and 214 peptides were
downregulated (Figure 2(a)). The heat map shows the
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significant differences in the peptide profiles of cardiotoxic
tissues treated with doxorubicin and normal heart tissues
(Figure 2(b)). 47 peptides were expressed exclusively in the

control group and 5 peptides were expressed in the DOX
group (Supple. Table 2). Three peptides possessing 7
different precursor proteins are listed in Supple. Table 3.
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Figure 1: Peptidomics research process and the successful construction of a mouse model. (a) The process of peptide identification in the
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Figure 2: Identification and features of differentially expressed peptides. (a) Identification of the number of differentially expressed peptides.
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We found that the distribution of different peptide lengths
was relatively large and mainly concentrated in two ranges:
9-17 and 22-23 amino acids (Figure 2(c)). We also explored
the molecular weight (MW) and isoelectric point (PI) of
differentially expressed peptides and found that the MW of
the differentially expressed peptides was distributed between
0.8 and 2.8 kDa, with the downregulated peptides mainly
concentrated in the 1.0-2.0 kDa range and the upregulated
peptides concentrated in the 0.8-1.0 kDa and 1.2-1.8 kDa
ranges (Figure 2(d)). The isoelectric point analysis showed
that, overall, the differentially expressed peptides were
mainly in the PI 4-7 and PI 8-10 ranges (Figure 2(e)). The
distribution of upregulated and downregulated peptides
was consistent with that of all peptides, and there was
no significant difference in the distribution between the
upregulated and downregulated groups. In addition, we
analyzed the correlation between the distribution of
differential peptide MW and PIs. The peptides were
mainly clustered into four groups: near PI 4, PI 6, PI 8,
and PI 10 (Figure 2(f)).

3.3. Analysis of Four Cleavage Sites in the Differentially
Expressed Peptides. Based on the peptide described data, we
analyzed the C-terminal and N-terminal cleavage sites of
the differentially expressed peptides, which mainly included
the following four cleavage sites: the C-terminal amino acid
of the preceding peptide, the N-terminal amino acid of the
identified peptide, the C-terminal amino acid of the identi-

fied peptide, and the N-terminal amino acid of the subse-
quent peptide. In the upregulated peptide group, leucine (L)
was the most abundant amino acid at the C-terminus of the
preceding peptide, alanine (A) was the most abundant amino
acid at the N-terminus of the identified peptide, alanine (A)
and leucine (L) were the most abundant amino acids at the
C-terminus of the identified peptide, and asparagine (N)
was the most abundant amino acid at the N-terminus of
the subsequent peptide (Figure 3(a)). In the downregulated
group, the most abundant amino acids in the above four
cleavage sites were methionine (M), alanine (A), leucine
(L), and alanine (A), as shown in Figure 3(b). The four cleav-
age sites of 236 peptides were different in the upregulated and
downregulated groups.

3.4. Bioinformatics Analysis. To predict the potential func-
tion of 236 differentially expressed peptides, we performed
GO and pathway analysis on their precursor proteins. GO
analysis results showed the molecular function, biological
process, and cellular component in the downregulation
proteins (Figures 4(a)–4(c)). Interestingly, we found that
downregulated proteins were mainly associated with Poly(A)
RNA binding, transport, and mitochondrial function. Down-
regulated protein analysis showed transmembrane trans-
porter activity, ATP synthesis, mitochondrial respiratory
chain (Figures 4(d)–4(f)). The KEGG pathway analysis
showed that the precursor proteins of the differential pep-
tides were mainly involved in oxidative phosphorylation
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Figure 3: Analysis of four cleavage sites of the differentially expressed peptides. (a) The distribution of the four cleavage sites in the
upregulated peptides. (b) The distribution of four cleavage sites in the downregulated peptides.
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Figure 4: Continued.
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Figure 4: Gene Ontology (GO) and pathway analysis. (a) Molecular function of downregulated peptides’ precursor proteins. (b) Biological
processes of downregulated peptides’ precursor proteins. (c) Cellular components of downregulated peptides’ precursor proteins. (d) Molecular
function of upregulated peptides’ precursor proteins. (e) Biological processes of upregulated peptides’ precursor proteins. (f) Cellular
components of upregulated peptides’ precursor proteins.
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and metabolism signaling pathways, which are closely related
to the occurrence and development of myocardial injury
(Figure 5(a)). Next, we analyzed the interaction network of
the precursor proteins of these differential peptides using
the STRING website (https://string-db.org/, version: 11.0).
We found multiple interaction networks, with the main pro-
tein interaction network related to oxidative phosphorylation
in mitochondria (Figure 5(b)).

3.5. Prediction of Myocardial Protective Peptides. First, we
sought to determine the precursor proteins of the differen-
tially expressed peptides related to cardiovascular diseases,
oxidative phosphorylation, and cardiomyocyte apoptosis
through the GeneAnalytics website (http://geneanalytics
.genecards.org/) and Cytoscape 3.5.1 software. The correla-
tions between the precursor proteins and various cardiovas-
cular diseases are shown in Figure 6(a). The correlation
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Figure 5: Analysis of the protein interaction network. (a) Pathway analysis of the precursor proteins of the differentially expressed peptides.
(b) Interaction network of precursor proteins of these differentially expressed peptides as determined with STRING (https://string-db.org/,
version: 11.0). The confidence level: medium confidence 0.400. Red: the main proteins associated with oxidative phosphorylation.
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Figure 6: Continued.
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between the precursor proteins and cardiomyopathy is
shown in Figure 6(b). The precursor proteins associated
with oxidative phosphorylation and cardiomyocyte apo-
ptosis are shown in Figures 6(c) and 6(d). Next, we used
the UniProt database (https://www.UniProt.org/) to study
the function of the differentially expressed peptides and
their precursor proteins and used Peptide Ranker (http://
bioware.ucd.ie/~compass/biowareweb/, ranker scores greater
than 0.5 indicate possible activity) to predict the probability
that a differentially expressed peptide is involved in a biologi-
cal activity. Finally, we screened 31 differentially expressed
peptides that may have myocardial protective function

(Table 1). The heat map shows small differences within the
group of 31 peptides and large differences between the behav-
ior activity groups (Figure 6(e)).

3.6. Preliminary Functional Exploration of Peptides Derived
from Cryab. Research has shown that Cryab protein plays
an important role in myocardial protection. First of all, we
verified the protein level of Cryab before and after DOX
treatment. Our results showed that the protein level of Cryab
was significantly reduced after DOX treatment (Figure 7(a)).
Thus, we wondered if it might have a cardioprotective effect
by cracking down key peptides. Among the 31 predicted
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Figure 6: Analysis of the precursor proteins of differentially expressed peptides related to potential myocardial protection. (a) Analysis of
these precursor proteins related to cardiovascular diseases. (b) Analysis of these precursor proteins related to various cardiomyopathies.
(c, d) Analysis of these precursor proteins related to oxidative phosphorylation and cardiomyocyte apoptosis. (e) Heat map analysis of 31
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Figure 7: PDCryab1 attenuates DOX-induced cardiomyocyte apoptosis and the generation of reactive oxygen species (ROS). (a) The protein
level of Cryab was significantly decreased after DOX treatment. (b) The effect of four peptides derived from Cryab on the viability of cells after
DOX treatment, as determined by CCK-8 assay (one-way ANOVA analysis with Bonferroni’s multiple comparison test). (c) The effect of
PDCryab1 at different concentrations on the viability of cells after DOX treatment, as determined by CCK-8 assay (two-way ANOVA
analysis with Bonferroni’s multiple comparison test). (d) Treatment of PDCryab1 significantly reduced LDH release (two-way ANOVA
analysis with Bonferroni’s multiple comparison test). (e) Western blot analysis of cleaved PARP and cleaved caspase3. The quantification
data for cleaved PARP and cleaved caspase3 (two-way ANOVA analysis with Bonferroni’s multiple comparison test). (f) Representative
photographs of ROS stained in the H9c2 cells. A DCFH-DA probe was used to detect intracellular ROS. Magnification 100x. The peptide
concentration was 20μM. Green: ROS. Quantification data for the ROS (two-way ANOVA analysis with Bonferroni’s multiple
comparison test). (g) Representative photographs of mitochondrial membrane potential in H9c2 cells (two-way ANOVA analysis with
Bonferroni’s multiple comparison test). Magnification 200x. (h) Representative photographs of TUNEL in H9c2 cells (two-way ANOVA
analysis with Bonferroni’s multiple comparison test). Magnification 100x. (i) SOD and MDA were detected (two-way ANOVA analysis
with Bonferroni’s multiple comparison test). The data represent the means ± SD. ∗∗P < 0:01 and ∗∗∗P < 0:001 versus the control group.
#P < 0:05 and ##P < 0:01 versus the DOX/DOX+Scr group. ns: not statistically significant.
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peptides, six peptides were derived from Cryab and downreg-
ulated in the DOX group. Therefore, we selected four peptides
that have a relatively high ranker score for the preliminary
functional experiments with H9c2 cells: SPFYLRPPSF (45-
54), SPFYLRPPSFLR (45-56), SPFYLRPPSFLRAPS (45-59),
and TSLSPFYLRPPSFL (42-55). We named these peptides
PDCryab1-4 (peptides derived from Cryab). Subsequently,
we preliminarily verified the functions of these four peptides
in H9c2 cells. We confirmed the PDCryab1 (SPFYLRPPSF)
peptide to significantly enhance the viability of DOX-treated
cardiomyocytes (Figure 7(b)). The analysis of PDCryab1
(SPFYLRPPSF) conservation in various species is shown in
Supple. Fig. 1A. PDCryab1 has a high degree of homology
among various species, especially Homo sapiens, mouse, and
Rattus. HCD MS/MS annotation of the PDCryab1 peptide
(SPFYLRPPSF) derived from the Cryab sequence spanning
amino acids 45-54 is shown in Supple. Fig. 1B. PDCryab1
protect cells against DOX-induced cell damage, as evidenced
by increased cell viability and decreased LDH release
(Figures 7(c) and 7(d)). To study the function of PDCryab1
in DOX-induced cardiotoxicity, the apoptosis and ROS
production levels were evaluated. The results showed that
PDCryab1 could reduce the activation of PARP and caspase3
(Figure 7(e)). Simultaneously, 20μMPDCryab1 also decreased
the generation of reactive oxygen species (Figure 7(f)). Besides,
we also provided data about early apoptosis and PDCryab1
could reduce cell apoptosis rates, as indicated by mitochondrial
membrane potential and TUNEL assay (Figures 7(g) and 7(h)).
Last, we verified the SOD and MDA content in the superna-
tant. Our results showed that PDCryab1 significantly alleviated
oxidative stress, as evidenced by increased SOD and decreased
MDA content (Figure 7(i)).

3.7. Functional Analysis of PDCryab1 In Vivo. To further
investigate the function of PDCryab1, we established a
DOX-induced cardiotoxicity model. A cumulative dose of
20mg/kg of doxorubicin (DOX) was administered via 4
weekly i.p. injections (Figure 8(a)). Body weight was signifi-
cantly decreased in the DOX injection group, whereas
PDCryab1 abolished this effect during DOX injection
(Figure 8(b)). Treatment of PDCryab1 significantly improved
the cardiac function, as evidenced by echocardiography analy-
sis (Figures 8(c) and 8(d)).We also performed Sirius red stain-
ing, and our results showed that treatment of PDCryab1
alleviated DOX-induced cardiac fibrosis (Figures 8(e) and
8(f)). Besides, we verified the cardiomyocyte area via HE stain-
ing and WGA staining. Our results demonstrated that inter-
vention of PDCryab1 improved the DOX-induced cardiac
damage, as evidenced by increased cardiomyocyte area and
decreased LDH release (Figures 8(g)–8(j)). Lastly, heart tissues
were harvested to verify the cardiac marker, ANF and BNP.
Our results revealed that treatment of PDCryab1 significantly
reduced the mRNA level of ANF and BNP, suggesting a ben-
eficial effect of PDCryab1 (Figures 8(k) and 8(l)).

4. Discussion

As we all know, DOX is widely used in the treatment of
various tumors as a basic chemotherapy drug. However, the

cardiotoxicity induced by DOX has become an increasingly
serious problem and has been challenging many experts in
the cardiovascular field [27]. Although there have been many
studies on DOX-induced cardiotoxicity in recent years, the
problem has not been resolved. To date, we used peptidomics
to comprehensively analyze the changes in peptide profiles
related to DOX-induced cardiotoxicity and successfully identi-
fied differentially expressed peptides in heart tissues. By analyz-
ing the physicochemical properties and bioinformatics of these
differentially expressed peptides, we provide new insights into
the clinical problem of DOX-induced cardiotoxicity.

In this study, we identified a total of 236 peptides
expressed at a difference that exceeds 2-fold changes. These
peptides comprised fewer than 25 amino acids, and the
molecular weight was less than 3.0 kDa, which suggested that
the peptides identified in this study were valid. Many of these
peptides originated from the same precursor protein, which
attracted our attention. It is known that most peptides are
produced by protein cleavage, and proteases play a key role
in the cleavage process by specifically identifying cleavage
sites [28]. In addition, the different cleavage sites recognized
by the protease will have a great influence on the biological
function of the cleaved peptides [29]. Our finding also indi-
cated that the protease follows specific rules in the process
of protein cleavage. Physicochemical properties, including
peptide length, molecular weight, isoelectric point, and cleav-
age sites, are helpful for us to select the potential peptides.
First, the liposoluble peptides are easily entered cells. Second,
the peptides that have a long half-life are stable in cells. Third,
relative lower length peptides are easily entered cells.

Through a bioinformatics analysis of these differential
peptides, the cellular components enriched with these pep-
tides were the mitochondrial inner membrane and mito-
chondrial respiratory chain, and the biological functions
enriched with these peptides were related to the synthesis
and metabolism of ATP. Mitochondria are considered the
main target organelles of DOX in cardiomyocytes [30]. Some
studies have shown that DOX preferentially accumulates in
the mitochondria of cardiomyocytes, causing mitochondrial
swelling and mitochondrial dysfunction [31, 32]. The path-
way analysis results show that these peptides are mainly
involved in oxidative phosphorylation and metabolic path-
ways. In energy metabolism, ATP is the main energy supply-
ing compound in the body, and the main mechanism of its
formation is oxidative phosphorylation. The decrease in
mitochondrial energy supply caused by DOX can lead to a
change in cardiac metabolism. The levels of ATP and creatine
phosphate in the hearts of DOX-treated rats were decreased,
indicating a decrease in mitochondrial energy metabolism
[33]. In addition, DOX can inhibit the use of glucose by the
myocardium while reducing the beta-oxidation of long-
chain fatty acids, which may eventually lead to the develop-
ment of myocardial energy metabolism disorders [34].
Therefore, attenuating the myocardial metabolic changes
caused by DOX is one of the strategies to alleviate DOX-
induced cardiotoxicity and in which these peptides may play
key roles.

Cardiomyocyte apoptosis is a vital biological event of
DOX-induced cardiotoxicity [4]. Studies have found that
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some biologically active peptides, such as ICL1-9 [35] and
pNaKtide [4, 26], play a protective role in the process of car-
diomyocyte apoptosis. In this study, many precursor proteins
of differentially expressed peptides are involved in the regula-
tion of cardiomyocyte apoptosis, including heat shock pro-
tein beta-1 (Hspb1) [36], alpha-crystallin B chain (Cryab)
[37], heat shock protein beta-6 (Hspb6) [38], and actin, alpha
cardiac muscle 1 (Actc1) [39]. Cryab is the most abundant
small heat shock protein (sHSP) in cardiomyocytes, and it
can antagonize myocardial ischemia/reperfusion injury and
is essential for normal cardiac function [40]. In addition,
Cryab can inhibit the apoptosis of neonatal mouse cardio-
myocytes treated with H2O2 [37]. Some studies have shown
that peptides often play a biological role similar to that of
their precursor proteins [41]. As shown in Table 1, of the
31 peptides that we predicted to be active, 6 were from Cryab,
and all of them were downregulated in the DOX treatment
group, findings consistent with the theory stated above.
Therefore, we speculate that these six peptides may be
involved in the regulation of Cryab in cardiomyocytes and
may have the same function as Cryab. Interestingly, the pep-
tides derived fromHspb1 are both upregulated and downreg-
ulated, while Hspb1 is recognized as a protein with a
cardioprotective effect. The function of these peptides is wor-
thy of further verification. If the upregulated peptides also
have cardioprotective effects, whether the peptide has the
same function as its precursor protein needs to be further
clarified.

In this study, PDCryab1 (SPFYLRPPSF) was a downreg-
ulated peptide in the DOX treatment group that was derived
from the Cryab protein, has high homology among various

species, and had not been previously reported. Our previous
experiments demonstrated that PDCryab1 can inhibit
cardiomyocyte apoptosis, reduce the production of reactive
oxygen species, improve cardiac function, and ameliorate
myocardial fibrosis. Although we have confirmed that
PDCryab1 has a myocardial protective effect in vitro and
in vivo, there were still some limitations to our study. For
example, whether the type of cleavage or modification affects
the function of PDCryab1 remains to be verified. In addition,
the specific mechanism by which PDCryab1 exerts its biolog-
ical function is also particularly important and will be the
focus of our future research.

The peptide AEGPAAVTLAAPAFSRALNRQL was
downregulated in the DOX treatment group. It was in the
sHSP domain and interaction with the TGFB1I1 region of
the Hspb1 protein. Hspb1 can inhibit the apoptosis caused
by oxidative stress and protect the myocardium [36]. The
domain is a region in a protein that has an independent
structure and function, and this function often does not
depend on the other regions of a protein molecule. Therefore,
a peptide located in a domain region is more likely to have
independent biological activity [42]. AEGPAAVTLAAPAFS-
RALNRQL was in the domain of Hspb1, and its predicted
biological activity score was 0.59 (more than 0.5), which sug-
gested that it may have an antiapoptotic effect and may be
another therapeutic target of DOX-induced cardiotoxicity.
In addition, Hspb1 can interact with VEGF and transforming
growth factor (TGFB1I1) to regulate angiogenesis [43], and
this peptide is in the region that interacts with TGFB1I1.
We speculate that this peptide may also play a previously
unidentified role in angiogenesis.
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Figure 8: Functional analysis of PDCryab1 in vivo. (a) Schematic map of DOX-induced cardiotoxicity. (b) Body weight was detected (two-
way ANOVA analysis with Bonferroni’s multiple comparison test). (c) Representative photographs of echocardiography analysis were
recorded. (d) Quantification data of echocardiography analysis (two-way ANOVA analysis with Bonferroni’s multiple comparison test).
(e) Representative photographs of Sirius red staining. (f) Quantification data of Sirius red staining (two-way ANOVA analysis with
Bonferroni’s multiple comparison test). (g) Representative photographs of HE staining and quantification data of HE staining (two-way
ANOVA analysis with Bonferroni’s multiple comparison test). (h) Representative photographs of WGA staining. (i) Quantification data of
WGA staining (two-way ANOVA analysis with Bonferroni’s multiple comparison test). (j) LDH release was detected (two-way ANOVA
analysis with Bonferroni’s multiple comparison test). (k, l) mRNA levels of ANF and BNP were detected (two-way ANOVA analysis with
Bonferroni’s multiple comparison test). ∗∗P < 0:01 and ∗∗∗P < 0:001 versus the control group. #P < 0:05 and ##P < 0:01 versus the
DOX/DOX+Scr group. ns: not statistically significant.
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A peptide derived from Hmgb1 also attracted our
attention. Its sequence was DPNAPKRPPSA (91-101). High
mobility group box 1 (Hmgb1) is a DNA-binding nuclear
nonhistone protein that plays an important role in the
occurrence and development of cardiovascular diseases
[44]. In general, Hmgb1 is passively released from necrotic
cells, and living cells can actively secrete it under certain
pathological conditions [45]. Studies have shown that DOX
can significantly increase the expression level of Hmgb1 in
cardiomyocytes, resulting in cardiomyocyte apoptosis and
cardiac dysfunction, and that silencing Hmgb1 can protect
the myocardium from DOX-induced cardiotoxicity [45, 46].
In addition, Hmgb1 has also been proven to be involved in
DOX-induced autophagy-related cardiotoxicity and is pre-
dicted to be a biomarker of DOX-induced cardiotoxicity
[47]. However, a recent study showed that Hmgb1 can
upregulate the expression of Hspb1 and attenuate the
cardiomyocyte apoptosis associated with DOX-induced car-
diomyopathy [48]. Therefore, Hmgb1 undoubtedly plays an
important role in DOX-induced cardiomyocyte apoptosis,
but the specific effect of Hmgb1 on cardiomyocyte apoptosis
remains to be clarified. Here, we found a peptide derived from
Hmgb1 that was downregulated in the DOX treatment group
and had a high prediction score for biological activity. This
peptide was located in the region with cytokine-stimulating
activity and a phosphorylation site (100). The elucidation of
the function of this peptide will help to not only clarify the
specific effect of Hmgb1 on cardiomyocyte apoptosis but also
provide a new intervention strategy for DOX-induced
cardiotoxicity.

In summary, we used peptidomics to elucidate the mech-
anism of DOX-induced cardiotoxicity and explore cardiotoxi-
city protection strategies; 236 differentially expressed peptides
were successfully screened in this study. Through bioinfor-
matics analysis and experimental verification, PDCryab1
became a candidate for protecting the myocardium against
DOX-induced cell apoptosis. Our study provides a new
approach for the treatment of DOX-induced cardiotoxicity.
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