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Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure, with an
incidence of 11%. However, the disease mechanism remains unclear, and no effective treatment is available. Paricalcitol has been
reported to be effective in animal models of kidney injury. We hypothesized that paricalcitol could play a renoprotective role
against CI-AKI. Rats were divided into control, paricalcitol, contrast, and paricalcitol-plus-contrast groups. We used a previously
published protocol to produce CI-AKI. Paricalcitol (0.3μg/kg) was administered intraperitoneally before 24 h and 30min before
indomethacin. We used HK-2 cells to evaluate the effects of paricalcitol on mitophagy and senescence. Ioversol triggered renal
dysfunction, increasing blood urea nitrogen and serum creatinine. Significant tubular damage, increased 8-OHdG expression, and
apoptosis were apparent. Ioversol injection induced high expression levels of the mitophagy markers Pink1, Parkin, and LC3 and
the senescence markers β-galactosidase and p16INK4A. Paricalcitol pretreatment prevented renal dysfunction and reduced tissue
damage by reducing both mitophagy and senescence. Cellular morphological changes were found, and expression of LC3B and
HMGB1 was increased by ioversol in HK-2 cells. Paricalcitol countered these effects. This study showed that mitochondria might
drive injury phenotypes in CI-AKI, and that paricalcitol protects against CI-AKI by decreasing mitochondrial damage.

1. Introduction

Radiocontrast agents are diagnostically and therapeutically
indispensable. However, the incidence of adverse events is
1–15% despite the introduction of newer and safer materials
[1]. Contrast-induced acute kidney injury (CI-AKI), a severe
adverse event, refers to AKI that develops after intravascular
administration of contrast media (several definitions have
been published). It is the third most common cause of
hospital-acquired AKI and is associated with increased short-
and long-term morbidity and mortality [2]. Although the
pathophysiology of CI-AKI is complex and poorly under-

stood, it usually features medullary ischemia caused by
hemodynamic changes, reactive oxygen species (ROS) for-
mation, and tubular toxicity as reflected by cell swelling,
blebbing, and apoptosis [3, 4]. Mitophagy is activated in renal
tubules. Mitophagy, or autophagy of the mitochondria, is
important for mitochondrial quality control, and its activa-
tion exerts renoprotective effects in CI-AKI [5]. Mitophagy
modulates cell apoptosis [6] and ROS removal, eliminates
damaged mitochondria, relieves inflammatory responses
[7], and inhibits NLRP3 inflammasome activation in AKI
[8, 9]. In addition, mitochondrial dysfunction accelerates cel-
lular senescence [10], which is defined as irreversible cell
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cycle arrest, and mitophagy mitigates cellular senescence [11,
12]. Autophagy and senescence are two distinct cellular
responses to stress. Although the two processes have been
functionally linked [13, 14], their relationship in the CI-
AKI context has not been explored.

Paricalcitol, an active vitamin D analogue, is currently
used for the prevention and treatment of secondary hyper-
parathyroidism in patients with chronic kidney disease
[15]. Several experimental studies have shown that paricalci-
tol (19-nor-1,25-dihydroxyvitamin D2) has beneficial effects
in several models of AKI; it exhibits anti-inflammatory, anti-
apoptotic, and antifibrotic actions [16–20]. However, this is
the first study to explore whether paricalcitol protects against
experimental CI-AKI in rodents.

2. Materials and Methods

2.1. Ethical Statement.Male Sprague-Dawley (SD) rats (230–
250 g; Koatech Inc., Peongtaek, Korea) were maintained
under a 12h/12 h light/dark cycle in a temperature- and
humidity-controlled facility. Standard mouse chow and
water were provided ad libitum. All animal experiments were
performed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
The study was approved by the Gyeongsang National Uni-
versity Institutional Animal Care and Ethics Committee
(GNU-170525-R0022).

2.2. Animal Experiments. Twenty-eight rats were divided into
four groups: control (Con, n = 7), paricalcitol alone (PC, n
= 7), contrast alone (CONT, n = 7), and paricalcitol prior
to contrast infusion (PC+CONT, n = 7). We used a previ-
ously published protocol to produce CI-AKI [21]. Rats were
initially given indomethacin (10mg/kg; Wako Pure Chemi-
cal Corporation, Osaka, Japan), which was followed by N-ω
nitro-L-arginine methyl ester (10mg/kg; Wako Pure Chemi-
cal Corporation) and ioversol (8.3mL/kg of organically
bound iodine) via intravenous injection into the tail vein 15
and 30min later, respectively. Paricalcitol 0.3μg/kg (Abbott
Co., Seoul, Korea) was given intraperitoneally 24h and
30min before indomethacin (Supplementary Fig. 1). Con-
trols received phosphate-buffered saline (PBS). Rats were
sacrificed 6, 12, 24, and 48 h after ioversol injection, and
blood and kidney tissues were harvested.

2.3. Renal Function Assessment. Blood urea nitrogen (BUN)
and serum creatinine (Cr) were autoanalyzed using a diag-
nostic kit (Bayer, Pittsburgh, PA, USA).

2.4. Renal Pathology. Kidneys were fixed in 4% (v/v)
phosphate-buffered paraformaldehyde, paraffin-embedded,
sectioned at a thickness of 5μm, and stained with periodic
acid-Schiff (PAS). Staining was semiquantitatively scored in
terms of tubular injury, and scores of 0 to 4 were assigned.
The tubular injury scoring system was modified from previ-
ous studies [22, 23]. Tubular injury was defined as tubular
epithelial necrosis, intratubular debris, and loss of the brush
border, and was scored according to the percentage of
affected tubules per high-power field (×400 magnification),
as follows: 0, 0%; 0.5, <10%; 1, 10–25%; 2, 26–50%; 3, 51–

75%; and 4, 75–100%. To score tubular injury, the numbers
of whole tubules per field were counted under ×400 magnifi-
cation. The injury score was calculated in at least 10 ran-
domly selected areas of the renal cortex, as follows:
injury score ð%Þ = ðnumber of injured tubules ÷ number of
whole tubulesÞ × 100.

2.5. Terminal Deoxynucleotidyl Transferase dUTP Nick End-
Labeling (TUNEL) Assay. Apoptosis was semiquantitatively
assessed using the TUNEL assay (Roche, Indianapolis, IN,
USA). We counted the numbers of TUNEL-positive cells
per field at 400x magnification and evaluated at least 10 ran-
dom fields/slide. The mean number of brown cells was the
number of TUNEL-positive cells. All counts were made by
a single blinded observer using NIS-Elements BR 3.2 soft-
ware (Nikon, Tokyo, Japan).

2.6. Immunohistochemistry. After deparaffinization, sections
were incubated with primary antibodies against polyclonal
anti-light chain 3B (LC3B; Cell Signaling Technology, Dan-
vers, MA, USA), beta-galactosidase (β-gal), and 8-
hydroxydeoxyguanosine (8-OHdG) (both from Abcam,
Cambridge, MA, USA). Then, biotin-conjugated secondary
IgG (1 : 200 dilution; Vector Laboratories, Burlingame, CA,
USA), an avidin-biotin-peroxidase complex (Elite ABC Kit;
Vector Laboratories), and DAB were added. We visualized
sections under a light microscope and captured and analyzed
digital images.

2.7. Protein Preparation and Western Blotting. Tissues were
homogenized in lysis buffer and proteins (50μg) loaded
and electroblotted. The blots were probed with polyclonal
primary antibodies against Pink1 (Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA); Parkin (Santa Cruz Biotechnol-
ogy Inc.); p16INK4A and p62 (Abcam, Cambridge, UK);
and LC3B, HMGB1, Mfn1, and Opa1 (Cell Signaling Tech-
nology) at 4°C overnight. The primary antibody was visual-
ized by adding a secondary antibody and performing an
electroluminescence assay (Amersham Pharmacia Biotech,
Piscataway, NJ, USA).

2.8. Senescence-Associated β-Galactosidase (SA-β-Gal)
Staining. To detect senescence, kidney tissues were fixed for
15min in 1x fixative solution at room temperature, washed
twice in PBS, and stained overnight at 37°C using the SA-β-
gal staining kit (BioVision Inc., Milpitas, CA, USA) accord-
ing to the manufacturer’s instructions. The tissues were
observed under a microscope; we sought development of a
blue color. The sections were visualized under a light micro-
scope and images were captured and digitally analyzed.

2.9. Cell Culture and Treatment. HK-2 human kidney proxi-
mal tubular cells (ATCC, Manassas, VA, USA) were cultured
in renal epithelial basal medium (Gibco BRL, Grand Island,
NY, USA) with manufacturer-provided supplements. Cells
were incubated with 100mg/mL ioversol or vehicle (PBS)
for various times, with PBS or PC at various concentrations
(0.2, 1, and 2ng/mL), and then evaluated morphologically
and via Western blotting. To verify the effect of PC on
contrast-induced autophagy, five conditions were included:
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(1) untreated cells, (2) cells treated with ioversol
(100mg/mL), (3) cells treated with PC (1 and 2ng/mL), (4)
cells treated with chloroquine (CQ, 10 and 20μM), an inhib-
itor of autophagic flux, and (5) various combinations of these
treatments. CQ was applied 4 h prior to the other agents. Cell
lysate from each sample was loaded to ensure separation of
LC3B-I and -II, and probed with LC3 antibody.

2.10. Mitophagy Detection. HK-2 cells were coloaded with
200nM MitoTracker Green and 1mM LysoTracker Red
(Molecular Probes Inc., Eugene, OR, USA) for 20min.
Images were acquired using NIS-Elements BR 3.2 (Nikon).
Mitophagy was determined by the double-positive cells of
mitochondria with lysosomes. The numbers of double-
positive cells were quantified.

2.11. Mitochondrial ROSMeasurement.MitoSOX (Molecular
Probes Inc.) was used to detect the mitochondrial ROS levels
in HK-2 cells. Cells were incubated with 5mM MitoSOX for
20min and positive staining was subsequently detected by
flow cytometry (FC500; Beckman Coulter, Indianapolis, IN,
USA).

2.12. Statistical Analyses. Statistical analyses were performed
using GraphPad Prism Software (ver. 8.0; GraphPad Soft-
ware Inc., La Jolla, CA, USA). Data were evaluated using
one-way ANOVA with Tukey’s multiple comparison test
(for comparison of all groups). In all statistical tests, P <

0:05 was taken to indicate significance. Values are presented
as means ± standard errors of themeans.

3. Results

3.1. Changes over Time in Renal Function and Pathology after
Ioversol Administration.Wemeasured the levels of BUN and
Cr 6, 12, 24, and 48 h after ioversol injection (Figure 1(a)).
They were highest 6 and 12h after contrast administration,
respectively, and then decreased. Pathological examination
revealed coarse, irregular vacuolization, cast formation, and
loss of the brush border of renal tubular epithelial cells 6,
12, and 24 h after injection (Figure 1(b)). Thus, further stud-
ies were performed 12 h after injection.

3.2. Paricalcitol Attenuates Renal Dysfunction and
Morphological Changes in CI-AKI. The increases in BUN
and Cr 12h after ioversol injection were significantly
decreased by paricalcitol pretreatment (Figure 2(a)). Severe
tubular damage was evident after ioversol injection, and par-
icalcitol pretreatment inhibited such damage (Figure 2(b)).

3.3. Paricalcitol Reduces Contrast-Induced Apoptotic Cell
Death and Oxidative Stress. CI-AKI is associated with renal
ischemia triggering oxidative stress [21, 24, 25]. Immunohis-
tochemical staining for 8-OHdG, a ROS-induced marker of
DNA damage, was used to investigate the effects of paricalci-
tol on CI-AKI. 8-OHdG-positive signals were evident in the
nuclei of renal tubular epithelial cells exposed to ioversol,
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Figure 1: The contrast-induced renal dysfunction and histological injury in rats. (a) BUN and serum creatinine levels at 6, 12, 24, and 48
hours after contrast infusion. (b) Representative images of PAS staining in the tubular injury at 6, 12, and 24 hours after contrast infusion.
Data were presented as mean ± SEM (∗P < 0:05).
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and paricalcitol pretreatment inhibited such signaling
(Figure 3). We used TUNEL staining to investigate apoptosis.
TUNEL-positive signals were found in the epithelial cells of
dilated tubules, and their numbers increased 12 h after iover-
sol injection. Paricalcitol pretreatment inhibited the increase
in numbers (Figure 3).

3.4. Paricalcitol Reduces the Renal Mitochondrial Damage
Caused by Contrast. Mitochondrial dysfunction and damage
are involved in CI-AKI [5, 26]. Dysfunctional or damaged
mitochondria are removed via mitophagy [26, 27]. Pink1-
and Parkin-mediated mitochondrial autophagy is currently
the best understood form of mitophagy in mammalian cells
[28]. To examine whether paricalcitol protected against the
renal mitochondrial damage caused by contrast,
mitophagy-related factors were investigated. Ioversol admin-
istration induced kidney mitophagy, as reflected by increases
in the expression levels of Pink1, Parkin, and LC3B-II (lower
band) (Figures 4(a) and 4(b)). Paricalcitol pretreatment
inhibited these increases (Figures 4(a) and 4(b)). In particu-
lar, LC3-positive tubular epithelial cells were observed in
the kidney with ioversol injection, whereas their numbers
were reduced by paricalcitol pretreatment (Figures 4(c) and
4(d)). To confirm the effect of paricalcitol on mitochondrial
dysfunction caused by contrast, mitochondrial fusion pro-
teins were examined; maintaining mitochondrial dynamics,
including mitochondrial fusion and fission, is crucial for pre-
serving mitochondrial function [29]. Levels of Mfn1 and

Opa1, key regulators of mitochondrial fusion, were signifi-
cantly increased only in the ioversol group, and pretreatment
with paricalcitol attenuated their expression (Figure 4(e)).

3.5. Paricalcitol Decreases Contrast-Induced Senescence.
Increased expression of senescence markers is evident in a
variety of kidney diseases [30–32]. SA-β-gal is the most
widely used biomarker of senescent and aging cells, being
easy to detect both in situ and in vitro [33, 34]. SA-β-gal-pos-
itive signaling increased in renal tubules after ioversol admin-
istration, and PC inhibited this signaling (Figure 5(a)). The
p16INK4A protein is another senescence biomarker [35,
36]. The expression level of renal p16INK4A increased in
the ioversol group, and this increase was inhibited by parical-
citol (Figure 5(b)).

3.6. Paricalcitol Reduces Contrast-Induced Induced
Mitophagy and Senescence in HK-2 Cells. To confirm the pro-
tective effects of paricalcitol in terms of renal tubular damage,
we explored whether paricalcitol would reduce ioversol-
induced toxicity toward HK-2 cells. Paricalcitol did not affect
cell morphology at any concentration tested (0.2, 1.0, and 2.0
PC in Figure 6(a)). Ioversol treatment alone (100mg/mL)
induced morphological changes (CONT in Figure 6(a)) that
were initially evident 1 h after addition (data not shown).
At this timepoint, paricalcitol-treated cells exhibited normal
morphology (PC+CONT in Figure 6(a)). The high-mobility
group box-1 (HMGB1) protein served as a marker of
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Figure 2: Effect of paricalcitol on biochemical tests and histological injuries in the kidney after ioversol administration. (a) Serum BUN and
creatinine levels at 12 hours and (b) PAS staining in the kidney after ioversol administration. The injury score was determined as described in
Materials and Methods. Images are representative of each group. Con: PBS-treated group; PC: paricalcitol-treated group; CONT: ioversol-
treated group; PC+CONT: paricalcitol- and ioversol-treated group. Data were presented as mean ± SEM (∗P < 0:05).
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senescent cells [37]. Ioversol increased LC3B-II, p62, and
HMGB1 expression, and paricalcitol significantly decreased
expression at all concentrations tested (Figures 6(a)–6(c)).
These results correlate well with the in vivo data (Figures 4
and 5). To examine whether paricalcitol protects against
renal tubular cell injury caused by contrast, by reducing
mitochondrial damage including mitophagy and mitochon-
drial oxidative stress, HK-2 cells were costained with green-
fluorescing MitoTracker and red-fluorescing LysoTracker in
the ioversol and ioversol with paricalcitol groups. Ioversol
treatment increased the number of dual-positive cells, which
was decreased by paricalcitol (Figure 6(d)). MitoSOX was
employed to detect mitochondrial ROS in HK-2 cells. Pari-
calcitol significantly attenuated the increase in MitoSOX-
positive cells caused by ioversol (Figure 6(e)). In addition,
to determine whether autophagic flux is an induction or
blockade effect exerted by ioversol, and whether paricalcitol

can promote the control of autophagic flux, chloroquine
(CQ), an autophagic flux inhibitor, was employed in HK-2
cells. As shown below, there was no LC3B-II (14 kDa) expres-
sion in the no-treatment and paricalcitol alone (1 and
2ng/mL) groups. Treatment of HK-2 cells with ioversol led
to LC3B-II accumulation, which was markedly increased by
CQ. The effect of CQ appeared to be stronger in ioversol-
treated cells (i.e., LC3B-II accumulation by ioversol was fur-
ther enhanced by CQ), indicating increased LC3B-II turn-
over and induction of autophagic flux by ioversol. The
enhanced LC3B-II accumulation induced by CQ and ioversol
was decreased by paricalcitol treatment (Figure 6(f)).

4. Discussion

We found that ioversol compromised renal function in rats
by triggering histopathological changes in, and apoptosis of,
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Figure 3: Effects of paricalcitol on oxidative stress and apoptosis in the kidney after ioversol administration. Immunohistochemical staining
was performed with a specific antibody against 8-OHdG. Densitometric quantification for 8-OHdG was applied to each group. Ioversol-
induced apoptosis was detected using the TUNEL assay. TUNEL-positive cells were stained with dense brown spots and counted as
described in Materials and Methods. Apoptotic signals were found by TUNEL staining. Images are representative of each group. Con:
PBS-treated group; PC: paricalcitol-treated group; CONT: ioversol-treated group; PC+CONT: paricalcitol- and ioversol-treated group.
Data were presented as mean ± SEM (∗P < 0:05).
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Figure 4: Continued.
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renal tubules as well as high expression levels of 8-OHdG,
mitophagy and autophagy markers (Pink1, Parkin, Mfn1,
Opa1, LC3, and p62), and senescence markers (β-gal and
p16INK4A). Paricalcitol prevented renal dysfunction and
attenuated renal damage by reducing oxidative stress and
mitochondrial damage, and also reduced senescence in vivo.
It also maintained HK-2 cell viability and decreased the
expression levels of LC3-II and HMGB1 in vitro. In addition,
an autophagy inhibitor was used to determine whether pari-
calcitol had an effect on autophagy or mitophagy. The
autophagic flux itself did not change with paricalcitol treat-
ment alone, but was induced by ioversol. This effect was
inhibited by the autophagy inhibitor, and the LC3B-II accu-
mulation was reduced by pretreatment with paricalcitol.
These findings show that paricalcitol exerts its effects in CI-
AKI by reducing the associated damage rather than increas-
ing autophagy or mitophagy itself.

Oxidative stress is a key driver of CI-AKI [38]. Contrast
augments kidney ROS formation and induces hypoxia. In
our study, ioversol increased cellular oxidative stress and
mitochondrial damage, and then autophagy and mitophagy
were activated to protect against tissue injury. Some in vivo
studies have shown that autophagy and mitophagy are both
involved in the pathophysiology of radiocontrast-induced
nephropathy (RCN) [26, 39, 40]. It has been suggested that,
in the context of RCN, autophagy and mitophagy modulate
apoptosis, oxidative stress, and inflammation. Autophagic
removal of mitochondria is important for mitochondrial
quality control. Poor-quality mitochondria may enhance cel-
lular oxidative stress, generate apoptosis signals, and induce
cell death [41]. In our study, mitochondrial ROS generation,
damage, and mitophagy, which were increased by ioversol,
were reversed by paricalcitol pretreatment. It was recently
reported that stanniocalcin-1 (STC1) and tetramethylpyra-
zine (TMP) have protective effects on CI-AKI by regulating
mitochondrial quality control and modulating tubular cell

mitophagy, respectively [29, 42]. Exogenous recombinant
human STC1 administration reduced the expression of
mfn2, TOMM20, and p62 induced by iohexol. TMP reduced
autophagosomes and the degree of mitophagy induced by
iodine contrast, and prevented mitochondrial fragmentation
by reversing the alterations in Drp1 and Mfn2 expression in
an RCN rat model. The above two studies were similar to
ours in terms of preventing RCN by regulating mitophagy
via the administration of certain substances.

Autophagy is a term used to describe lysosomal-mediated
degradation of proteins, lipids, and organelles, whereas mito-
phagy is defined as mitochondria-specific autophagy [41].
These two processes might seem to occur separately or simul-
taneously in our experiments. Due to oxidative stress induced
by a radiocontrast agent, specific proteins in tubules might be
become unfolded, abnormally modified, or mistargeted.
These proteins are accumulated into tubular cells leading to
cellular damages and finally cell deaths. Autophagy might
be activated through these processes. On the one hand,
ROS or reactive nitrogen species caused by oxidative stress
might damage the mitochodria, its protein, DNA, and lipids
resulting in a decrease in mitochondrial membrane potential
or an increase in mitochondrial fission, and these have been
shown to signal mitophagy. These changes stabilized Pink1
leading to the recruitment of Parkin to mitochondria result-
ing in mitophagy progression [43].

Yang et al. suggested that rapamycin has a renoprotective
effect against CI-AKI, triggering high-level mitophagy that
attenuates mitochondrial injury and oxidative stress [8]. Sim-
ilarly, in the present study, mitophagy played a pivotal role in
attenuating renal injury in our CI-AKI model. However, the
processes in play may differ. Rapamycin has been found to be
beneficial in an RCN model, enhancing mitophagy and thus
attenuating serum levels of creatine and increasing ROS for-
mation and apoptosis. On the other hand, in our study, par-
icalcitol attenuated renal injury by decreasing oxidative stress
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Figure 4: Effects of paricalcitol on mitophagy in the kidney after ioversol administration. (a, b) Immunoblot analysis was performed with a
specific antibody against PINK1, Parkin, and LC3. β-Actin was used as loading control, and data were normalized against the density of β-
actin. Blots are representative of each group. Cropped blots are displayed here, and full-length blots are included in the section of
Supplementary Information. (c, d) Immunohistochemical staining was performed with a specific antibody against LC3. Densitometric
quantification for LC3 was applied to each group. Images are representative of each group. (e) Immunoblot analysis for Mfn1 and Opa1
was performed to confirm the effect of paricalcitol on mitophagy, and p62 is for the effect of paricalcitol on the autophagic flux. Con: PBS-
treated group; PC: paricalcitol-treated group; CONT: ioversol-treated group; PC+CONT: paricalcitol- and ioversol-treated group. Data
were presented as mean ± SEM (∗P < 0:05).
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and apoptosis and reducing mitophagy through decreased
mitochondrial damage. Additionally, we demonstrated that
chloroquine, an autophagy inhibitor, attenuated the benefi-
cial effects of paricalcitol in an in vitro experiment. These
results show that mitophagy plays a critical role in patho-
physiology of CI-AKI.

Cells exposed to stress signals can undergo apoptosis or
enter into senescence (irreversible cell cycle arrest). The path
taken depends on the cell type and the nature of the stress
[44–46]. In AKI models, the absence of p16INK4A, a senes-
cence marker, promotes regenerative cell proliferation and
improves outcomes [36, 47, 48]. In biopsy specimens from
patients with kidney injuries and in experimental animals,
induction of senescence (reflected by increases in p21CIP1,
p16INK4A, and SA-β-gal levels) increases disease progres-
sion [30, 49, 50]. The senescent cell burden in the kidney
may usefully predict prognosis. In our study, p16INK4A
overexpression was evident within 6 h after contrast infusion
(data not shown), peaked at 12h (Figure 5(b)), and the peak
was sustained for 24 h (data not shown), similar to the SA-β-

gal expression pattern. It is thus likely that AKI caused by
contrast is associated with early renal tubular epithelial cell
cycle arrest, triggering sustained senescence. Previous studies
have shown that paricalcitol exhibits antioxidative and anti-
inflammatory effects [51, 52]. We found that the extent of
DNA oxidation (as determined by 8-OHdG levels) was
increased by contrast and attenuated by paricalcitol. There-
fore, paricalcitol might minimize the development of senes-
cent cells and/or reduce the total senescent cell burden of
AKI.

The association between autophagy and senescence is
complex, being heavily dependent on the cell types involved
and the nature of the stress [53]. Autophagy may play dual
roles in the regulation of cellular senescence, either inducing
or inhibiting the process [54–56]. Autophagy may normally
prevent senescence by eliminating potentially dangerous ele-
ments. However, when the damage overloads the autophagic
capacity, senescence is activated and autophagy contributes
to such activation under stressful conditions [57]. Consistent
with these suggestions, we found that the levels of both
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autophagy and senescence markers increased in our CI-AKI
model, and these changes were attenuated by paricalcitol
pretreatment.

5. Conclusions

Our findings suggest that mitophagy- and senescence-
promoting pathways may be activated in a rat CI-AKI model,
and that paricalcitol exerts a renoprotective effect by reduc-
ing damage to mitochondria and senescent cells.
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