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Diabetic cataract is a common complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells
(LECs) is a key event in the development of diabetic cataracts. Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) has been reported to be highly expressed in different tissues of diabetic patients. This study is aimed at investigating
the function and mechanism of MALAT1 in the regulation of EMT in human LECs under high glucose conditions. MALAT1, α-
smooth muscle actin (α-SMA), fibronectin (FN), and nuclear factor erythroid-derived 2-like 2 (NRF2) were highly expressed in
the LECs of diabetic cataract patients and in the human LECs under high glucose conditions; meanwhile, the decreased
expressions of E-cadherin and zonula occludens 1 (ZO-1) were detected. Knockdown of MALAT1 could significantly reduce
ROS, prevent EMT, arrest S phase cell cycle, and suppress the expression of total NRF2 and its nucleus translocation in LECs.
Furthermore, after NRF2 was knocked down, total NRF2, α-SMA, and FN in cells, and NRF2, Notch intracellular domain
(NICD), and Snail were decreased in the nucleus. Using bioinformatics methods, we predicted that MALAT1 and NRF2 shared
the same microRNA-144-3p (miR-144-3p) combining site. Luciferase reporter coupled with qRT-PCR assays revealed that miR-
144-3p was a target of MALAT1, which was confirmed to downregulate miR-144-3p in the LECs. In addition, after transfection
of miR-144-3p mimics or inhibitor, western blot assay demonstrated that miR-144-3p negatively regulated the expression of
total NRF2, α-SMA, and FN in cells, and NRF2, NICD, and Snail in the nucleus without affecting Kelch-like ECH-associated
protein 1 (KEAP1). Finally, we confirmed that transfection of shMALAT1 inhibited NRF2 expression, and its mediated EMT
could be rescued by miR-144-3p inhibitor; transfection of pcDNA3.1-MALAT1 promoted NRF2 expression, and its mediated
EMT could be reversed by miR-144-3p inhibitor. In summary, we demonstrate that MALAT1 regulates miR-144-3p to facilitate
EMT of LECs via the ROS/NRF2/Notch1/Snail pathway.

1. Introduction

Diabetes is a metabolic disease characterized by elevated
blood glucose. Complications of diabetes occur in all organ
systems, such as diabetic nephropathy, diabetic neuropathy,
diabetic retinopathy, and diabetic cataracts [1–5]. Diabetic
patients suffer from cataracts earlier than nondiabetic
patients [6], and cataract surgery on diabetic patients may
lead to more complications, especially in hyperglycemia con-
ditions [7]. Therefore, it is helpful to explore the pathogenesis

of diabetic cataracts in order to find the most effective way to
prevent them.

The proportions of cortical and subcapsular cataracts
are higher in both type 1 and type 2 diabetic patients with
cataracts than the proportions seen in age-related cataracts
[8, 9]. Posterior subcapsular cataracts occur because of
abnormal cells and extracellular matrix under the lens pos-
terior capsules in humans [10], and diabetic subcapsular
cataracts in rats and mice are highly associated with the
epithelial-mesenchymal transition (EMT) of lens epithelial
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cells (LECs) [11, 12]. However, the mechanism of EMT in
LECs in diabetic conditions is still unclear.

Long noncoding RNAs (lncRNAs) are defined as RNA
molecules of more than 200 nucleotides without protein-
coding capacity [13], which function in regulating the pro-
cesses of apoptosis, autophagy, cell cycle, and EMT [14–16].
MALAT1 is a 6.5-knt lncRNA, which was first found in lung
adenocarcinoma, playing significant roles in the pathophysi-
ological process of diabetes and diabetes-related complica-
tions by modulating gene transcription [17]. It can promote
oxidative stress in human LECs under high glucose condi-
tions [16], and reactive oxygen species (ROS) have been
reported to induce the EMT process in LECs of diabetic
cataracts [18]. The role of MALAT1 in modulating ROS
and EMT of LECs in diabetic cataracts remains unclear.

KEAP1/NRF2 system is one of the main cellular defense
mechanisms against oxidative stress in LECs. When ROS
increases, KEAP1 is oxidized and covalently modified, and
NRF2 translocates to the nucleus and induces the generation
of antioxidant enzymes that protect cells from oxidative
stress and apoptosis by reducing ROS accumulation in dia-
betic cataracts [19–21]. Meanwhile, nucleus translocation of
NRF2 can regulate more than 100 genes, including Notch1,
to promote cell proliferation, differentiation, and migration
[22–24]. In hepatocellular carcinoma cells, ROS-induced
nucleus translocation of NRF2 can activate the Notch1/Snail
signaling pathway to accelerate EMT andmetastasis of tumor
cells [25]. This research implies that ROS may induce NRF2
nucleus translocation, subsequently trigger the Notch signal-
ing pathway, and result in the EMT of LECs in the formation
of diabetic cataracts.

The theory of competing endogenous RNA (ceRNA)
proposes that lncRNA and mRNA transcripts can affect each
other by competitively combining with a miRNA response
element (MRE) to influence posttranscription [26].MALAT1
can regulate target genes by acting as a “sponge” of some
miRNAs [27, 28], miR-144-3p in osteosarcoma cells that
are regulated by MALAT1 function as competing endoge-
nous RNAs (ceRNAs) [29]. It has been reported that miR-
144-3p is widely expressed in the tissues of diabetic patients,
and that it may negatively regulate NRF2 expression in
retinal pigment epithelium (RPE) cells, plasma, retinal endo-
thelial cells, and epicardial adipose tissues [30–33]. Taking all
of these findings into consideration, we hypothesize that
MALAT1 may promote ROS expression, induce nucleus
translocation of NRF2, and regulate NRF2 expression via a
competing endogenous RNA of miR-144-3p.

In the present study, we first confirmed that MALAT1
and NRF2 are highly expressed in LECs of diabetic patients
with cataracts and in LECs in a hyperglycemic environment.
Second, we found that knockdown ofMALAT1 could reduce
the level of ROS, expression of NRF2, nucleus translocation
of NRF2, and EMT of LECs in a high-glucose environment.
Third, we discovered that knockdown of NRF2 reduced
EMT by blocking the Notch1/Snail pathway. Most impor-
tantly, we found that MALAT1 competitively sequestered
miR-144-3p and relieved the inhibitory effect of miR-144-
3p on NRF2, increasing NRF2 expression. Finally, our study
clarified a novel role of MALAT1 in regulating miR-144-3p,

ROS, and then activating the NRF2/Notch1 pathway to
facilitate diabetic cataracts, and suggested that MALAT1
might be a target for the prevention of diabetic cataracts.

2. Materials and Methods

2.1. Human Anterior Lens Capsules. Anterior lens capsules
with LECs were collected from diabetes patients with cata-
racts (diabetic cataract (DC) group, n = 18 eyes) and patients
with age-related cataracts (control (CON) group, n = 18 eyes)
during cataract surgery. The characteristics of all the patients
are listed in Table 1. All donors provided written informed
consent, and the protocol was performed in accordance with
the principles of the Declaration of Helsinki and approved by
the Institutional Research Ethics Committee of the Fourth
Military Medical University.

2.2. Antibodies. Primary and secondary antibodies used in
this study are listed in Table 2.

2.3. Cell Culture. In human LECs, HLE-B3 (human lens epi-
thelial, ATCC CRL-11421TM) cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA,
USA). The cell line was authenticated by Qingke Biological
Technology Company via short tandem repeat (STR) profil-
ing to verify the human unique DNA profile and rule out
intraspecies contamination. The STR analysis was performed
on 20 core STR loci.

HLE-B3 cells were cultured in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% fetal bovine
serum (HyClone, Logan, Utah, USA), 100mg/ml streptomy-
cin, and 100 IU/ml penicillin (Gibco, Grand Island, New
York, USA), and were incubated at 37°C in a humidified
atmosphere containing 5% CO2. Culture medium was
replaced every two days. When the cells were at 75–80% con-
fluence, they were treated with 0.25% trypsin-0.02% EDTA
solution and passaged. Cell number was counted by an auto-
mated cell counter (Ruiyu, Shanghai, China).

HLE-B3 cells were divided randomly into a normal con-
trol group (NC, 5.5mM glucose) and high-glucose groups
(25.5mM glucose and 35.5mM glucose). In the NC group,
HLE-B3 cells were cultured in DMEM with 5.5mM glucose,
while in the high-glucose groups, the cells cultured in DMEM
were treated with 20mM glucose and 30mM glucose, respec-
tively, for 24 h and 48h.

2.4. Cell Transfection. miR-144-3p mimics negative control
(NC), miR-144-3p mimics, miR-144-3p inhibitor negative
control (NC), miR-144-3p inhibitor, pcDNA3.1, and
pcDNA3.1-MALAT1 were synthesized by RiboBio (Guang-
zhou, China). ShMALAT1 negative control (NC), shMA-
LAT1, shNRF2, and shNRF2 negative control (NC) were
purchased from GenPharma (Shanghai, China). When the
confluence of HLE-B3 cells that were cultured in DMEM
with 5.5mM glucose reached 70%–80%, the cells were
transfected with above RNA fragment by Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA) for 36 h and then were
stimulated with 30mM glucose for 24 h.
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2.5. RNA Isolation and qRT-PCR. Total RNA was extracted
by TRIzol reagent (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s protocol. RNAs in the cytoplasm
and nucleus were extracted by the Cytoplasmic & Nuclear
RNA Purification Kit (Norgen, Belmont, CA, USA). The
RNA was reverse-converted into cDNA in accordance with
instructions using the reverse transcription kit (RiboBio,
Guangzhou, China). qRT-PCR was performed with SYBR
Green master mix (Takara, Japan), and then the relative level
of RNAwas detected by the Applied Biosystems StepOnePlus
Real-Time PCR System (Applied Biosystems, Singapore).
The primer sequences are listed in Table 3.

β-Actin was used as total and cytoplasmic controls, and
U6 was used as nuclear control, respectively.

2.6. Western Blot Analysis. In brief, HLE-B3 cells were har-
vested and lysed by cell lysis buffer (Beyotime, Shanghai,
China). Proteins in the cytoplasm and nucleus were extracted
by cytoplasmic nuclear separation kit (Beyotime, Shanghai,
China). Protein concentration was determined by BCA pro-
tein detection reagent (Beyotime, Shanghai, China).
30μg/lane proteins were loaded on 10% or 15% SDS-PAGE
gel for protein separation, after which the separated proteins
were transferred to PVDFmembranes. After being blocked at
room temperature for 1 h, the membranes were probed with
the primary antibodies (anti-ZO-1, anti-E-cadherin, anti-FN,
anti-NRF2, anti-KEAP1, anti-α-SMA, anti-β-tubulin, anti-
NICD, and anti-Snail) at 4°C overnight. After being incu-
bated with HRP-conjugated secondary antibody for 1 h, the
protein bands were visualized with enhanced chemilumines-
cence (ECL, ZETA, Beijing, China). Relative expressions of
proteins were determined by densitometer and expressed as
absorbance units. Each experiment was repeated three times.

2.7. Dual-Luciferase Assay for Promoter Activity. The puta-
tive miRNA binding sites of MALAT1 were predicted by
LncBase v2.0 (http://carolina.imis.athena-innovation.gr/
diana_tools/web/index.php?r=lncbasev2/index-predicted),
miRDB (http://mirdb.org/), and TargetScan (http://www
.targetscan.org/mamm_31/). miR-144-3p was the most
highly conserved miRNA of all putative miRNAs in mam-
mals. The corresponding mutants were created by mutating
the binding site of hsa-miR-144-3p seed region.

Cotransfections were completed by Lipofectamine 3000
in HLE-B3 cells, such as pmiR-RB-Report™ h-MALATI1-
WT (MALAT1-WT, wild-type), pmiR-RB-Report™ h-
MALAT1-MUT (MALAT1-MUT, mutant-type), pmiR-

RB-Report™ h-NRF2-WT (NRF2-WT, wild-type), and
pmiR-RB-Report™ h-NRF2-MUT (NRF2-MUT, mutant-
type) combined with miR-144-3p mimics, miR-144-3p
inhibitor, miR-144-3p mimics negative control (NC), and
miR-144-3p inhibitor negative control (NC). The culture
medium was removed at 48 h after cotransfection, and then
35μl 1× phosphate-buffered saline (PBS) and 35μl lucifer-
ase substrate were added. After incubation for 10min, the
medium was transferred to a white cell culture plate
LUMITRAC™ 200 well, and firefly luciferase fluorescence
values were determined by the dual-luciferase reporter
assay system (Promega, Fitchburg, Wisconsin, USA). Sub-
sequently, 30μl stop reagent was added for 10min, and
the Renilla luciferase fluorescence value was detected.

2.8. Transwell Assay. Transwell chambers with 8μm pore
inserts (Millipore, Danvers, Massachusetts, USA) were used
to investigate cell migration. For cell migration assay, 2 ×
104 HLE-B3 cells or different transfected HLE-B3 cells were
seeded in the upper chambers with 200μl of serum-free
DMEM (5.5mM glucose), while in the lower chambers, the
medium was 600μl DEME in addition to 30mM glucose
(35.5mM glucose) and 10% fetal bovine serum. After 24h
incubation, the cells in the upper chamber were carefully
wiped off with a cotton swab. Next, the filters were fixed in
4% paraformaldehyde for 30min and stained with 0.1%
crystal violet for 20min. Stained cells in five random fields
per chamber were counted under an inverted microscope
(Olympus, Nagoya, Japan). Every experiment was repeated
three times independently.

2.9. Wound Healing Assay. Wound healing assays were per-
formed to detect cell migration. First, 1 × 105 HLE-B3 cells,
or different transfected HLE-B3 cells, were seeded in six-
well plates and reached 100% confluence overnight. A pipette
tip of 1ml was used to scratch the monolayer cells to make an
artificial wound. After rinsing with PBS three times to
remove the detached cells, the cells on the plates were cul-
tured in DMEM with 5.5mM glucose or 35.5mM glucose
for 24 h. Wound width was detected before treatment (0 h)
and 24 h after treatment. Images were obtained by an
inverted microscope (Olympus, Nagoya, Japan). Wound
closure = woundwidth ð0 hÞ −woundwidth ð24 hÞ/wound
width ð0 hÞ.

2.10. Immunofluorescence Staining Assay. Human anterior
lens capsules with lens epithelial cells obtained from the cat-
aract surgery were fixed with 4% polyformaldehyde immedi-
ately for 30min. HLE-B3 cells were cultured and treated in a
12-well plate with a cover glass to prepare the cell slide. After
different treatments, the cells on the cover glass were fixed
with 4% polyformaldehyde for 30min. The capsular speci-
mens and cultured cells were washed with PBS three times,
5min for each wash, and then treated with 1% Triton X-
100 in PBS for 30min to enhance the permeability of the cell
membranes. In order to reduce the nonspecific immunoreac-
tions, 1% bovine serum albumin in PBS was dropped on the
cells for 30min at room temperature, and then the capsules
and cultured cells were incubated with the primary

Table 1: Characteristics of the diabetes patients with cataracts and
patients with age-related cataracts.

CON (n = 18) DC (n = 18) P

Gender (male/female) 8/10 9/9 0.7385

Age 65:94 ± 10:62 64:94 ± 9:72 0.7764

Fast blood glucose 5:12 ± 0:49 8:60 ± 1:365 <0.0001
The gender and age between the CON and DC groups have no statistically
significant difference. The blood glucose in the DC group is higher than
that in the CON group (P < 0:0001).
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Table 2

(a) Primary antibodies used in western blot

Antibody
name

Host
species

Species reactivity Concentrations
Catalog
number

Company

β-Tubulin Rabbit Mouse, rat, chicken, cow, dog, human 1 : 1000 #2148 CST, America

NICD Rabbit Mouse, rat, human 1 : 1000 #4147 CST, America

Histone Rabbit Mouse, rat, monkey, human 1 : 1000 #4499 CST, America

Snail Rabbit Mouse, rat, monkey, human 1 : 1000 #3879 CST, America

NRF2 Rabbit Mouse, monkey, human 1 : 1000 #12721 CST, America

KEAP1 Rabbit Mouse, rat, monkey, human 1 : 1000 10503-2-AP
Proteintech,

China

Fibronectin Rabbit Mouse, rat, human 1 : 1000 ab45688 Abcam, UK

α-SMA Rabbit Mouse, rat, chicken, guinea pig, cow, dog, human, pig 1 : 1000 ab5694 Abcam, UK

E-cadherin Rabbit Human, mouse 1 : 1000 24E10 CST, America

ZO-1 Rabbit Human, monkey 1 : 1000 #8193 CST, America

(b) Secondary antibody used in western blot

Antibody name Concentration Catalog number Company

Goat anti-rabbit IgG (H+L) 1 : 2000 SA00001-2 Proteintech, China

(c) Primary antibodies used in immunofluorescence staining assays

Antibody name Host species Species reactivity Concentrations Catalog number Company

α-SMA Rabbit Mouse, rat, chicken, guinea pig, cow, dog, human, pig 1 : 100 ab5694 Abcam, UK

E-cadherin Rabbit Mouse, rat, human 1 : 100 ab231303 Abcam, UK

NRF2 Rabbit Human 1 : 100 ab62352 Abcam, UK

Snail Goat Mouse, rat, human 1 : 100 ab53519 Abcam, UK

(d) Secondary antibodies used in immunofluorescence staining assays

Antibody name Concentrations Catalog number Company

Cy3 goat anti-rabbit IgG (H+L), Alexa Fluor 488-conjugated 1 : 100 A10522 Invitrogen, America

Donkey anti-goat IgG (H+L) 1 : 100 A32814 Invitrogen, America

Donkey anti-rabbit IgG (H+L), Alexa Fluor Plus 488 1 : 100 A32790 Invitrogen, America

Donkey anti-rabbit IgG (H+L), Alexa Fluor Plus 647 1 : 100 A32795 Invitrogen, America

Table 3: Primers’ sequence.

Primers Sense Antisense

MALAT1 GCCATTTTAGCAACGCAGAA GACAGCTAAGATAGCAGCAGCACAACT

NRF2 TCCAGTCAGAAACCAGTGGAT GAATGTCTGCGCCAAAAGCTG

Fibronectin GGCTTGAACCAACCTACGGATGAC TCCTTCTGCCACTGTTCTCCTACG

α-SMA CTGAACCCCAAGGCCAACCG GACAATCTCACGCTCAGCAGT

Actin TGTTACCAACTGGGACGACA CTTTTCACGGTTGGCCTTAG

ZO-1 CTGGTGAAATCCCGGAAAAATGA TTGCTGCCAAACTATCTTGTGA

E-cadherin TACAATGCCGCCATCGCTTACAC TGACGGTGGCTGTGGAGGTG

miR-144-3p Synthesized by RiboBio (Guangzhou, China; Lot N0108)

U6 Synthesized by Sangon Biotech (Shanghai, China; Lot B532451-0020)
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antibodies (anti-α-SMA, anti-E-cadherin, and anti-NRF2 for
capsules; anti-FN, anti-NRF2, and anti-Snail for cultured
cells) at 4°C overnight. After incubation with fluorophore-
conjugated secondary antibody for 1 h, the cell nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI).

Under the confocal scanning laser microscope (FV1000,
Nagoya, Olympus, Japan), the stained cells were observed
and the images were acquired. The information about
primary and secondary antibodies used in this article is listed
in Table 2.

2.11. ROS Detection Assay. Transfected HLE-B3 cells were
incubated with 2′,7′-dichlorofluorescein diacetate (DCFH-
DA) (MCE, New Jersey, USA) for 30min. After washing with
cold PBS three times, the cells were observed, and the images
were acquired under the confocal scanning laser microscope
(FV1000, Nagoya, Olympus, Japan). The cells stained by
DCFH-DA were harvested and washed with cold PBS, and
then suspended in 1ml PBS. The fluorescence intensity of
the cells was measured by flow cytometry (BD, San Jose,
CA, USA).

2.12. Cell Cycle Assay. The treated cells were washed by cold
PBS and fixed with 70% alcohol for 4 h. Then, the cells were
stained with propidium iodide for 10min at 37°C in dark-
ness. Flow cytometry (BD, San Jose, CA, USA) was used to
detect the percentage of cells in G0/G1, S, and G2/M phases.

2.13. Statistical Analysis. All data were expressed as the
mean ± standard deviation and analyzed with SPSS statistical
analysis software, version 18.0 (Chicago, IL, USA). For com-
parisons of multiple groups at different time points, statistical
analysis was performed using repeated measures analysis of
variance followed by Tukey’s post hoc test. For groups at
the same time point, Student’s t-test was used. P < 0:05 was
considered to indicate a statistically significant difference.

3. Results

3.1. The Expression of FN, α-SMA, E-cadherin, and ZO-1 in
the Lens Epithelium of Diabetic Cataracts and High-
Glucose-Treated HLE-B3 Cells. Compared with age-related
cataracts (CON), the expressions of α-SMA and FN on
RNA level in the lens epithelium of diabetic cataracts (DC)
were significantly increased; meanwhile, the expressions of
epithelial cell markers E-cadherin and ZO-1 were signifi-
cantly decreased (Figure 1(a)). Immunofluorescence staining
assay showed that the expression of α-SMA was higher in
diabetic cataract lens epithelium tissues. However, the epi-
thelial cell marker E-cadherin was lower in lens epithelium
of diabetic cataracts compared to age-related cataracts
(Figure 1(b)).

In HLE-B3 cells, qRT-PCR and western blot analysis
showed that the expressions of α-SMA and FN increased
gradually and significantly with the concentration (25.5mM
and 35.5mM) and duration of high glucose (24 h and 48h)
on both RNA and protein levels compared with the control
group (5.5mM); meanwhile, the expressions of epithelial cell
markers E-cadherin and ZO-1 were significantly decreased

(Figures 1(c)–1(g)). These results suggested the occurrence
of EMT in human LECs of diabetic cataracts.

3.2. Increased Expression Levels of MALAT1 and NRF2 in the
Lens Epithelium of Diabetic Cataracts and High-Glucose-
Treated HLE-B3 Cells. The expression of MALAT1 level in
the LECs of diabetic cataracts was significantly increased
compared with age-related cataracts (CON) (Figure 2(a)).
In HLE-B3 cells stimulated by high glucose, the expression
of MALAT1 increased significantly with the concentration
of glucose (25.5mM and 35.5mM) compared with the
control group (5.5mM) at 24h and was persistent at 48 h
(Figure 2(b)).

Immunofluorescence staining assay showed that the
expression of NRF2 was higher in lens epithelium of diabetic
cataracts compared with age-related cataracts (Figure 2(c)).
In HLE-B3 cells, the expression of NRF2 also elevated gradu-
ally with increasing glucose concentration on both protein
and RNA levels compared with the control group
(Figures 2(d)–2(f)). This was confirmed by the data showing
the increase of NRF2 fluorescence intensity in the immuno-
fluorescence staining assay (Figure 2(g)). Based on the above
data, we selected the treatment of 35.5mM glucose and 24h
for the following experiments.

3.3. Downregulation of MALAT1 in HLE-B3 Cells in a
Hyperglycemic Environment Suppressed ROS Production,
NRF2 Expression, and Its Nucleus Translocation, Arrested S
Phase Cell Cycle, and Attenuated EMT. It has been reported
that ROS plays an important role in the pathogenesis of
EMT [34, 35]. To define whether upregulated MALAT1 is
associated with production of ROS in high-glucose-treated
HLE-B3 cells, we knocked down MALAT1 by transfection
with sh-MALAT1 in the cells. As shown in Figure 3(a),
among the four sh-MALAT1s prepared, the first shMALAT1
was the most effective at downregulating MALAT1, as
revealed by qRT-PCR. So therefore, the first shMALAT1
was selected for the following experiments. After treatment
with high glucose for 24 h, ROS levels in the cells increased
significantly as shown by flow cytometry and immunofluo-
rescence assays, and notably could be inhibited by shMA-
LAT1 (Figures 3(b)–3(d)), suggesting that knockdown of
MALAT1 was capable of preventing the production of ROS
in HLE-B3 cells.

When shMALAT1 was transfected in high-glucose-
induced HLE-B3 cells, the elevated expressions of FN
and α-SMA were suppressed significantly (Figures 3(e)
and 3(f)). In addition, the cell migration of high-glucose-
stimulated cells increased significantly with Transwell and
wound healing assays, while the transfection of shMA-
LAT1 abolished the migration of HLE-B3 cells in high
glucose conditions (Figures 3(g)–3(j)).

Cell cycle analysis demonstrated that the cells could be
retarded in G0/G1 phase after treatment with high glucose.
While after transfection withMALAT1, the percentage of cell
in S phase increased and the percentage in G0/G1 phase
reduced compared to NC (Figures 3(k) and 3(l)).

In this set of experiments, western blot assay showed that
the expressions of both total NRF2 and NRF2 in the nucleus
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Figure 1: Continued.

6 Oxidative Medicine and Cellular Longevity



increased in high-glucose-treated HLE-B3 cells, which could
be prevented by the transfection of shMALAT1 (Figures 3(m)
and 3(n)).

Collectively, the above data suggested that downregula-
tion of MALAT1 in HLE-B3 cells under high glucose condi-
tions suppressed the generation of ROS, the expression, and
nucleus translocation of NRF2, released cell cycle inhibition,
and attenuated EMT and cell migration.

3.4. Downregulation of NRF2 Prevented EMT and Cell
Migration in High-Glucose-Treated HLE-B3 Cells. Previous
studies have shown that NRF2 contributed to EMT through
activation of the Notch signaling pathway [25]. Notch1 is
one of the transmembrane Notch family receptors, which
can drive Notch signaling when combined with the Rbpjκ
transcription factor. After canonically accepting ligands, the
receptor undergoes cleavage to yield the NICD that translo-
cates to the nucleus. It has been clearly shown that NRF2
can activate the Notch1 pathway [36]. The Notch1 signaling
pathway can regulate the process of EMT by regulating the
Notch1/Snail signaling pathway [37, 38]. The efficacy of
shNRF2 on knockdown of NRF2 in high-glucose-treated
HLE-B3 cells was confirmed with western blot and immuno-
fluorescence staining assays (Figures 4(a)–4(c)). We found
that the transfection of shNRF2 could reduce the expression
levels of NICD and Snail in the nucleus of HLE-B3 cells
under high glucose conditions (Figures 4(a) and 4(b)). The
reduction of Snail in the nucleus was confirmed by immuno-
fluorescence staining assay (Figure 3(c)). Importantly,
knockdown of NRF2 could suppress the expressions of α-

SMA and FN (Figures 4(d) and 4(e)) and prevent cell migra-
tion in high-glucose-treated HLE-B3 cells (Figures 4(f)–4(i)).

Taken together, NRF2 may function as one of the down-
stream of MALAT1 in regulating EMT in high-glucose-
treated HLE-B3 cells via the Notch/Snail pathway.

3.5. MALAT1 Regulated NRF2 through miR-144-3p in EMT
of High-Glucose-Stimulated HLE-B3 Cells. Here, by perform-
ing nuclear-cytoplasmic fractionation assay, we found that
MALAT1 was predominately located in the cytoplasm in
HLE-B3 cells (Figure 5(a)).

Previous studies have demonstrated that lncRNAs can
sponge miRNAs, thus reducing the miRNA-induced
repression of their target mRNAs [28, 39]. To predict
which miRNA may be included in the “sponge” and regu-
late NRF2 expression, we used the online bioinformatics
prediction software miRDB, TargetScan, and LncBase
v.2.0. We found five broadly conserved miRNAs (hsa-
miR-27-3p, hsa-miR-140-5p, hsa-miR-28-5p, hsa-miR-
708-5p, and hsa-miR-144-3p) that might interact with
both MALAT1 and NRF2 (Figures 5(b) and 5(c)). Because
miR-144-3p is downregulated in fat production and in the
retina and liver of diabetes [28, 31, 33, 40], we selected it
in the following experiments.

Dual-luciferase reporter assay showed that cotransfection
of miR-144-3p mimics and wild-type (WT) MALAT1
reduced the fluorescence activity, but cotransfection with
mutant (MUT) MALAT1 did not (Figure 5(d)), suggesting
that miR-144-3p is negatively regulated byMALAT1 expres-
sion. Compared with the age-related cataracts (CON) and
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Figure 1: Expressions of EMT markers in lens epithelial cells of diabetic patients and HLE-B3 cells stimulated by high glucose. (a) The
expression of FN, α-SMA, E-cadherin, and ZO-1 in lens epithelial cells of patients with age-related cataracts (control group, n = 12) and
diabetic patients with cataracts (diabetic cataract group, n = 12). Anterior lens capsules were obtained and analyzed by qRT-PCR, using
actin as the internal control. HLE-B3 cells were cultured in complete DMEM containing 5.5, 25.5, and 35.5mM glucose for 24 h or 48 h.
(b) Immunofluorescent images of α-SMA and E-cadherin in lens epithelial cells on anterior lens capsules. Green represents α-SMA
and E-cadherin staining, respectively, and blue represents nuclear DNA staining by DAPI, bars = 10μm. (c) RNA expression of FN,
α-SMA, E-cadherin, and ZO-1 in HLE-B3 cells was determined by qRT-PCR, using actin as the internal control. (d) The expressions
of FN and α-SMA in HLE-B3 cells, using β-tubulin as the internal control, and quantified (e). n = 3. (f) The expressions of ZO-1
and E-cadherin in HLE-B3 cells, using β-tubulin as the internal control, and quantified (g). n = 3. ns means P > 0:05, one symbol
means P < 0:05, two symbols mean P < 0:01, and three symbols mean P < 0:001. n = 3. ☆ vs. diabetic cataract group, ∗ vs. group
5.5mM at 0 h, # vs. group 5.5mM at 24 h, ◆ vs. group 25.5mM at 24 h, ★ vs. group 5.5mM at 48 h, and ▲ vs. group 25.5mM at 48 h.
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Figure 2: Continued.
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HEL-B3 in the normal-glucose group, the expression levels of
miR-144-3p were lower than those in the diabetic cataract
(DC) group or in the cells of the high-glucose group
(Figures 5(e) and 5(f)).

Dual-luciferase reporter assay also showed that miR-144-
3p mimics were able to markedly suppress luciferase expres-
sion in the NRF2 WT group, but did not suppress the MUT
group (Figures 5(g) and 5(h)). The mRNA level of NRF2 was
downregulated in the miR-144-3p mimics group compared
with the miR-144-3p mimics NC group (Figure 5(i)), suggest-
ing that miR-144-3p negatively regulated NRF2 expression.

To investigate the role of miR-144-3p on NRF2 expres-
sion and EMT in high-glucose-treated HLE-B3 cells, we
examined the expressions of FN, NRF2, α-SMA, and KEAP1
in the cells and furthermore the expressions of NRF2, NICD,
and Snail in the nucleus. The expression of total NRF2 and
expressions of NRF2, NICD, and Snail in the nucleus were
all downregulated in high-glucose-stimulated HLE-B3 cells
treated with the miR-144-3p mimics. In contrast, these pro-
tein expressions could be upregulated by miR-144-3p inhib-
itor. Interestingly, the expression of KEAP1 had no obvious
changes between these groups (Figures 5(j) and 5(k)). In
addition, the expressions of FN and α-SMA were downregu-
lated by miR-144-3p mimics and were upregulated by miR-
144-3p inhibitor in high-glucose-stimulated HLE-B3 cells
(Figures 4(l) and 4(m)).

Thus, it is concluded that MALAT1 could negatively
regulate miR-144-3p, and through the negative regulation

of miR-144-3p on NRF2, it could be involved in EMT of
HEL-B3 cells in a high-glucose environment.

3.6. MALAT1 Promoted EMT and Cell Migration through
Reducing miR-144-3p and Activating the NRF2/Notch1/
Snail Signaling Pathway. First, we found that transfection of
shMALAT1 in high-glucose-treated HLE-B3 cells resulted
in downregulation of total NRF2 in cells as well as downreg-
ulation of NRF2, NICD, and Snail in the nucleus compared
with levels in the transfection with the shMALAT1 NC
group and high-glucose group. Conversely, suppressions
of these proteins could be partially rescued by cotransfect-
ing miR-144-3p inhibitor, but not by miR-144-3p mimics
(Figures 6(a) and 6(b)). Furthermore, upregulation of
MALAT1 by transfecting pcDNA3.1-MALAT1 in high-
glucose-treated HLE-B3 cells resulted in increases of total
NRF2 in cells, as well as NRF2, NICD, and Snail increases
in the nucleus compared with those in the transfection
with the pcDNA3.1 and high-glucose groups. Conversely,
increases of these proteins could be partially reversed by
cotransfecting miR-144-3p mimics, but not by miR-144-3p
inhibitor (Figures 6(c) and 6(d)).

Additionally, downregulation of both FN and α-SMA by
transfection of shMALAT1 in high-glucose-treated HLE-B3
cells could be partially rescued by cotransfecting miR-144-
3p inhibitor, but not by transfecting miR-144-3p mimics
(Figures 6(e) and 6(f)). Upregulation of FN and α-SMA by
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Figure 2: Elevated expressions ofMALAT1 and NRF2 in lens epithelial cells of diabetic patients and HLE-B3 cells stimulated by high glucose.
(a) MALAT1 expression in lens epithelium of diabetic cataracts and (b) HLE-B3 cells induced by high glucose, using actin as the internal
control. (c) Immunofluorescent images of NRF2 in lens epithelial cells on anterior lens capsules. Red represents NRF2 and blue represents
nuclear DNA staining by DAPI, bars = 10μm. (d) NRF2 expression in HLE-B3 cells induced by high glucose, using actin as the internal
control. (e) The expressions of NRF2 in HLE-B3 cells, using β-tubulin as the internal control, and quantified (f). n = 3. (g)
Immunofluorescent images of NRF2. Red represents NRF2 staining and blue represents nuclear DNA staining by DAPI, bars = 50μm. ns
means P > 0:05, one symbol means P < 0:05, two symbols mean P < 0:01, and three symbols mean P < 0:001. n = 3. ☆ vs. diabetic cataract
group, ∗ vs. group 5.5mM at 0 h, # vs. group 5.5mM at 24 h, ◆ vs. group 25.5mM at 24 h, ★ vs. group 5.5mM at 48 h, and ▲ vs. group
25.5mM at 48 h.
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Figure 3:MALAT1 regulates production of ROS, expressions of FN, α-SMA, and NRF2, and nuclear translocation of NRF2 in HLE-B3 cells
stimulated by high glucose. After transfection with shMALAT1 for 36 h, HLE-B3 cells were cultured in DMEM containing 5.5 and 35.5mM
glucose for 24 h. (a) After transfection with four different shMALAT1s for 36 h,MALAT1 expression is determined by qRT-PCR in HLE-B3
cells. (b) ROS generation in HLE-B3 cells induced by high glucose detected by flow cytometric analysis (c) and immunofluorescence staining
with DCFH-DA (d) (bars = 100μm). (e) The expressions of FN and α-SMA in HLE-B3 cells, using β-tubulin as the internal control, and
quantified (f). n = 3. After transfection with shMALAT1, the migration ability of HLE-B3 cells stimulated by high glucose was detected by
Transwell assay (g, h), bars = 100μm, and wound healing assay (i, j), bars = 500 μm. (k) Cell cycle transition in HLE-B3 cells and
quantification (l). (m) The protein expression of NRF2 and nuclear translocation were detected by western blot with β-tubulin and
histone as the internal control, and quantified (n). n = 3. ns means P > 0:05, one symbol means P < 0:05, two symbols mean P < 0:01, and
three symbols mean P < 0:001. n = 3. ∗ vs. 5.5mM group at 24 h and # vs. 35.5mM+shNC group.
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transfection of pcDNA3.1-MALAT1 could be partially res-
cued by cotransfecting miR-144-3p mimics, but not by
cotransfecting miR-144-3p inhibitor (Figures 6(g) and 6(h)).

We used Transwell assay to determine whether MALAT1
and miR-144-3p could regulate cell migration in high-
glucose-treated HLE-B3 cells. Compared with the control
groups (transfection of the pcDNA3.1 group and high-
glucose group), cell migration was promoted after transfection
with pcDNA3.1-MALAT1 in high-glucose-treated HLE-B3
cells, which could be significantly reversed by transfection of

a miR-144-3p mimics, but not by transfection of a miR-144-
3p inhibitor. Compared with cells transfected with shMALAT1
NC, cell migration was inhibited in the cells transfected with
shMALAT1, which could be promoted by cotransfecting
miR-144-3p inhibitor, but not by cotransfecting miR-144-3p
mimics (Figures 6(i) and 6(j)).

In summary, the above data confirmed that MALAT1
promoted EMT and cell migration via reducing miR-144-
3p and subsequently activating the NRF2/Notch1/Snail
signaling pathway.
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Figure 4: Downregulation of NRF2 inhibits EMT and migration of HLE-B3 cells stimulated by high glucose through the NRF2/Notch1/Snail
pathway. After transfection with sh-NRF2 for 36 h, HLE-B3 cells were cultured in complete DMEM containing 5.5 and 35.5mM glucose for
24 h. (a) The expressions of NRF2, NICD, and Snail were detected by western blot with β-tubulin and histone as the internal control, and
quantified (b). n = 3. (c) The expressions of NRF2 and Snail by immunofluorescent staining. Green represents Snail, red represents NRF2,
and blue represents nuclear DNA staining by DAPI, bars = 50μm. (d) The expressions of FN and α-SMA in HLE-B3 cells, using β-tubulin
as the internal control, and quantified (e). n = 3. After transfection of shMALAT1, the migration ability of HLE-B3 cells was detected by
Transwell assay (f, g), bars = 100μm, and wound healing assay (h, i), bars = 500μm. ns means P > 0:05, one symbol means P < 0:05, two
symbols mean P < 0:01, and three symbols mean P < 0:001. n = 3. ∗ vs. 5.5mM group and # vs. 35.5mM+shNC group.
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Figure 5:MALAT1 regulates NRF2 expression via sponge miR-144-3p in HLE-B3 cells. (a) qRT-PCR analysis ofMALAT1 expression in the
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v.2.0 software. (d) The interaction between MALAT1 and miR-144-3P is verified by dual-luciferase reporter gene assays. (e) Quantification
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Figure 6: MALAT1 promotes EMT and migration via sponge miR-144-3p through the NRF2/Notch1/Snail pathway in HLE-B3 cells. After
cotransfection of miR-144-3p mimics, miR-144-3p inhibitor, miR-144-3p mimics NC, or miR-144-3p inhibitor NC with shNC, shMALAT1,
pcDNA3.1, and pcDNA3.1-MALAT1 quantification of miR-144-3p and NRF2 RNA expression in HLE-B3 cells, HLE-B3 cells were cultured
in complete DMEM containing 5.5 and 35.5mM glucose for 24 h. (a, c) The expressions of NRF2, NICD, and Snail were detected by western
blot with β-tubulin and histone as the internal control, and quantified (b, d). n = 3. (e, g) The expressions of FN and α-SMA were detected by
western blot with β-tubulin as the internal control, and quantified (f, h). n = 3. After cotransfection, the migration ability of HLE-B3 cells
stimulated by high glucose was detected by Transwell assay (i, j), bars = 100μm. ns means P > 0:05, one symbol means P < 0:05, two
symbols mean P < 0:01, and three symbols mean P < 0:001. n = 3. ∗ vs. 5.5mM group, ◆ vs. 35.5mM+shMALAT1 group, ★ vs. 35.5mM
+shMALAT1+miR-144-3p mimics group, # vs. 35.5mM+pcDNA3.1-MALAT1 group, and ▲ vs. 35.5mM+pcDNA3.1-MALAT1+miR-
144-3p mimics group.
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4. Discussion

In the current study, we found that MALAT1 promoted the
EMT of LECs by negatively regulating miR-144-3p and sub-
sequently activating the ROS/NRF2/Notch1/Snail signaling
pathway under high glucose conditions.

MALAT1 is widely upregulated in the aqueous humor,
lens epithelium, and fibrovascular membranes of diabetic
patients [41]. It can promote EMT by activating Wnt,
Notch1, and Akt/mTOR signaling in cancer tissues and
cells [42–44]. It also can facilitate EMT in HK-2 cells in

diabetic nephropathy[45]. Consistent with previous stud-
ies, we also found that MALAT1 was aberrantly expressed
in LECs of diabetic cataract patients and in high glucose
conditions.

In this study, we demonstrated that MALAT1 could
induce ROS production and NRF2 expression in LECs.
However, previous studies have shown that MALAT1 can
reduce the expression of NRF2 and promote the produc-
tion of ROS [35]. On the contrary, some studies have
shown that MALAT1 can reduce the production of ROS
by activating NRF2 [46]. The role of MALAT1 in
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Figure 7: The schematic for the mechanism underlying EMT in high-glucose-treated HLE-B3 cells facilitated by MALAT1.
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regulating NRF2 and ROS seems controversial. We think
that MALAT1 may control the ROS level in balance by
promoting NRF2 expression. ROS are highly expressed in
LECs during the onset of diabetic cataracts stimulated by
high glucose [18, 21], and could induce EMT by activating
several transcription factors, such as Snail, STAT3, and
ZEB1, which can be activated by the Notch, G-CSF,
MAPK, and PI3K/Akt signaling pathways in cancer cells
[47]. It is well known that the classic signaling pathway
of KEAP1/NRF2 is the main approach against ROS [48].
KEAP1 binds with NRF2 by acting as an adaptor protein
and is a negative regulator of NRF2. Under normal ROS
conditions, this interaction is a short incident, with
NRF2 exhibiting a short half-life of 13–21min [49, 50].
While under hyperactive ROS conditions, because of mod-
ification of critical cysteine residues in KEAP1 or NRF2
coupled with phosphorylation, NRF2 can detach from
KEAP1 and then translocate into the nucleus to promote
the transcription of target genes by binding to promoter
regions [21].

NRF2 can also be regulated by posttranslational, tran-
scriptional, translational, and epigenetic mechanisms, as well
as by several microRNAs [51]. In recent years, many studies
have shown that ROS can induce NRF2 into the nucleus to
decrease the sensitivity of cancer to radiotherapy and
increase the metastasis of cancer [25, 52–54]. NRF2 expres-
sion is low in both epithelial and mesenchymal cells, while
NRF2 expression is high in mixed epithelial and mesenchy-
mal phenotypes, suggesting that the highly expressed NRF2
in cells may activate EMT [52]. Excessive ROS can lead to
apoptosis in LECs, while NRF2 may reduce apoptosis
through antioxidant production [19, 55]. In our study, we
found that high-glucose-induced ROS may promote NRF2
nucleus translocation. Increased nucleus translocation of
NRF2 can promote EMT in LECs, which may occur through
the Notch1/Snail pathway. So this study indicates that the
increase of NRF2 expression may not always be beneficial
in the prevention of cataracts.

Previous studies have indicated thatMALAT1 can induce
EMT in cancer cells by acting as ceRNAs to sink miR-141,
miR-3064-5p, miR-200b, and miR-144-3p [28, 29, 56, 57].
NRF2 can be negatively regulated by miRNAs, including
miR-153, miR-27a, miR-142-5p, and miR-144-3p, through
direct repression of NRF2 messenger RNA in a KEAP1-
independent manner, or by enhancing KEAP1 expression.
In the present study, we used bioinformatics software to pre-
dict that MALAT1 and NRF2 shared the same miR-144-3p
binding sites. Additionally, MALAT1 can inhibit the expres-
sion of miR-144-3p, which can downregulate NRF2 expres-
sion independent of KEAP1. The miR-144-3p expression
and function in diabetic cataracts have not been reported
before. We detected that miR-144-3p was downregulated in
LEC lining with anterior lens capsules and in LECs under
high glucose conditions. Even though the highly expressed
miR-144-3p can inhibit the EMT of tumor tissues and cells
by targeting EZH2, PBX3, and MAP3K8 [58–60], we found
that EMT could be negatively regulated by miR-144-3p
through the ROS/NRF2/Notch1/Snail pathway in high-
glucose-stimulated LECs.

5. Conclusions

In summary, we have found that MALAT1 is upregulated in
LECs under high glucose conditions. Upregulated MALAT1
can promote ROS production and competitively combine
with miR-144-3p. Downregulation of miR-144-3p can pro-
mote NRF2 expression. NRF2 could be stimulated by ROS,
translocate to the nucleus, and activate the Notch1/Snail
pathway, resulting in the EMT of LECs (Figure 7). Therefore,
MALAT1 may be a potential target for the prevention and
treatment of diabetic cataracts.
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