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Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a
specific factor—alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation
abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor,
cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of
phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are
able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant
extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation
ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the
cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for
effective therapeutic interventions.

1. Introduction

Cardiovascular diseases (CVDs) are a major cause of human
mortality and morbidity in Western countries, and they are
considered a huge problem for todays’ health care system
[1]. Parallel to the improvement of life expectancy, deaths
caused by CVDs have been increasing. Currently, smoking,
obesity, poor nutrition, and sedentary lifestyles comprise
the main contributors [2]. Scientists estimate that by 2030,
in low-income countries, the number of individuals dying
from CVD will be significantly higher in comparison to other
infectious diseases and nutritional disorders combined [3].

Changes in blood platelet activation are considered a spe-
cific key triggering factor for the development of CVD
among others [4]. In healthy individuals, hemostatic plugs
are formed as the blood clots at the bleeding site. In such sit-
uations, they are beneficial since they prevent both blood and
plasma from escaping into surrounding tissue. On the other
hand, thrombus expansion in the unruptured blood vessels
can be harmful [5]. As a result of blood vessel injury and/or
atherosclerotic plaque erosion, the endothelium liberates
protein factors, enabling that way the platelets’ adhesion to
the subendothelium and initiating their activation. Activated
platelets release biologically active ligands, including throm-
boxane A2 (TXA2), adenosine diphosphate, and serotonin,
which further increase platelet activation, aggregation, and
thrombus formation [6]. Thus, the proper control of platelet
function is mandatory for the prevention of thrombotic
events [7]. Indeed, platelet hyperactivity has been increas-
ingly linked to the development and complication of certain
CVDs (Figure 1), including atherosclerosis, thrombosis,
peripheral artery disease, myocardial infarction, and ische-
mic stroke [3].

On the other side, several side effects have been reported
with the currently used synthetic antiplatelet agents (aspirin,
clopidogrel, and dipyridamole). For example, the chronic
consumption of aspirin implies an increased risk of develop-
ing intestinal ulcers and major bleeding [6]. Moreover, these
drugs are also not completely effective in suppressing platelet
aggregation besides increasing the risk of drug resistance and

bleeding. As a consequence, these limitations have prompted
researchers to launch the quest for natural alternatives as
new, effective, and safer antiplatelet drugs. In a recent review,
the use of natural products as therapeutic agents has been
highlighted considering the data of the last four decades
(Newman and Cragg [8]). The review highlighted the use of
natural products as anticancer, antidiabetic, and multiple
sclerosis agents. The polyphenolic compounds present in
plant-based products have been found to play the central part
of many scientific studies due to their potential health bene-
fits, with special attention being given to their positive impact
on CVD [9–11]. In fact, polyphenol-rich diets have revealed a
great impact on the vascular system, improving both platelet
and endothelial functions [12]. Moreover, platelet activation
pathways involve arachidonic acid (AA), adenosine diphos-
phate, serotonin, and nitric oxide (NO) pathways. Numerous
medicinal plants have also demonstrated their bioactivities in
reducing platelet aggregation via these mechanisms [13].
Phenolic compounds may be better for treating CVD than
synthetic antiplatelet agents, addressing the problems of drug
resistance and bleeding that the synthetic antiplatelet agents
cannot solve. A number of reviews which focused on the role
of phenolic compounds in improving the cardiovascular
health have been published recently [14, 15]. These reviews
are more focused on the effect of the phenolic extracts on
cardiovascular health, but limited aspects of antiplatelet
aggregation activity of phenolic bioactive compounds in
maintaining cardiovascular health were discussed. In this
sense, considering the importance of the phenolic bioactive
compounds in the management of CVDs by their antiplatelet
activity, the aim of this review is to collate and summarize the
finding of the researchers on polyphenolic compounds with
antiplatelet activity, with emphasis on the possible molecular
mechanisms responsible for their action against CVDs.

2. Basic Structure and Physicochemical
Properties of Phenolic Compounds

Phenolic compounds account for about 40% of organic car-
bon circulating in the biosphere and are by definition any
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compound with a hydroxylated benzene ring. A polyphenolic
compound has more than one phenol group, or more than
one hydroxyl on a single benzene ring. Phenolic compounds
come from simple, low-molecular-weight phenolic molecules
to highly polymerized, high-molecular-weight, complex poly-
phenolic compounds [16]. They are synthesized either as sol-
uble or cell-wall-bound compounds, generally appearing as
esters and glycosides rather than free compounds. They are
classified based on the number of phenolic rings that they con-
tain and the radicals that bind the rings to one another [16].
The hydroxyl group of phenolics is influenced by the presence
of the aromatic ring which makes the hydroxyl group’s hydro-
gen labile and then makes them weak acids [16].

Water solubility increases with the number of hydroxyl
groups. For analytical purposes, methanol, ethanol, water,

and alcohol-water mixtures have been the most commonly
used solvents to dissolve and extract phenolic compounds.
The intense absorption in the spectrum of the UV region is
exhibited by all phenolic compounds, and the colored ones
also absorb strongly in the visible region [16].

Polyphenolic flavonoids constitute the largest group of
low-molecular-weight phenolic compounds, characterized by
a phenyl-benzo-pyran chemical structure consisting of two
aromatic C6 rings (A and B) and a heterocyclic benzopyran
ring (C) with one oxygen atom [16]. They are crystalline com-
pounds; some are colored, while others are colorless. They
occur as aglycones, glycosides, and methylated derivatives,
with differences in glycosides being attributed to the number
of positions for glycosylation, types and numbers of sugars
involved, and level of glycosylation. Briefly, glycosides can
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Plaque rupture
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Figure 1: Process of platelet aggregation and formation of thrombosis during CVDs.
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either be O- or C-linked in positions 3 or 7 to L-rhamnose,
D-glucose, glucorhamnose, galactose, or arabinose [16].

Phenolic acids (phenolcarboxylic acids) are members of
the phenolic compounds’ group containing a phenolic ring
and at least one organic carboxylic acid function [16].
Tannins are water-soluble polyphenols, characterized by
their relatively high molecular weight, being often found in
complexes with alkaloids, polysaccharides, and proteins.
Stilbenes exhibit a C6-C2-C6 structure derived from the
same biosynthetic pathway as flavonoids and are featured
by the presence of a 1,2-diphenylethylene nucleus with
hydroxyl groups substituted on the aromatic rings [16].

2.1. Main Sources of Phenolic Compounds. According to
Lattanzio [17], plant phenolic content depends on several
factors, such as growing conditions, cultivation techniques,
cultivar, and ripening process. In addition, while they are
natural antioxidants and health promoting phytochemicals,
phenolic compounds are among the health promoting phy-
tochemicals found abundantly in plant-based foods, includ-
ing fruits, vegetables, spices, and whole grains, especially
cereals [17]. The subclass of flavonoids is widely addressed
for their protective effects on CVDs by inhibiting platelet
aggregation. Plant-based food groups are known to be richer
in such compounds than others. Below, some few examples
of plant-based food groups which are rich in these flavonoid
compounds are presented. The concentrations of a particular
flavonoid are given in mg/100 g edible portion.

(i) Fruits: berries (blueberries (flavones: 7.5–19.7), rasp-
berries (flavonols: 1.11–1.114), strawberries (flavo-
nols: 1.3–1.65), and cranberries (flavones: 0.03)),
cherry (flavonols: 2.43–28.6), apple (flavones: 0.01–
0.12; flavonols: 0.42–3.87; flavan-3-ols: 6.64–12.3;
and anthocyanidins: 0–5), grape (flavonols: 1.05–
2.39), lemon (flavonols: 1.67; flavanones: 49.8), lime
(flavonols: 0.40), banana (flavonols: 0.18), orange
(flavonols: 0.22–0.73; flavanones: 29.0–42.6), pears
(flavan-3-ols: 1.88–4.81; anthocyanidins: 2.06),
plums (flavonols: 0.90–12.5; anthocyanidins: 0.30–
558.2), peaches (flavonols: 0.45–0.88; anthocyani-
dins: 0.97–1.92; and flavan-3-ols: 1.87–16.3), and
apricot (flavan-3-ols: 8.41)

(ii) Cereals and legumes: soybean (flavan-3-ols: 37.4),
cowpea (flavonols: 21.9), sorghum (flavones: 2.99–
6.47; flavanones: 1.96), broad beans (flavanols: 0.9),
beans (anthocyanidins: 2.74–44.5; flavan-3-ols:
0.10–324.2), purple wheat (anthocyanidins: 25.9),
and peanuts (flavan-3-ols: 0.66)

(iii) Vegetables: eggplants (flavones: 0.03), onions (flavo-
nols: 3.63–46.7; flavon-3-ols: 0–0.08; and anthocyani-
dins: 9.56), broccoli (flavonols: 1.05–11.2), carrots
(flavonols: 0.49), cabbage (flavonols: 0.05–22.5), let-
tuce (flavonols: 1.63–7.63), and tomatoes (flavonols:
0.03–0.8)

(iv) Herbs and spices: chili, coriander (flavonols: 52.9),
garlic (flavonols: 3.61), ginger (flavonols: 0.19–

33.6), turmeric (flavonols: 6.96), and thyme
(flavones: 47.75)

(v) Beverages: red wine (flavones: 0.04–0.17), tea
(flavan-3-ols: 9.8–324.2), coffee (flavan-3-ols: 0.08;
flavonols: 0.10), and cocoa (flavan-3-ols: 1.33–52.7)

Therefore, there is a chance of increased consumption by
human on a daily basis, since they are widespread in plant-
based foods and are easily absorbed due to their simplicity.

3. Phenolic Compounds and Health Promotion

Phenolic compounds are highly abundant secondary metab-
olites in the plant kingdom, possessing aromatic rings with
one or more hydroxyl substituents or some functional deriv-
atives, such as esters, methyl ethers, and glycosides [18]. Both
taste and color, as well as some features of vegetables and
fruits are strongly associated with the presence of such com-
pounds, widely recognized for their wide range of activities,
making them extremely beneficial to human health.

The physiological functions of phenolic compounds are
vast because of their beneficial effects, not only for health pro-
motion and maintenance but also for therapeutic purposes,
given their wide range of pharmacological activities; thus,
taken together, these aspects have made phenolic compounds
highly important secondary metabolites and the target of an
intense investigation in current times [19]. Taking a look at
their versatile health benefits, they are effective antioxidant,
antitumor, antimicrobial, antihyperglycemic, immunomodu-
latory, cardioprotective, vasodilatory, antithrombotic, anti-
inflammatory, and UV radiation skin protective agents, and
therefore interesting candidates for pharmaceutical and
medicinal applications [20–23].

Due to the medicinal plant’s abundance in phenolic com-
pounds, interesting biological activities have been reported,
which are extremely useful in the prevention of the onset of
age-related diseases and closely related to high oxidative
stress levels. With regard to the broad-spectrum activities,
there is a shift towards natural product industrialization,
especially in pharmaceutical and cosmetic industries. For
example, flavonoids regulate key proteins involved in inflam-
mation and signal transduction pathways [24]. Both the
absorption and metabolism of these dietary phenolic com-
pounds determine the extent of their health benefits, which
in turn are determined by their structure (conjugation with
other phenolics, degree of glycosylation/acylation), solubility,
and molecular size. Their effectiveness decreases with the
substitution of the hydroxyl groups in their structure for
sugars; thus, aglycones exhibit more potent activities than
their corresponding glycosides.

4. Phenolic Compounds That Inhibit Platelet
Aggregation via Affecting
Vascular Environment

4.1. Phenolic Compounds and Cardiovascular Activity:
Emphasis on Molecular Ways. The regular consumption of
diets rich in fruits, vegetables, olive oil, and wine, composed
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of a wealth of phenolic compounds, exert a wide range of ben-
eficial properties, such as antioxidant and anti-inflammatory
effects as well as metabolic modulatory activities to hinder
not only the disease onset but also its progression [25–28].

4.1.1. Cardioprotective Activity of Phenolics. CVD pathogen-
esis has been increasingly linked to oxidative stress. Typi-
cally, featured by an inflammatory condition, CVD is
recognized as one of the major causes of death worldwide,
with a rise in prevalence in developed countries [29]. As poly-
phenols are known for their antioxidant, immunomodula-
tory, and vasodilatory properties, an increased intake of
such dietary antioxidants contributes to CV risk reduction
[9] and inhibits oxidation of human low-density lipoproteins
(LDL), ultimately preventing atherosclerotic plaque forma-
tion. The mechanisms involved in the cardioprotective effects
of phenolic compounds have been studied and reported in
preclinical (in vitro and in vivo) and clinical studies, acting
via inhibition of ROS production, mitochondrial dysfunc-
tion, apoptosis, nuclear factor kappa B (NF-κB), p53, and
DNA damage. For example, resveratrol as a case study, is a
phenolic compound (stilbene) widely abundant in grapes
and red wine that confers extraordinary cardioprotective
effects by acutely improving endothelial function in coronary
heart disease (CHD) patients [30].

Regarding CVD risk factors, hypertension is the most
prominent one, contributing to one third of global mortality.
Recently, naturally occurring phytochemicals have been
employed not only to reduce but also to manage hyperten-
sion risk [31]. The renin-angiotensin-aldosterone (RAAS)
system has been identified as an important target in the treat-
ment/management of hypertension, myocardial infraction,
stroke, and kidney diseases [32], given its role in the mainte-
nance of vascular tone/tension. Briefly, the RAAS system
mediates vascular tension via a sequential conversion of
angiotensinogen to angiotensin II by a series of enzymatic
cleavages. The angiotensinogen is cleaved by renin to produce
angiotensin I, which is further cleaved to produce angiotensin
II by the angiotensin-converting enzyme (ACE). Angiotensin
II is a potent vasoconstrictor, and its presence also promotes
aldosterone production, thus contributing to hypertension
[32]. Hence, inhibitors of renin and ACE have shown to be
beneficial in the treatment of vascular tension and as
antifibrotics [33]. Recently, phenolic compounds have
revealed promising effects both as ACE and renin inhibitors,
with phenolic-rich foods also revealing good antihypertensive
abilities in experimental models (Figure 2) [34, 35].

Experimental and clinical studies have suggested that fla-
vonoids and flavanol-rich foods could reduce blood pressure
and CVD risk in humans [36]. For instance, caffeic acid along
with its 19 novel derivatives, chlorogenic acid, quercetin, and
captopril showed prominent effects as inhibitors of ACE and
renin, as well as modulators of aldosterone secretion [31].
Other evidences have also shown that phenolic compounds,
particularly flavonoids, are able to reverse vascular endothe-
lial dysfunction [37].

Indeed, phenolic supplementation has been shown to
boost endothelial function by stimulating endothelium-
derived NO bioactivity, and this may explain some of the

favorable effects of high phenolic intake seen in epidemiolog-
ical studies [37]. For example, a randomized controlled trial
performed in pre- and hypertensive patients, revealed that
olive oil enriched with its own phenolic compounds show
more benefits on endothelial function than standard virgin
olive oil [38].

4.2. Role of Phenolic Compounds as Antiplatelet Agent via
Redox Modulation. As the largest phytochemical molecules
grouped under phenolic compounds, phenolic acid and fla-
vonoids are commonly known to have great antioxidant
properties and prove to be more effective than vitamins C
and E and carotenoids [39]. These antioxidant abilities are
mediated through several mechanisms, such as scavenging
free radicals, suppressing ROS formation, inhibiting some
enzymes, chelating trace metals, and upregulating or protect-
ing antioxidant defense to ensure a proper redox balance
[40]. The hydrogen-donating specificity and interaction of
their hydroxyl groups (acting as the antioxidant) with ROS
is a termination reaction which breaks the cycle of a new rad-
ical generation. The main factor on antioxidant/reduction
activity of phenolic compounds is the number and position
of its hydroxyl groups which are strengthened by steric hin-
drance; thus, flavonoids possess more hydroxyl groups and
higher antioxidant activity than the other molecules of the
group [41, 42].

ROS are generated intracellularly and exogenously as a
byproduct of normal metabolism or due to cells’ exposure
to some environmental triggers [43]. The imbalance between
ROS generation and defense mechanism is known as oxida-
tive stress, which is pivotal in CVD development [44, 45].
Oxidized LDL promotes vasoconstriction and progression
of platelet aggregation by promoting the smooth muscle cells’
proliferation and inhibiting the endothelial nitric oxide syn-
thase (eNOS) [46].

Phenolic compounds exert an antioxidant activity via
their free radical scavenging properties and inhibiting ROS-
generating enzymes (e.g., iNOS), as well as boosting antioxi-
dant enzyme activity, like hemeoxygenase-1, glutathione
peroxidase, and glutathione-S-transferase in cardiac and aor-
tic smooth muscle cells [44, 45]. They are also able to regulate
vascular reactivity by inducing nuclear Nrf2 accumulation
and targeting eNOS, thereby enhancing NO bioavailability
[47, 48]. Polyphenols also contribute to the antioxidant
defense of endothelial cells by reducing NADPH oxidase
expression [49]. Several in vitro studies have reported that
phenolic compounds could effectively reduce oxidized LDL
and increase the level of high-density lipoproteins (HDL),
ultimately improving endothelial function [50, 51]. More-
over, numerous phenolic compounds exert cardioprotective
effects at a localized or systemic level by inducing antiplatelet
effects [46], with such effects being majorly attributed to the
O-dihydroxyl group in the A and/or B ring (Figure 3) [52].

4.3. Role of Phenolic Compounds as Antiplatelet Agent via
Inflammatory Process. Production of proinflammatory medi-
ators during inflammation is common in some cells, mainly
in macrophages, with interleukins (IL), tumor necrosis
factor- (TNF-) α, ROS, NO, and prostaglandins (PGs) being
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the most commonly produced inflammation mediators [53].
Also, the association of phenolic compound structures and
their anti-inflammatory activity with different targets of
inflammation have been established [54]. Indeed, they are able
to modulate transcriptional factors, like downregulating NF-κB
or upregulating Nrf-2 [55, 56]. NF-κB regulates the expression
of several proinflammatory cytokines, such as IL-1β, TNF-α,
and enzymes, like iNOS and cyclooxygenase (COX-2). Nrf-2
regulates the expression of anti-inflammatory enzymes by
possessing an antioxidant responsive element (ARE) able to
activate several antioxidant enzymes needed for redox balance.
Thus, they inhibit the gene expression and the activity of pro-
inflammatorymediators at the same time that they activate the
expression and activity of anti-inflammatory mediators that
are targets of transcription factors.

The inhibition of inflammatory mediators, such as ROS,
NO, and PGE2, and proinflammatory mediators, like cyto-
kines, TNF-α, and COX-2, is one of the major targets for
CVD treatment (Figure 3). The overexpression of TNF-α
and IL is linked to NF-κB activation, which regulates the
release of inflammatory mediators [57]. Additionally, phos-

phorylation of p38 mitogen-activated protein kinases
(MAPK) plays an important role in chronic inflammation
by activating NF-κB as well as regulating the NO and proin-
flammatory gene production from macrophages [58, 59].

Procyanidins were found to reduce the protein expression
of iNOS, COX-2, lipoxygenase- (LOX-) 15 and some proin-
flammatory cytokines, such as IL-1β, TNF-α, and monocyte
chemoattractant protein- (MCP-) 1 [58, 60, 61]. These effects
might be due to suppression of NF-κB activity via downregu-
lation of p38 and MAPK pathways [44, 58]. Rius et al. [62]
proved that resveratrol supplementation may partially protect
against CVD especially during the early atherosclerotic phase.
This effect could be due to a decrease in the overexpression of
intercellular and vascular cell adhesion molecules by inhibit-
ing the NF-κB pathway in TNF-α-activated endothelial cells
[63], and other reports have shown that it is related to a reduc-
tion of circulating levels of MCP-1 andMIP-1α [62]. Polyphe-
nols extracted from roasted cocoa beans suppressed
inflammation via oxidative pathways, which lead to an
increase in oxygen consumption by mitochondria and ATP
production via oxidative phosphorylation [64].

Main reason of thrombotic plaque in CVDs
hypertension

Renin
Angiotensin-converting enzyme

O OH

OH
H3COOCH3

HO

HO

OH

OH

Reverses vascular endothelial dysfunction
Reduces blood pressure

Antihypertensive
Antifibrotic agent

Figure 2: Antithrombotic and antihypertensive properties of the phenolic compounds.
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As stated above, phenolic compounds present in extravirgin
olive oil have also been stated to be potent anti-inflammatory
agents by preventing the expression of iNOS, COX-2, LOX,
and phospholipase A2 and thus blocking the production of
eicosanoids (PGI2, leukotriene B4) [65]. They can also reduce
platelet aggregation by decreasing the production of thrombox-
ane B2 (TXB2) and 27-hydroxyleicosatetraenoate [66]. The
same findings have also been said about resveratrol, which
forms stable complexes in platelet COX-1 channels [67].
Moreover, the supplementation with curcumin or cinnamon
bark extract was able to reduce the levels of C-reactive protein
(CRP), an acute phase protein that plays a key role in CVD
progression [68, 69]. The potential therapeutic and health-
promoting roles of curcumin are also highlighted in the recent
review by Moballegh Nasery et al. [70].

On the other hand, endothelial dysfunction results in the
formation of vasoconstrictive factors, such as endothelin-1 in
the arterial wall, implicated in CVD development [71].

Dietary polyphenols have also been shown to downregulate
the production of adhesion molecules by the endothelium
and to modify the endothelial formation of NO and
endothelium-derived hyperpolarizing factor (EDHF), which
improve endothelial function [9].

4.4. Role of Phenolic Compounds as Antiplatelet Agents via
Metabolism Modulation. CVDs are related to alterations in
metabolism. Dasgupta and Milbrandt in 2007 found that res-
veratrol can target and activate AMP-activated protein
kinase (AMPK), having an important role in reducing fat
accumulation, cholesterol synthesis, and inflammatory cyto-
kines [72]. Resveratrol could also stimulate sirtuin 1 (SIRT1)
at an amplitude of ~10-fold, which is a NAD-dependent
lysine deacetylase that plays a vital role in energy metabolism
(Figure 3) [73]. SIRT1 is known to regulate a variety of cell
functions, mainly mitochondrial function, by activating the
transcriptional activity of peroxisome proliferator-activated

Phenolic compounds and cardiovascular health

Phenolics acts as an anti-
inflammatory agent and

downregulates the production
of adhesion molecules by the
endothelium and endothelial
formation of NO and EDHF

Phenolics acts as an anti-
inflammatory agent by

inhibiting
inflammatory and
proinflammatory

mediators

Metabolic
modulatory effect

reduces platelet
aggregation
AMPK & SIRT

Hemeoxygenase-1, glutathione
peroxidase, and glutathione-S-

transferase

Oxidized LDL

OH

OH OH HO
OCH3

O OH

OH
H3CO

OH
OH

OH
OH

HO

OH

OH
O

O

O

HO

NADPH oxidase expression and
inhibiting the endothelial nitric

oxide synthase

Reduced vasoconstriction and
reduced platelet aggregation

Figure 3: Role of phenolics as antiplatelet factors via redox modulation, anti-inflammatory responses, and metabolic modulatory effect.
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receptor-gamma coactivator- (PGC-) 1α and triggering the
activation of AMPK [74, 75]. Stimulation of SIRT1 and
AMPK boosts the eNOS activity in human coronary arterial
endothelial cells and increases NO production and mito-
chondrial biogenesis, which triggers vasodilation and
decreases atherosclerosis [76]. Recent data have shown that
polyphenols interact directly with the activator site of both
estrogen receptor- (ER-) α and ER-β, leading to eNOS activa-
tion and stimulation of NO production and endothelium-
dependent vasorelaxation [77, 78].

5. Phenolic Compounds with In Vitro
Antiplatelet Aggregation Activity

The inhibition of platelet aggregation and thrombus forma-
tion comprises a vital target in preventing atherosclerotic
events [79]. This concept has motivated researches to find
therapeutic strategies targeting to reduce platelet aggregation.
In fact, diets rich in phenolic compounds could represent a
natural alternative for inhibiting platelet aggregation in a
dose-dependent manner and helping reduce the individual
risk of developing CVD [80]. From a mechanistic point of
view, the inhibitory activity of phenolic compounds greatly
depends on the phenolic class and is mainly due to their
anti-inflammatory and antioxidant capacities, with an IC50
in the range of μM [81]. Pignatelli et al. [82] have reported
that a combination of 25μM catechin/L and 5μM querce-
tin/L can synergistically inhibit platelet aggregation by blunt-
ing hydrogen peroxide production. Wang et al. [83] reported
that kaempferol inhibits NADPH oxidase, thus reducing the
ROS production. Similarly, Meshkini and Tahmasbi reported
in 2017 that the antiplatelet activity of walnut hull extract is
linked to its capacity to inhibit the rise in ROS levels induced
by thrombin in platelets [7]. Cocoa polyphenols reduced
platelet NADPH oxidase activation and the platelet forma-
tion of ROS and eicosanoids [84].

The main reported mechanisms of action for phenolic
compounds, other than the antioxidant effects, include the
suppression of cytoplasmic Ca2+ increase and inhibition of
thromboxane formation and AA pathway [81, 85]. Quercetin
was found to completely inhibit AA-induced platelet aggre-
gation at 200μM [86] and to inhibit platelet aggregation
induced by thrombin by impairing Ca2+ mobilization and
serotonin secretion [87]. Resveratrol could also inhibit the
arachidonate-dependent synthesis of inflammatory agents,
such as TXB2, hydroxyheptadecatrienoate, and 12-
hydroxyeicosatetraenoate [67]. Apart from the antiplatelet
activity of resveratrol, it also modulates the expression of
noncoding RNAs in ovarian cancer cells (Vallino et al.,
2020). Another study also showed the anticancer activity of
resveratrol by inhibiting the STAT3 signaling pathway (Baek
et al., 2016). Similarly, resveratrol might improve cardiovas-
cular health by affecting the gene expression of platelet aggre-
gating factors. Son et al. [88] reported that green tea catechins
exert antithrombotic effects through the inhibition of TXA2
formation by modulating AA liberation and TXA2 synthase.
Rutin and α-naphthoflavone have also been shown to inhibit
phosphoinositide breakdown and several other steps, such as

Ca2+ mobilization, protein kinase C (PKC) activation, and
TXA2 formation in collagen-activated platelets [89, 90].

Flavonoids also inhibit the platelets’ stimulation through
phosphoinositide 3-kinase (PI3K)/PKB (AKT) and by extra-
cellular signal-regulated kinase (ERK) 1/2, p38, and cJun N-
terminal kinase (JNK) 1/2 pathways [91]. Several researches
proved that quercetin at 50-60μM completely inhibits all
PI3k isoforms [92]. Moreover, some flavonoids have been
shown to inhibit phospholipase C, platelet-activating factor,
or collagen-receptor antagonism and glycoprotein IIb-IIIa
activation [93]. It has also been revealed that quercetin and
catechin are able to downregulate the expression of GPII-
b/IIIa in platelets by increasing the NO production [94].
Hydroxytyrosol acetate and hydroxytyrosol were also found
to synergistically inhibit collagen-induced platelet aggrega-
tion [95]. The inhibition of phospholipases, tyrosine kinases,
phosphodiesterases, LOX, and COX are other mechanisms
involved [96]. In silico docking studies showed that resvera-
trol could form stable complexes in platelet COX-1 channels
[67], while Hubbard et al. [97] concluded that quercetin
inhibits collagen-induced phosphorylation mainly due to its
tyrosine-kinase inhibitory activity.

From the point of view of a structure-activity relationship
(Figure 4), the hydroxyflavones were more effective than
their corresponding methoxyflavones, considering that the
hydroxyl group position also influences platelet function
[98]. This is explained by the fact that methylation changes
the electrical charge of the flavonoid and so decreases its
affinity for TXA2 receptors. Glycosylation also decreases
the antiplatelet activity of flavonoids by enlarging their size,
thus complicating binding to the receptor [85]. The double
bond in C2–C3 and/or 4-C=O in the C-ring of flavonoids
has also a key importance for the antiplatelet activities [99].
It was also observed that not only does the phenyl group of
a B ring play a critical role in antiplatelet activity, but the het-
eroatoms of the B ring also largely influence this activity [98].

Data have also shown that apigenin, genistein, and luteo-
lin have high affinity to the TXA2 receptor due to their struc-
tural characteristic conjugation, with the presence of a
lactone structure [85]. Indeed, epigallocatechin gallate, cate-
chin gallate, and epicatechin gallate are catechins containing
a galloyl group in the 3′ position, all inhibiting thrombin-
induced aggregation and phosphorylation of p38 MAPK
and ERK1/2. Catechins without a galloyl group (catechin,
epicatechin) or with a galloyl group in the 2′ position
(epigallocatechin) did not inhibit platelet aggregation [100].

6. Phenolic Compounds with In Vivo
Antiplatelet Aggregation Activity

In vitro evidence cannot be fully translated to the in vivo con-
dition in animals because parent molecule administration is
followed by the presence of conjugated metabolites in the
plasma with lower biological effects [101]. Additionally,
experimental data related to the antiplatelet aggregation
activity of dietary polyphenols in vivo are scarce, and results
are often conflicting. For example, Ostertag et al. [102] dem-
onstrated in an ex vivo study that phenolic compounds affect

8 Oxidative Medicine and Cellular Longevity



the collagen-induced platelet aggregation and thrombin
receptor-activating peptide-induced P-selectin expression
but only at very high nonphysiologically attainable concen-
trations. In streptozotocin-induced diabetic rats, Schmatz
et al. [103] also proved in an ex vivo study that moderate
consumption of grape juice and red wine modulates
the hydrolysis of the adenine nucleotides and decreases
platelet aggregation.

Schumacher et al. [104] studied the effect of 300mL
chicory coffee rich in caffeic acid given daily to 27 healthy
volunteers for 1 week. They found that the whole blood and
plasma viscosity were both significantly decreased. In
another study, 20 healthy subjects daily consumed 7mL/kg
of both red wine and purple grape juice for 14 days [104].
Platelet aggregation was inhibited and platelet-derived NO
production increased, whereas the superoxide release
decreased significantly [105]. In an intervention trial that
lasts for 8 weeks, berry consumption resulted in favorable
changes in platelet function, and antiplatelet activity was
induced by both ADP and collagen [106]. Similar findings
were also stated when consuming 2 or 3 kiwi fruits per day
for 28 days [107]. The daily consumption of 50mL of pome-
granate juice (1.5mmol total polyphenols) for 2 weeks was
found to reduce LDL susceptibility to aggregation and reten-
tion and to increase the activity of serum paraoxonase by
20% [108]. Data from several studies shows that the con-
sumption of 100mg flavanols (equivalent to 11 g dark choco-
late, 52 g milk chocolate, or 50 to 100mL cocoa drink) also
inhibits the collagen–epinephrine- and collagen–ADP-
induced closure [109]. Hamed et al. [110] proved that the
intake of dark chocolate (700mg flavonoids/day) for a week
significantly reduced ADP- and AA-induced platelet activa-
tion in addition to activated glycoprotein IIb/IIIa. Similar
findings were reported by Rull et al. [111] who proved that
dark chocolate (with high and low flavanol levels) supple-
mentation for 6 weeks lowered platelet responsiveness to
ADP and to thrombin receptor activator peptide. Further-
more, Wright et al. [112] found that both methylated and
sulphated flavonoid metabolites have higher platelet inhibi-
tory effects than the glucoronidated metabolites.

Conversely, in a study conducted on 20 subjects, a
polyphenol-rich meal every lunchtime for 5 days had no
ex vivo effect on platelet aggregation although the total
plasma flavonoids significantly increased [113]. In the same
way, a daily supplementation with 200mg of flavonoids from
grape seeds had no effect on platelet aggregation in a double-
blind randomized study performed in male smokers [114].
Platelet aggregation did not evidence significant differences

in 21 postmenopausal women supplemented with wine poly-
phenols [115]. Additionally, the daily intake of 2 g of cocoa
flavonols in healthy volunteers during 12 weeks did not exert
significant differences in platelet aggregation [116].

Taken together, these findings underline that further
in vivo studies are absolutely required to confirm the potenti-
ality of phenolic compounds as antiplatelet aggregation agents.
This potentiality renders polyphenols an important dietary
element in the prevention of CVD and possibly an alternative
to pharmacological treatments of platelet aggregation.

7. From Effects of Phenolic Compounds to
Absorption and Bioavailability

The bioavailability of polyphenols and related metabolites
following oral intake has been viewed as a hot research topic
in the last decades. Indeed, results obtained so far have
indicated that the bioavailability of phenolic compounds is
related to the cleavage and release of the aglycone by digestive
enzymes and microbial fermentation, as shown in Figure 5
[117]. The identification of phenolic compounds in biologi-
cal samples to check its bioavailability, metabolism, and
intestinal absorption is very crucial. These metabolomic
analyses are frequently done using nuclear magnetic reso-
nance and mass spectrometry ([118]).

Lactase phlorizin hydrolase and cytosolic β-glucosidase
were found to be the main digestive enzymes that hydrolyze
phenolic glycosides and release the aglycones which enter
the epithelial cells [119, 120]. Before entering into the sys-
temic circulation, polyphenolic aglycones undergo some
degrees of phase II metabolism through the action of sulfo-
transferases, uridine-5′-diphosphate glucuronosyl transfer-
ases, or catechol-O-methyltransferases [121]. On the other
side, compounds with a high degree of polymerization are
exposed to microbial catabolism in the colon before reaching
the liver, where they can also be subjected to conjugation
[122]. Also worthy of note is that the different compositions
of the colonic microflora between individuals lead to varia-
tions in the released metabolites [123]. In contrast, some
polyphenols show specific pharmacokinetic features, as their
glycosides are considered to be more bioavailable than their
aglycones. As an example, some anthocyanins, glycosides,
and isoflavone-glycosides could be efficiently absorbed across
the gastrointestinal mucosa [124, 125]. For instance, Kay
et al. [126] revealed that the absorption rate for quercetin gly-
cosides is higher than that of the aglycones.

8. Phenolic Compounds: Looking at Adverse
Effects, Drug Interaction, and
Related Toxicity

The beneficial effects of phenolic compounds could be
diminished by aspects as lifestyle, gender, age, genetic factors,
underlying diseases, and interactions with conventional
drugs, the latter being of great importance with regard to
safety concerns. In fact, although the risk of adverse effects
due to interactions between herbal medicinal products and
conventional drugs is still an underexploited problem, some
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Figure 4: Basic structure of flavonoids.
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studies highlighting concerns regarding antithrombotic
agents have been reported [96, 127, 128]. Overall, it is clear
that the majority of these works do not address a single/spe-
cific drug and, on the contrary, preferentially consider anti-
coagulant (e.g., warfarin) and antiplatelet (e.g., aspirin,
clopidogrel, or ticlopidine) drugs [129] as the whole focus
of the study (Table 1).

The most referred mechanisms in such interactions
include inhibition of thromboxane synthesis and/or COX
activity and interference in drug metabolism, which globally
results in synergistic effects with drugs, and ultimately, pro-
moting platelet inhibition and increasing the risk of bleeding
in some patients [127, 129]. Yet, in most cases, the mecha-
nism of action is not deeply determined, and a great number
of aspects on herbal-antiplatelet interactions remain unex-
plored. In addition, most of them lack the identification
of the active compounds’ class in such interactions, just
referring to the name of the herbal product [130, 131].
Nevertheless, phenolic compounds of some herbal plants,
such as Camellia sinensis (L.) Kuntze, Citrus paradisi Mac-
fad., Crataegus spp., Curcuma longa L., Crocus sativus L.,
Foeniculum vulgare Mill. Ginkgo biloba L., Matricaria
recutita L., and Vaccinium myrtillus L. have been pointed

out as probable plant components capable of interacting
with antithrombotic drugs.

9. Paving the Way for Effective
Clinical Applications

Phenolic compounds are gaining a huge importance in the
promotion, prevention, and maintenance of good health, as
well as in the treatment of multiple diseases, because of their
remarkable bioactive effects, with special emphasis on their
antioxidant, antitumor, antihyperglycemic, cardioprotective,
antithrombotic, vasodilatory, and anti-inflammatory activi-
ties. This wide range of activities makes such biomolecules
of hot potential for both pharmaceutical and medical
applications.

As stated, phenolic compounds are able to modulate
some transcriptional factors (e.g., NF-κB) to regulate the
expression of some proinflammatory cytokines (e.g., IL-1β
and TNF-α) and even enzymes (e.g., iNOS and COX-2) that
are present in inflammatory processes. NF-κB is associated
with the Nrf-2 regulation that regulates the expression of
anti-inflammatory enzymes [55, 56]. Considering such
mechanisms and their ability to inhibit ROS, the

O OH

HO
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OH
OH

HO

HO
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Figure 5: Absorption and bioavailability of phenolics as an antiplatelet agent through the liver distribution system.
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cardioprotective effects of such molecules are due to its
ability to improve endothelial dysfunction in CHD [37],
since it also increases the bioactivity of endothelial NO.
Moreover, evidence has stated that flavonoids reverse
endothelial dysfunction in addition to lowering blood
pressure [36].

To name a few mechanisms, there is increasing in vitro
evidence that shows that polyphenols reduce platelet NADPH
oxidase activation [83, 84], ROS formation, thromboxane for-
mation, AA pathway [84, 85], and platelet stimulation through
PI3K/AKT [91]. Nonetheless, there is still little in vivo evi-
dence showing that polyphenols can inhibit platelet aggrega-
tion, increase NO production [105], inhibit ADP-induced
platelet activity [106], and reduce AA-induced platelet activa-
tion [110]. So, there is no doubt that the in vitro data cannot be
translated into the in vivo condition, because the molecules
undergo biotransformation reactions that alter their bioavail-
ability. As a consequence, this would lead to discrete and con-
tradictory biological effects.

There is increasing evidence showing that the effective-
ness of selective phenolic compounds is supported by their
important role in whole foods, where when used in combina-
tion, such as through the intake of whole plant foods with a
mixture of polyphenols, better antiplatelet effects are reached
when compared to isolated compounds. For these reasons,
further studies are needed to confirm its potential.

10. Conclusions and Upcoming Perspectives

Phenolic compounds have revealed several positive effects in
CVD models in vitro and in vivo. However, for in vivo
models, the evidence is scarce. However, with the described
evidence, it can be affirmed that polyphenols are a key
element in CVD prevention. Regarding the effectiveness of
phenolic compounds, little has been studied about their inter-
actions withmedications, like anticoagulants and antiplatelets.
Such interactions, that include mechanism of inhibition of the
synthesis of thromboxane or COX activity, may increase the
risk of bleeding in such patients, despite that there is a wide
range of herbal products that interact with antithrombotic
drugs in a synergistic manner.

Taken together, data presented here clearly underline the
need for more in vivo studies and clinical trials to evaluate the
phenolic compounds’ potential and to guarantee their effi-
cacy. Also, more investigations are desired on isolated or
mixed phenolic compounds and their relationship with
CVDs in order to elucidate their potential and success for
both prevention and treatment. Finally, and not least impor-
tant, as it is poorly described, is the design of more clinical
trials, because most of the currently performed clinical stud-
ies with these herbal products lack identification and quanti-
fication of phenolic compounds.
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