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Studies performed in the field of oxidative medicine and cellular longevity frequently focus on the association between biomarkers
of cellular and molecular mechanisms of oxidative stress as well as of aging, immune function, and vascular biology with specific
time to event data, such as mortality and organ failure. Indeed, time-to-event analysis is one of the most important methodologies
used in clinical and epidemiological research to address etiological and prognostic hypotheses. Survival data require adequate
methods of analyses. Among these, the Kaplan-Meier analysis is the most used one in both observational and interventional
studies. In this paper, we describe the mathematical background of this technique and the concept of censoring (right
censoring, interval censoring, and left censoring) and report some examples demonstrating how to construct a Kaplan-Meier
survival curve and how to apply this method to provide an answer to specific research questions.

1. Introduction

The clinical research in the areas of oxidative stress and bio-
logical consequences of aging and alterations of immune
function and metabolism commonly demands the applica-
tion of specific statistical techniques aimed at investigating
the strength of the relationship between certain risk factors
(for example, oxidized low density lipoprotein) and adverse
outcomes (for example, death and cardiovascular events).
The analysis of time-to-event data is of paramount impor-
tance in clinical and epidemiological research [1]. In the
setting of prospective or retrospective cohort studies [2], sur-
vival data refer to the time spanning from a well-defined
date (which coincides with the date of enrolment or starting
the observation of an individual) to the occurrence of a given

clinical endpoint (for example, death, cardiovascular events,
and relapse of a given disease).

Thus, survival times do not always correspond to the
actual survival of a given individual with mortality being
the event of interest. Survival analysis is aimed at assessing
the trend of a given event occurrence as a function of time
(i.e., a single survival curve plotted against time in days,
months, or years) and comparing survival curves between
two (for example, between treated and untreated patients
or exposed/unexposed individuals to a given risk factor) or
more than two groups of individuals. Survival data require
peculiar methods of analysis because not all patients enrolled
in a given study experience the event of interest. For exam-
ple, in a cohort study with a cardiovascular death as the
primary endpoint [3], someone may drop out due to change
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residence, death due to noncardiovascular causes (for exam-
ple, cancer), or he might complete the scheduled time period
without experiencing the event of interest. These incomplete
observations are called “censored observations” which can
occur during or at the end of the study. Three types of cen-
soring exist. The first is right censoring which is the most
common one and occurs when a patient is followed up over
a time period without having the event of interest. Thus, the
survival time is incomplete at the right side of the follow-up
period. For this patient, we know that the event of interest
does not occur till the censoring date but we do not know
whether the event will occur thereafter or not. The second
is interval censoring which describes the situation when
the event of interest happens within an interval between
two dates but we do not know exactly the date. The third
is left censoring that happens when an individual belonging
to a given cohort is known to have the event before a specific
date, but the time period between the occurrence of the
event and the specific date remains unknown.

In 1958, Edward L. Kaplan and Paul Meier wrote an
article describing how to deal with censored observations,
thus posing the basis of the Kaplan-Meier (K-M) survival
analysis. The Kaplan-Meier survival method allows to ana-
lyse the time to the first event, and one of the peculiarities
of this technique is that the time intervals are dictated by
the occurrence of the event of interest. For example, a hypo-
thetical cohort study with the occurrence of myocardial
infarction over 1-year time period is the primary endpoint;
if a patient experiences two myocardial infarctions (the first
after 6 months and the second one after 10 months from the
enrolment), the Kaplan-Meier analysis will only take into
consideration the first occurrence of the event (i.e., the myo-
cardial infarction at 6 months).

Three fundamental assumptions should be carefully
considered when constructing a K-M survival curve. The first
assumption is that censoring should be nonuninformative,
that is, unrelated to the study outcome. This means that cen-
sored observations should have the same probability of the
event (after censoring) as those remaining under observation.
This implies that baseline prognostic characteristics of patients
who are censored should be similar to those of patients who
remain under observation. The second assumption is that
the survival probabilities should be the same for individuals
recruited early and late in a given study. The third assumption
is that day, month, and year of the occurrence of a specific
event of interest must be available to provide accurate survival
estimates. Another characteristic of the Kaplan-Meier method
is that it does not allow to adjust for confounding; a problem
of particular relevance in observational studies is aimed at
assessing causal relationships [4].

In this paper, we provide a series of examples useful to
understand and interpret a K-M survival curve.

2. Mathematical Background of the Kaplan-
Meier Analysis

The minimal set of information to construct a Kaplan-
Meier survival curve includes the time to the event of interest
(for example, days, months, and years) and the binary variable

indicating patients’ status (presence/absence of the condition)
at that point in time. The time between the enrolment and the
terminal event/end of observation is represented by a random
variable T (T > 0) defined as “survival time.” By considering n
patients and t1, t2,⋯:, t j ðj ≤ nÞ the observed times to event,
the survival time, at time i, is Ti = t j − ti. Basically, the
Kaplan-Meier method estimates the conditional probability
of survival calculated at specific time points dictated by
the occurrence of the event. The conditional probability
(or cumulative probability or cumulative survival) is the

probability dðSðtÞÞ that a patient survives x days after enter-
ing a study conditional to the fact that the same patient
survives the days before. For example, in a hypothetical set-
ting in which a patient admitted to an intensive care unit
survives for three days, the cumulative survival (calculated
by the product rule of conditional probabilities) is the prod-
uct of survival probabilities at day 1 (p1), at day 2 (p2), and
at day 3 (p3), that is:

dS tð Þ = p1 ∗ p2 ∗ p3: ð1Þ

If we indicate with dj, the number of subjects present
the event of interest (for example, death) at time t j and with
nj, the number of individuals at risk at time t j. The individ-

ual probability ̂ðqÞ to die at t j conditional to be alive at t j−1
is:

q̂ =
dj

nj
: ð2Þ

Therefore, the probability of surviving at time t j is as
follows:

bpj = 1 − bqj = nj−dj

nj
: ð3Þ

By multiplying the estimates of the conditional probabil-
ities of surviving, we obtain the estimate of the cumulative
probability of living beyond the instant t j:

dS tð Þ =
Y
j/t j≤t

cPj : ð4Þ

This latter formula represents the Kaplan-Meier estimator
with asymptotic variance estimated by Greenwood formula
by:

Var dS tð Þ
h i

= S tð Þ2〠
j

t j≤t

d j

nj nj − dj

� � , ð5Þ

that is inversely proportional to the number of subjects at
risk.

The Kaplan-Meier estimator of survival probability is
represented by a curve, which starts from 1 and decreases
over time. The magnitude of the steps depends on the
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number of events and the number of subjects at risk. To
compare the survival distributions of two or more groups
of subjects who undergo to different treatments or exposure,
the log-rank test (a nonparametric, rank-based test) is used.
We consider a series of patients randomized 1 : 1 to an
experimental treatment and to a control treatment. The
study end-point is death. Under the null hypothesis (H0)
that the two treatments have the same efficacy, the number
of patients who died is expected to be approximately the
same in both groups. Vice-versa, the alternative hypothesis
(H1) is that the death rate differs between the two study
arms, implying that a difference between expected and
observed deaths exists. Thus, the log rank test compares
the observed numbers of deaths in each group to the death
rate expected if the null hypothesis was true. The log rank
statistic is approximately distributed as a chi-square test
statistic with degree of freedom corresponding to the num-
ber of comparison groups-1:

χ2 =〠
∑Ojt−∑Ejt

� �2
∑Ejt

, ð6Þ

where ΣOjt is the sum of the observed number of events
in the jth group over time (j = 1, 2) and ΣEjt is the sum of the
expected number of events in the jth group over time.

To calculate the expected numbers of events, we estimate
the proportion of events occurring at each time (Ot/Nt)
using data from both groups combined under the assump-
tion of no difference in survival (i.e., assuming the null
hypothesis is true). We multiply these estimates by the num-
ber of participants at risk at that time in each of the compar-
ison groups (N1t and N2t for groups 1 and 2, respectively).
For example, we consider 10 patients at risk in group 1
and 10 patients in group 2 and 1 the total number of
expected events at time t (for example, 14 months) is E1t =
N1t ∗ ðOt/NtÞ = 10 ∗ ð1/20Þ = 0:500 and E2t =N2t ∗ ðOt/NtÞ
= 10 ∗ ð1/20Þ = 0:500, respectively. By using this informa-
tion and the formula reported above, a χ2 can be calculated,
and a p value for this test can be derived by an opposite table
according to the value of χ2 and the degrees of freedom.

2.1. Example 1. In a hypothetical study, ten elderly patients
with encephalitis (an inflammatory condition of the brain)
admitted to intensive care unit (ICU) were followed up over
a 365-day period. The primary endpoint was cardiovascular
death. During the follow-up period, 5 patients died. The aim
of this study is to build up the survival curve of the incidence
of cardiovascular death in the study population. The K-M
survival curve plots the cumulative probability of survival
in a given period as a function of time. Before constructing
the K-M curve, a fundamental prerequisite is to know the
exact time of the event occurrence, the number of subjects
at risk, the number of events in the period, and the censored
observations (e.g., individuals who are lost to the follow-up
or patients who leave the study for events other than that
of interest). Patients who are censored remain in the analysis
until information about their status are available. For each
time interval, the survival probability in each period is calcu-

lated as the number of subjects who survive divided by the
number of patients at risk at the beginning of the period.
Therefore, according to the product rule of probabilities,
the cumulative survival after each period (except the first
one) is calculated by multiplying the probabilities of survival
of the previous periods. We consider in detail data of our
hypothetical example. Patients 1, 8, and 9 were censored:
the first two were lost to the follow-up and the last one died
from another cause (cancer). Patients 2 and 4 were alive till
the end of the observation. Five patient died of CV causes at
different time: patient 3 died at 120 day, 5 at 250 days, 6 at
230 days, 7 at 80 days, and 10 at 180 days. In the graph,
the double vertical lines indicate the censored observations,
whereas the grey circles indicate patients with the event of
interest (Figure 1(a)). To build up the K-M curve, we divide
time into intervals corresponding with the occurrence of
each event. Table 1 reports the information we need to con-
struct the K-M curve.

In the 1st interval, there is only one patient who died of
CV causes; in the 2nd one, there are 1 patient with the event
of interest and 1 patient censored, and so on. To calculate
the survival probability, we consider the numerator as the
difference between the number of patients at risk and the
number of patients who died and at the denominator the
number of patients at risk at the beginning of the period.
For the first two periods, we have:

Survival probability in the 1st period =
10 − 1ð Þ
10

� �
= 0:900 90%ð Þ,

Survival probability in the 2nd period =
9 − 1ð Þ
9

� �
= 0:890 89%ð Þ:

ð7Þ

Finally, we calculate the cumulative survival across the
whole study period as the product of survival probabilities
of each period. In the first interval, both survival probability
and cumulative probability coincide. At the end of the
second period, the cumulative survival was calculated as
0:900 ∗ 0:890 = 0:801 (80.1%). At the end of the third
period, the cumulative survival was calculated as 0:900 ∗
0:890 ∗ 0:857 = 0:687 (68.7%). To build up the K-M survival
graph, we report in the abscissa axis the follow-up time (spec-
ifying if the units of measurement are days, month, or years)
and in the ordinate axis the cumulative survival (i.e., probabil-
ities with values ranging from 0 to 1) (Figure 1(b)). The
dimension of horizontal lines (i.e., those parallel to the abscissa
axis, Figure 1(b)) corresponds to the duration of the interval
between consecutive events, whereas the vertical distances rep-
resent the change in the cumulative survival. By using a graph-
ical approach, we can calculate the median survival time, i.e.,
the time which corresponds to a cumulative survival of 50%
(Figure 1(b)). In our case, the median survival time is 250 days.
We can construct a single survival curve, two, or more than
two survival curves. For example, we can compare the survival
of two groups of patients (exposed/not exposed to a given risk
factor such as with/without diabetes, males/females, and
smokers/nonsmokers,). The test used to compare two or more
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curves is the log rank test. A detailed description of this test is
reported elsewhere [5].

2.2. Example 2. To illustrate the application of the K-M
method, we consider a prospective cohort study by Li et al.
[6]. In this paper, the authors investigated the relationship
between oxidative stress biomarkers and visual field progres-
sion in patients with primary angle closure glaucoma (PACG).
Ninety-four patients with PACG were followed up for at least
two years, with periodic visits every 6 months. In these
patients, the levels of total antioxidant status (TAS—an oxida-
tive stress biomarker) have been measured. Forty-three
patients (45.7%) had progression of glaucoma as assessed by
the visual field. Here, we focus on the survival analysis of the
relationship between TAS and visual field progression. The
authors categorized patients into two groups according to
the median value of TAS at baseline (below/above 0.95). As
shown in Figure 2, patients with low TAS (<0.95) had a signif-
icantly higher percentage of PACG progression (log-rank test
p < 0:0001) than those whit TAS > 95. Of note, the two curves
diverge from 6 months onwards. In patients with TAS < 0:95,
the median survival time is 12 months. The cumulative
survival does not cross 50% in patients withTAS > 0:95; there-
fore, the median survival time is not calculable. Below the
graph, the number of patients at risk at relevant points in time
are also reported. This information must be reported because
it represents the fundamental information to interpret a
survival curve. The results of this study generate the hypothe-
sis that TAS is a useful biomarker to stratify the risk of pro-
gression in patients with PACG.

2.3. Example 3. We consider another example in which the
authors studied the overall pattern of survival [7]. In the setting
of a retrospective study, the authors considered 103 patients
with Alzheimer’s disease (AD), i.e., the fraction of patients
who survive for a certain period after onset of dementia. Mean
disease duration of the 103 AD cases was 7.1 years. Information
on familial Alzheimer’s disease (FAD), on sporadic Alzhei-
mer’s disease (SAD), and on presenilin (PSEN) genes were also
collected to investigate the effect of FAD, SAD, and PSEN on

Endpoint: cardiovascular death
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Figure 1: Hypothetical example useful to understand how to build up a Kaplan-Meier curve (see example 1).

Table 1: Description of the procedure used to calculate the cumulative survival and construct the curve in Figure 1(b).

Interval Days Patients at risk CV deaths (0=no; 1=yes) Censored Survival probability Cumulative survival

1 0-80 10 1 0 0.900 0.900

2 81-120 9 1 1 0.890 0.801

3 121-180 7 1 1 0.857 0.687

4 180-230 5 1 1 0.800 0.549

5 231-250 3 1 0 0.667 0.366

6 251-365 2 0 2 1.000 0.366
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Figure 2: Kaplan-Meier survival curves on the effects of total
antioxidant status (TAS) on visual field progression (see example 2).
Redrawn from Ref. 6.
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death rate in these patients by the analysis of the Kaplan-Meir
survival curves. Twenty-five percent of cases died within four
years, 50%within 6.9 years, and 75%within 10 years after onset
of Alzheimer’s disease. In the whole group of patients (n = 103
), the cumulative survival was about 60% at 5 years, 20% at 10
years, and about 10% at 15 years (Figure 3(a)). First of all, the
authors compared the survival curves of FAD and SAD
patients by the Gehan-Wilcoxon (G-W) two-sample test [8],
and a significant difference in mortality rate between the two
groups was found (G −W= 2:51, p < 0:05). When considering
more than two groups, the mortality rate among groups was
compared using the log rank test. The survival graphs
(Figure 3(b)) showed that patients with PSEN genes survived
longer than those with FAD and SAD, and the difference
among the three survival curves was highly significant
(log rank test = 7:13, p < 0:01). The effect of PSEN genes on
mortality is of interest because of the role of presenilin in mito-
chondrial oxidative stress and neurodegeneration [9].

As described above, in addition to the log rank test, the
Gehan-Breslow-Wilcoxon can be used to test the statistical
significance between the Kaplan-Meir curves. The Gehan-
Breslow-Wilcoxon method gives more weight to deaths at
early time points. However, it is important noting that the
results of this test can be misleading when a large fraction
of patients are censored early on. In contrast, the log-rank
test gives equal weight to all time points [5].

2.4. Example 4.Multiple myeloma (MM) is a type of plasma cell
neoplasm. In this condition, the overproduction of intracellular
reactive oxygen species (ROS) accompanies malignant transfor-
mation to oncogene activation and/or enhanced metabolism in
tumor cells. As a consequence, these cells possess higher levels
of ROS and lower levels of antioxidant molecules compared to
their normal counterparts. Unbalanced production of ROS
leads to oxidative stress which could exert a toxic effect for the
cell [10]. There is scientific evidence that antioxidant defense
confers resistance to high-dose melphalan in MM cells, sup-
porting that redox status in multiple myeloma cells could be
determinant for patients’ response to melphalan [11].

Here, we consider a paper [12] in which the authors com-
pared patients’ data (n = 479) from two randomized phase III
trials to assess the impact of melphalanprednisone plus
bortezomib (VMP; N = 257) vs. lenalidomide and low-dose
dexamethasone (Rd; N = 222) on progression-free survival
(PFS) in elderly newly diagnosed multiple myeloma patients.
Three hundred and six patients had disease progression or
died during the follow-up period (median 32 months). By
looking at the Kaplan-Meier survival curve, it is possible to
note that while VMP significantly reduced the disease progres-
sion rate between enrolment and 12 months of follow-up, no
difference between the two schedules was found between 12
and 32 months. After 32 months, Rd-treated patients had a
lower incidence of disease progression (Figure 4). The authors
conclude that time plays a crucial role in interpreting the effect
of MPV with respect to Rd on the PFS in elderly newly diag-
nosed multiple myeloma patients.
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Figure 3: Kaplan-Meier survival curves of all 103 Alzheimer’s disease (AD) patients and comparison between curves (see example 3).
Redrawn from Ref. 7.

C
um

ul
at

iv
e 

pr
og

re
ss

io
n 

fr
ee

 su
rv

iv
al

Time (months)

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50 60

Rd
VMP

Number at risk
VMP 257 208 149 75 22 4 0
Rd 222 145 108 66 35 16 1

Figure 4: Kaplan-Meier survival curves for progression-free
survival in VMP- and Rd-treated patients (see example 4).
Redrawn from Ref. 12.

5Oxidative Medicine and Cellular Longevity



2.5. Example 5. Suvakov et al. [13] investigated the polymor-
phisms of the gene GST (glutathione S-transferase) as predic-
tors of survival in a series of patients with end-stage renal
diseases (ESRD). On the basis of the consolidated notion that
glutathione S-transferases (GST) is a well-established antioxi-
dant, the authors analysed a surrogate of this biomarker, the
polymorphisms of the GST gene, in order to assess the
prognostic role of this SNP for survival in patients with ESRD.
They also measured other oxidative biomarkers such as
malondialdehyde (MDA). These oxidative biomarkers were
measured in 199 haemodialysis patients followed up for 8
years. For the purpose of this paper, we focus on the relation-
ship between overall survival and the two oxidative bio-
markers mentioned above (Figure 5). Overall, 120 patients
died, and of these 62 of cardiovascular causes (51.7%). GSTM1
genotype was categorized in null and active whereas MDA
levels as below/above the corresponding median level
(2.33μmol/L). A Kaplan-Meier survival analysis demonstrated
that patients with the GSTM1-null genotype had a shorter
overall survival (log-rank 5.748, p = 0:017; Figure 5(a)) as com-
pared to remaining patients. Accordingly, patients with higher
MDA concentrations had a trend towards poorer overall
survival in comparison to those with MDA relatively lower
(Breslow: 3.766, p = 0:052; Figure 5(b)). The authors conclude
that these two biomarkers can be useful for risk stratification
in in ESRD patients.

3. Conclusions

Survival analysis belongs to the family of statistical methods
that analyse the distribution of the time of occurrence of a
given condition in a certain period of time. Thus, it investi-
gates the incidence of a given event. The term “survival”
does not only refer to mortality, i.e., death, but also to any
event of interest (e.g., decrease in blood sugar, hospitaliza-
tions, and cancer recurrence). Survival studies are carried
out by using cohorts, i.e., patients followed-up over time to
collect relevant clinical events when they occur and to link
such occurrences to a given exposure. To perform a survival
analysis, it is necessary to calculate the “survival time,” deter-

mined by the difference between the date in which the event
occurs or not and the baseline date. Thus, it is essential to
know if subjects experience the event of interest or if they
are censored. The knowledge of this information is funda-
mental in order to allow the statistical software to calculate
the cumulative probability of the event. Therefore, the
Kaplan-Meier method is essentially a way to construct the
survival curves as a function of time, thus allowing an imme-
diate perception of the clinical phenomenon being investi-
gated. A Kaplan-Meir curve reports in the ordinate axis the
cumulative survival and in the abscissa axis the time period.
When constructing a Kaplan-Meir curve, the time intervals
are not established in advance but are dictated by the occur-
rence of each event that determines the duration of the same
intervals. An important advantage of the Kaplan-Meier
approach is that the method takes into account censoring
which occurs when a patient is lost to follow-up for any
reason (withdrawal from the study, change of residence,
dead for causes other than the event of interest, etc.). If we
have more survival curves (stratified by any factor), it is
possible to compare them by various methods such as the
log-rank test and the Gehan-Wilcoxon (G-W) two-sample
test. The Kaplan-Meir analysis does not allow to adjust for
confounders. For this reason, while it is well suited to be
used in randomized clinical trials [1], it should be consid-
ered only as a first level analysis in observational studies
aimed at testing causal-effect relationships.

3.1. Suggested Software. There are several statistical software
that allow to perform time to event analysis by the Kaplan-
Meir method. The best known are:

SPSS 23.0 (https://www.ibm.com/support/knowledgecenter/
SSLVMB_23.0.0/spss/advanced/idh_kmei.html)

Stata 16 (https://www.stata.com/support/faqs/graphics/
gph/graphdocs/kaplan-meier-survival-function/index.html)

SAS (https://support.sas.com/documentation/onlinedoc/
stat/142/kaplan.pdf)

MEDCALC (https://www.medcalc.org/manual/kaplan-
meier.php)
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Figure 5: Kaplan-Meier survival curves for overall survival patients with ESRD (see example 5). Redrawn from Ref. 13.
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