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Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both
experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry,
phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and
molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a
particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory,
antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging
understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research
regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief
overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and
provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial
bioenergetics, and glycolysis in human HaCaT keratinocytes.
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1. Introduction

Eugenol (4-allyl-2-methoxyphenol) is the major volatile, bio-
logically active component of clove oil, classically obtained
from the dried flower buds of Eugenia caryophyllata Thunb.
(Myrtaceae) [1]. This phytochemical has emerged from
ancient times as a versatile molecule with a plethora of appli-
cations in drug, food and cosmetic industries, and agriculture
[2]. In medicine, eugenol is best known for its original use in
dentistry as cavity filling cement with local antiseptic and
analgesic effects [3, 4]. However, the compound has been sys-
tematically investigated for numerous other pharmacological
activities, such as anti-infective (antimicrobial, antihelmintic,
antiviral, antifungal, antiparasitic, and insecticidal) [5, 6],
anti-inflammatory, antioxidant [7, 8], and anticarcinogenic,
when administered alone or in synergistic association with
conventional therapies [9–11].

Modulation of multiple intracellular signaling pathways
is the hallmark of most phytochemicals, and a tremendous
amount of research is currently aimed at providing their
thorough characterization. This is particularly true for their
counteracting effects against oxidative stress and low-grade
chronic inflammation, the major interconnected pathome-
chanisms of noncommunicable diseases (cardiometabolic,
renal, liver pathologies, and cancer), and ageing [12]. Euge-
nol has elicited dose-dependent radical scavenging and
anti-inflammatory activities in various in vitro experiments
and animal models of chronic diseases [13], as well as anti-
proliferative and cytotoxic effects on several cancer cell lines
and tumors [14, 15].

Phytochemicals present the advantages of low toxicity
and high tolerability but there is an unmet need to both pre-
vent their early metabolization and direct them towards the
subcellular specific domains of action. Nowadays, an increas-
ing amount of research is aimed at enhancing bioavailability
and providing targeted delivery of natural compounds
(recently reviewed in refs. [16, 17]). In the past decade, sev-
eral natural product-based nanoformulations using polyure-
thane structures have been prepared, yielding promising
results [18–23].

After oral administration in humans, eugenol is rapidly
absorbed, metabolized, and almost completely excreted into
urine as sulphate or glucuronide conjugates [24]. To over-
come these disadvantages, a previous study reported the
encapsulation of eugenol in polyurethane nanostructures
with good thermal stability and encapsulation efficiency that
can be further used for in vitro and in vivo testing [25].

Despite the fact that prolongation of the circulating life-
time and/or cellular entry may be facilitated by nanocarriers,
the effects of these particles on various organelles require a
thorough characterization. This is particularly true for mito-
chondria, organelles that are currently viewed as integrative
hubs for energetics, redox control, and in/out signaling of
almost all cells; indeed, it is mitochondrial dysfunction that
triggers oxidative stress, potentiates inflammation in the set-
ting of chronic pathologies [26], and influences all steps of
oncogenesis, including cancer progression [27, 28].

The present paper is double-aimed (i) to provide a brief
overview of eugenol pleiotropic cellular effects with a partic-

ular emphasis on its controversial role in dental medicine
and (ii) to present preliminary data regarding the effects of
eugenol, alone, and in polyurethane nanoformulations, on
mitochondrial bioenergetics, and glycolysis in HaCaT
human keratinocytes.

2. Overview of the Eugenol Use in
Dental Medicine

Eugenol belongs to the phenol propanoid class (C10H12O2)
and is, probably, the compound with the longest history of
use in dental medicine in association with other materials,
the most popular being a zinc oxide-eugenol (ZOE) paste.
ZOE is obtained by mixing the zinc oxide powder with the
liquid eugenol resulting in a zinc eugenolate chelate matrix.
Owing to advantages such as low cost, good sealing, and easy
handling, ZOE formulations have been widely used since the
beginning of the last century as temporary restorative or
impression materials, cements, bases, and liners and have also
been incorporated in various endodontic sealers [29–31].

After filling a dentinal cavity with ZOE temporary
cements, low amounts of eugenol slowly diffuse through the
dentin tubules and exert anti-inflammatory, immune-
modulatory [32], antinociceptive effects on the dental pulp,
and sensitive teeth [29, 33, 34] together with antibacterial
and anticariogenic activities [35, 36]. The anti-inflammatory
effect of eugenol has been widely reported by several studies,
being ascribed to the following mechanisms: (i) inhibition of
the synthesis of inflammatory mediators by interference with
the arachidonic acid metabolism [37], particularly via the
cyclooxygenase pathway (decreased prostaglandins and
thromboxanes) and less via the lipooxygenase pathway
(decreased leukotrienes) [38–40], (ii) inhibition of neutrophil
chemotaxis and decreased superoxide generation [41], and
(iii) reduction of pain via inhibition of the periapical/intraden-
tal nerve activity [42, 43]. More recently, the beneficial role of
eugenol-based paste on preventing alveolar osteitis and pro-
moting superior wound healing was reported in a study that
included 270 patients having the third molars extracted [44].

At variance to their protective effects, ZOE-based mate-
rials were also reported to elicit local cytotoxicity, in particu-
lar pulpal chronic inflammation, degeneration, and even
necrosis either when placed in direct contact with vital tissues
or via diffusion across dentinal tubules. Among the presumed
mechanisms, an increase in cell membrane permeability/in-
jury (due to their lipophilicity), alteration of ionic homeosta-
sis, oxidation by peroxidases (with subsequent formation of
cytotoxic metabolites), and generation of reactive oxygen
species (ROS) was mostly reported [42, 45].

There is a huge amount of research demonstrating the
cytotoxicity of various ZOE cements on human primary/per-
manent cell lines and animal cell lines/models. Several con-
clusions can be drawn from these studies. First, the results
of the cytotoxicity studies in animal-based cell models are
different from the ones obtained in human cells, even for
the same tested material. Thus, the Chinese hamster lung
fibroblasts [46] or mouse fibroblasts [47, 48] are more sensi-
tive to eugenol’s toxic effects as compared to primary or
immortalized human cell lines; accordingly, human cells
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should be used for the clinical relevance of these studies. Sec-
ond, all ZOE-based root canal sealers dissolve when exposed
to an aqueous environment for extended periods and may
cause mild to severe cytotoxic reactions [49] with the highest
toxic effect being recorded for the freshly mixed material
[50]; thus, the time-dependent evolution of cytotoxicity
should be equally addressed. Third, all sealing materials will
trigger periapical inflammation when present in the apical
tissues; therefore, confining the filling to the root canal (i.e.,
avoiding overfilling) is critical for preventing/reducing
chronic inflammation [51]. In this regard, Hong et al. delib-
erately overfilled root canals of monkey incisors with two
ZOE-based sealers and reported mild to severe irritation of
the periapical tissues that persisted over the 6-month period
of experimental follow-up [52].

Last but not least, an important yet rather less addressed
issue in the literature, is the dose titration. Jeng et al. investi-
gated the dose-dependency of cytotoxicity and reported that
eugenol was toxic to primary oral mucosal fibroblasts in high
concentrations (≥3mmol/L), and cell death was associated
with intracellular depletion of glutathione and ATP, respec-
tively. At variance, a protective effect was described at lower
concentrations (<1mmol/L) presumably via the inhibition
of xanthine oxidase activity and lipid peroxidation [53].
Comparable results with respect to total cell death were
obtained when human diploid fibroblasts were incubated
with high doses of eugenol (4mM) [54]. Cytotoxicity of euge-
nol against normal human pulp fibroblasts was also demon-
strated in terms of reduction of cell growth/survival and
impairment of reparative processes, such as synthesis colla-
gen and expression bone sialoprotein [55].

The group of Sagakami reported that eugenol elicited
indiscriminate toxicity towards both normal human oral cells
(cultured pulp cells, periodontal ligament fibroblasts, and
gingival fibroblasts) and oral squamous cell carcinoma cell
lines; specifically, eugenol induced rapid (after 4 h of incuba-
tion) nonapoptotic cell death with very low tumor specificity
(IC 50 for normal cells was very close to the one for tumor
cells) as compared to classic chemoterapeutic drugs [56].
These authors also reported a hormetic effect in cultured
periodontal ligament fibroblasts (but interestingly, not in
gingival fibroblasts) with an anti-inflammatory activity at
lower doses that was lost when eugenol was applied in a
higher dose [57]. Of note, a similar hormetic response (anti-
oxidant at low doses, no effect, or prooxidant at high doses)
was previously reported in the literature for another natural
polyphenol, resveratrol [58].

Cytotoxic effects for ZOE and eugenol were reported not
only for primary human oral cells but also towards immortal-
ized human cells (dental pulp stem cells and oral keratino-
cytes), albeit in the latter case, zinc (and not eugenol) was
considered to be responsible for most of the cytotoxicity
[32, 56, 59]. Moreover, despite early ZOE toxicity, it was
eugenol that downregulated the expression of the mRNA
genes responsible for the synthesis of proinflammatory cyto-
kines (IL-1, IL-6, and IL-8) in inflamed human dental pulp
stem cells (but not in mouse bone marrow monocytes) [32].

A word of caution is in order in pediatric dentistry
regarding eugenol genotoxicity. Escobar-Garcia et al.

reported DNA damage in human pulp fibroblasts from pri-
mary teeth, when eugenol was applied in the lowest concen-
trations (0.06–5.1μM), an effect that, paradoxically,
disappeared at higher concentrations (320 to 818μM) [60].
More recently, the same group reported that eugenol in low
concentration (13μM) elicited an anti-inflammatory effect
on cultured dental pulp fibroblasts exposed to lipopolysac-
charide (LPS) that consisted in the inhibition of the gene
expression of TNF-α (but not of IL-1β) and of the NF-κB
signaling pathway; unexpectedly, a proinflammatory effect
was found for eugenol in non-LPS-exposed fibroblasts (i.e.,
in the absence of the induced inflammation) [61]. In a recent
elegant study, Jeanneau et al. confirmed the anti-
inflammatory properties of eugenol when applied alone on
LPS-stimulated human periodontal fibroblasts assessed by
its ability to inhibit the secretion of proinflammatory cyto-
kines, IL-6 and TNF-α; however, the effects were not recapit-
ulated when a ZOE cement was used. Moreover, neither
eugenol alone nor the cement-based eugenol could decrease
monocyte adhesion and migration as compared to a
hydrocortisone-based cement. The authors concluded that
the hydrocortisone (but not eugenol)-containing root sealers
are able to modulate the initial steps of inflammation [62].

In isolated cases, eugenol was demonstrated to act as a
contact allergen capable to trigger allergic responses, most
frequently, by delayed hypersensitivity reactions (contact
stomatitis), and rarely by type I hypersensitivity reactions
(contact urticaria or even anaphylactic shock) [63–66].

Other disadvantages of eugenol/ZOE were published,
such as inhibition of the polymerization of methacrylate
monomers and resins, low mechanical strength, and limited
durability (degradation occurs through hydrolysis) that
might cause secondary fractures and reduction of the bond
strength of posts luted to root canals [59, 67–70].

However, there is no general consensus in the literature
regarding the “ugly” side of eugenol. Accordingly, in the past
decade, several groups reported that ZOE is a suitable base
material for composite resin restoration that did not affect
(or even positively impacted) the composite polymerization
measured by their microhardness [29, 71] and the bond
strength [72]. Moreover, recent systematic reviews were not
able to show evidence for the superiority of one sealing mate-
rial over another with respect to biocompatibility and fracture
resistance of endodontically treated teeth; also, only moderate
evidence for the lack of a reinforcing effect for ZOE-based
sealers was reported [73, 74]. The beneficial vs. deleterious
effects of eugenol and ZOE are summarized in Table 1.

At variance from the conflicting results regarding the
indications and contraindications of eugenol in dental medi-
cine, there is a relative consensus in the literature on its ben-
eficial effects in the setting of inflammation and cancer in
both cell lines and animal models, as briefly described in
the following subchapters.

3. Protective Cellular Effects of Eugenol: A
Bird’s Eye View

The link between inflammation and cancer was firstly pro-
posed by the visionary German pathologist and anthropologist
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Table 1: The “good” vs. the “bad” side of eugenol and ZOE-based materials in dentistry.

Type of material
Type of
study

Beneficial effects Deleterious effects Ref.

Eugenol In vivo
(i) Anti-inflammatory properties
(ii) Antinociceptive activity

— [33]

Eugenol In vitro
(i) Antimicrobial activity against the
periodontal pathogens

— [35]

Eugenol In vitro

(i) Antibacterial activity against oral
pathogens
(ii) Cario-protective action
(iii) Antifungal activity
(iv) Cytotoxic action against several
cancer cells
(v) Antimutagenic action

— [36]

Eugenol In vitro —

(i) Suppresses polymerization
(ii) Reduces the mechanical properties
of composite resins but to a distance of
less than 100 nm

[29]

Eugenol In vivo
(i) Promoted wound healing
(ii) Anti-inflammatory action
(iii) Analgesic action

— [44]

Eugenol In vitro (i) No DNA strand break activity
(i) Cytotoxic effects to oral mucosal fibroblasts
(ii) Decrease of cellular ATP level
(iii) Inhibition of lipid peroxidation

[53]

Eugenol In vitro
(i) Concentration-dependent effect on
cellular growth

(i) Decreased cell survival
(ii) Decreased collagen synthesis

[55]

Eugenol In vitro (i) Apoptosis of oral SCC cells line (i) Low tumor-specificity [56]

Eugenol In vitro
(i) Toxic effects on dental pulp fibroblasts (even at
very low concentrations)

[60]

Eugenol In vivo
(i) Hypersensitivity response of oral mucosa
(ii) Cytotoxic effects

[63]

Eugenol In vitro
(i) Retardation of the resin dental materials
polymerization

[67]

ZOE In vitro
(i) Anti-inflammatory effect
(ii) Immunomodulatory effects

(i) Decrease in cell viability
(ii) Cytotoxic effect in high concentrations

[32]

ZOE In vivo
(i) Anaesthetic action
(ii) Inhibition of intradental nerve activity

— [43]

ZOE In vitro
(i) Good mechanical properties as a base
under composite materials

— [71]

ZOE
In vivo
In vitro

(i) Anti-inflammatory effects
(ii) Inhibition of synthesis of
cyclooxygenase derivatives

— [39]

ZOE In vitro —
(i) Increased cytotoxicity and apoptosis of human
periodontal ligament fibroblasts

[46]

ZOE In vitro — (i) High cytotoxicity for fibroblasts cell lines [47]

ZOE In vitro —
(i) Cytotoxic activity
(ii) Inhibition of the metabolic activity

[48]

ZOE In vitro —
(i) High cytotoxicity on human periodontal
ligament cells and V79 cells

[49]

ZOE In vitro —
(i) Cytotoxic activity on human periodontal
ligament fibroblasts and L929 cells

[50]

ZOE In vitro —
(i) Negative effects on microtensile bond strength
of adhesives to dentin

[59]

ZOE (Endomethasone) In vitro — (i) Decrease in bond strength to the root dentin [68]

ZOE (Endomethasone) In vivo —
(i) Periapical inflammation with
granulomatous reaction around the
sealer particles

[51]
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Rudolf Virchow, and the importance of preventing and/or
reversing inflammation for the cancer control is nowadays
widely recognized [75]. Eugenol exerts protective anti-inflam-
matory, antioxidant, and anticarcinogenic effects, as shown by
several studies described below and summarized in Table 2.

3.1. Anti-Inflammatory and Antioxidant Activities of
Eugenol. Inflammation is the natural response of our body
against a variety of aggressors (physical or chemical agents,
pathogens, injured cells, immune complexes, etc.) that exerts
protective effects in the acute phase and becomes deleterious
in the chronic one.

Oxidative stress is classically defined as the overproduc-
tion of reactive oxygen species (ROS) and/or decreased anti-
oxidant defense [8] and, together with inflammation, are
responsible for extensive cellular damage in the vast majority
of chronic noncommunicable pathologies, such as cardiovas-
cular [76, 77], metabolic [78], renal [79], neurodegenerative
[80] diseases, cancer [81], and ageing [12].

Important, a bidirectional relationship between inflam-
mation and oxidative stress occurs in that inflammation that
arises as a defense reaction in response to ROS-mediated
local tissue injury may become a source of supplementary
oxyradicals. Moreover, both conditions share as a common
denominator the fact that in the long run they become the
major systemic pathomechanisms of the abovementioned
chronic diseases [82]. The major sources of ROS are mito-
chondria, the NADPH oxidases, xanthine oxidase, uncoupled
eNOS, and,more recently, monoamine oxidases (MAOs) [83].
The antioxidant enzymes are mainly represented by superox-
ide dismutases, catalase, glutathione peroxidases, thioredoxin
peroxidases, and heme oxygenase-1. Any impairment of the
fragile equilibrium of pro- vs. antioxidant systems is responsi-
ble for the occurrence of oxidative stress [84] that may further
trigger/potentiate the inflammatory reaction. The close link
between the redox status and inflammation has been system-
atically documented by reports on aggravated inflammatory
response when either the ROS-producing enzymes were over-
expressed or the antioxidant enzymes were knocked-down
(reviewed in ref. [77]).

Two excellent summative reviews on the anti-inflamma-
tory/antioxidant activity of phenylpropanoids and eugenol,
respectively, were recently published [7, 85]. While the for-
mer review mainly summarized the papers reporting a
decrease in the expression of various inflammatory media-
tors (TNF-α, NF-κB, COX-2, IL-1?, IL-4, IL-5, IL-6, iNOS,
and NO) in both in vitro and in vivomodels and also, of those
associated with an increase in the antioxidant enzymes
(superoxide dismutase, glutathione peroxidase, catalase, and
glutathione peroxidase) [7], the latter addressed the effects
of eugenol on the arachidonic acid- (AA-) derived mediators

of inflammation. Thus, these authors reported the inhibitory
effect of eugenol on prostaglandins and leukotrienes produc-
tion and reduction in edema formation in several animal
models of inflammation. Moreover, in human platelets, euge-
nol inhibited the AA and platelet-activating factor- (PAF-)
induced aggregation. It has been also shown that eugenol
and sodium eugenol acetate produced an inhibition in AA-
induced thromboxane B2 and PGE2 formation in a
concentration-dependent manner. A structurally similar
compound, methyl-eugenol was evaluated in cerebral ische-
mic models and reported to increase superoxide dismutase
and catalase activity, inhibit NO production, decrease the
proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and
increase the anti-inflammatory ones (IL-10 and TGF-β),
thus, indicating a potential role in the treatment of
ischemia-related inflammatory diseases [85].

Leukocyte recruitment to tissue is of paramount impor-
tance in the inflammatory process. In this regard, eugenol
was proven to mitigate leukocyte rolling, adhesion, and
migration to the inflammatory site [86]. These results are
supported by other studies performed on LPS-treated mice
in which eugenol reduced lung infiltration with neutrophils/-
macrophages [87] and mitigated the release of inflammatory
cytokines (TNF-α, IL-1β, and IL-6) [88] and the activation of
NF-κB [87]. Moreover, in a murine model of ovalbumin-
induced allergic asthma, eugenol inhibited eosinophil lung
tissue infiltration and reduced the levels of both ovalbumin-
specific IgE as well as IL-4 and IL-5, the key cytokines in
allergic pathologies, thereby suppressing the generation of a
Th2-type immune response [89].

Recently, oral administration of eugenol in rats fed a
high-fat diet (1 month) was reported to significantly decrease
both total serum cholesterol and LDL cholesterol. Moreover,
it mitigated inflammation and steatosis in liver sections,
decreased the activities of the hepatic enzymes alanine ami-
notransferase and alkaline phosphatase, and increased the
ones of the antioxidant enzymes superoxide dismutase and
catalase in hypercholesterolemic rats. These observations
further support the pleiotropic effects of the compound and
delineate new avenues for research in fatty liver disease ther-
apy [90]. Also, the anti-inflammatory and antioxidant effects
of eugenol in association with cinnamaldehyde on peripheral
blood mononuclear cells (PBMCs) harvested from patients
with rheumatoid arthritis have been reported [91].

In recent years, the inflammatory response has been also
related to the occurrence of mitochondrial dysfunction. In
particular, mitochondrial DNA but also cardiolipin and N-
formyl peptides are released as a result of cellular stress/dam-
age and have been reported to induce systemic inflammation
[26]. In the presence of severe inflammation, mitochondrial
dysfunction was described to be associated with cell death

Table 1: Continued.

Type of material
Type of
study

Beneficial effects Deleterious effects Ref.

ZOE+ hydrocortisone
(Endomethasone N)

In vitro
(i) Decreased cell migration and secretion
of IL-6 and TNF-α by human periodontal
ligament cells

— [62]
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Table 2: Overview of the anti-inflammatory, antioxidant, and anticarcinogenic effects of eugenol.

Eugenol
properties

Parameters/tumor type Biological effects Ref.

Anti-
inflammatory

Histological quantification of liver inflammatory
foci/microscopic field

Decrease of the liver inflammatory cell infiltration [90]

Anti-
inflammatory

Cytokine levels
Decrease of the TNF-α and IL-6 level in the culture

supernatant of RA-PBMCs
[91]

Anti-
inflammatory

Mouse skin expression of COX-2 cytokine levels
Decrease of skin COX-2 expression and serum TNF-α, IL-6,

and PGE2 level in TPA-treated mice
[95]

Anti-
inflammatory

Leukocyte migration Decrease of the number and adherence of leukocytes [86]

Anti-
inflammatory

Cytokine levels
Inhibition of lung infiltration with eosinophils decrease of IL-

4 and IL-5 levels
[89]

Anti-
inflammatory

Cytokine levels Inhibition of TNF-α, IL-1β, and IL-6 release [88]

Anti-
inflammatory

Inflammatory cells cytokine level NF-κB
activation

Inhibition of lung infiltration with neutrophils/macrophages;
reduction of TNF-α release and of NF-κB activation

[76]

Anti-
inflammatory

Inflammation-related gene expression (NF-κB, IL-
1β, and TNF-α)

Inhibition of NF-κB and TNF-α gene expression [61]

Antioxidant Antioxidant enzyme (SOD and CAT) activity Increase of serum SOD and CAT activity [90]

Antioxidant
Intracellular ROS production and reduced

glutathione level antioxidant enzyme (SOD, CAT,
and GPx) activity

Decrease of ROS generation and increase of reduced
glutathione level in RA-PBMC increase of SOD, CAT, and

GPx activity in RA-PBMC culture
[91]

Antioxidant
Cutaneous glutathione level and glutathione

reductase, CAT, and GPx activity
Increase of cutaneous glutathione level and glutathione
reductase, CAT, and GPx activity in TPA-treated mice

[95]

Anticarcinogenic MCF-7 human breast cancer cells Inhibition of human breast cancer cell proliferation [102]

Anticarcinogenic Mouse skin cancer Reduction in tumor size and incidence [95]

Anticarcinogenic Mouse skin cancer Restriction of skin carcinogenesis at the dysplastic stage [96]

Anticarcinogenic Rat gastric cancer

Inhibition of gastric carcinoma development through NF-κB
suppression

[99]

Apoptosis stimulation through modulation of Bcl-2 proteins,
Apaf-1, caspases, and cytochrome c inhibition of invasion
and angiogenesis by MMP activity and VEGF and TIMP-2

expression modulation

[98]

Anticarcinogenic
HSC-2 human oral squamous cell carcinoma cell

line
Nonapoptotic cell death through oxidative stress and

reduction of ATP utilization
[108]

Anticarcinogenic
Human melanoma cells B16 xenograft mouse

model
Tumor size reduction and delay in tumor growth; prevention

of metastasis
[97]

Anticarcinogenic Human breast cancer cells
Proliferation inhibition and apoptosis stimulation through
down-regulation of survivin and the E2F1 transcription factor

[103]

Anticarcinogenic A549 human lung adenocarcinoma cells
Inhibition of cell proliferation, migration, and invasion
through modulation of MMP activity and the PI3K/Akt

pathway
[100]

Anticarcinogenic
HCT-15 and HT-29 human colorectal

adenocarcinoma cells
Apoptosis stimulation through the reduction of ΔΨm with

oxidative stress and DNA fragmentation
[106]

Anticarcinogenic HL-60 human promyelocytic leukemia cells
Apoptosis stimulation through oxidative stress, MPT, and
cytochrome c release, reduction of Bcl-2 level and DNA

fragmentation
[107]
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via necrosis; conversely, in the setting of moderate inflamma-
tion, the intrinsic, mitochondrial-dependent apoptotic way
of death will prevail. Interestingly, eugenol has been reported
to induce early (less than 1h exposure) mitochondrial col-
lapse and vacuolization, followed by nonapoptotic cell death
in human normal oral cells. Thus, at variance from the classic
proapoptotic effect in cancer cells, eugenol might activate
pyroptosis (inflammatory cell necrosis) or paraptosis (associ-
ated with mitochondria enlargement and cytoplasmic vacuo-
lization) as cell death pathways in normal cells [92].

Therefore, targeting both chronic inflammation and oxi-
dative stress (mainly, mitochondrial-derived) represent a
promising therapeutic strategy in various pathologies. Both
effects have also been described in relation to the anticarcino-
genic effects of eugenol as detailed below.

3.2. Anticarcinogenic Activity of Eugenol. Phytochemicals are
biologically active plant compounds with preventive and/or
curative anticancer properties that display low toxicity and
reduced side effects as compared to standard therapies.
Assessing their beneficial effects as an adjunctive therapy in
cancer currently represents one of the most active field of
research [93]. Cancer treatment requires the inhibition of
aberrant cell proliferation and destruction of malignant cells.
In this respect, eugenol has been reported to elicit pro-
apoptotic effects in several (but not all) tumor/cell lines.

Accordingly, a study performed in primary melanoma
cell lines established from patients’ tissues described an anti-
proliferative activity for the dimeric forms (biphenyls) of
eugenol which was mild for dehydrodieugenol, higher for
its O,O ′ -methylated form (O,O ′-dimethyl-dehydrodieu-
genol), and markedly pronounced for the racemic mixture
of the brominated biphenyl (6,6 ′-dibromo-dehydrodieu-
genol) (S7) [94].

In a murine model of skin cancer, Kaur et al. found that
treatment with eugenol did not influence tumor develop-
ment, but succeeded to decrease the tumor size [95]. The
anticarcinogenic effect of eugenol was accompanied by anti-
inflammatory properties, as shown by the reduction of sev-
eral inflammatory markers such as cyclooxygenase-2
(COX-2), nitric oxide synthase (iNOS), cytokine levels (IL-
6), tumor necrosis factor-alpha (TNF-α), and prostaglandin
E2 [95]. Moreover, in a mouse skin cancer model, eugenol
displayed chemopreventive properties, reducing the inci-
dence and size of skin tumors and improving animal survival

rates through apoptosis stimulation, cellular proliferation
inhibition, and restriction of skin carcinogenesis at the dys-
plastic stage via c-Myc and H-ras oncogene downregulation
and p53 tumor suppressor gene expression upregulation
[96]. The tumor-suppressive effects of eugenol in skin can-
cers has been described to occur in relation to human mela-
noma and was associated with tumor size reduction, delay
in tumor growth, and prevention of metastasis [97].

In a rat model of chemically-induced gastric cancer, treat-
ment with eugenol decreased tumor incidence to 16.66%.
Eugenol treatment triggered apoptosis via the mitochondrial
pathway through the modulation of Bcl-2 proteins, apoptotic
protease activating factor 1 (Apaf-1), caspases and cytochrome
c, and limited angiogenesis by modifying the activity of the
matrix metalloproteinases (MMP), vascular endothelial factor
(VEGF), and tissue inhibitor of metalloproteinase-2 (TIMP-2)
[98, 99]. Similarly, in a human lung adenocarcinoma cell line,
reduction of the MMP-2 (along with phosphate-Akt) expres-
sion was demonstrated after eugenol administration, leading
to inhibition of cell viability and impaired cell migration and
invasion [100].

Moreover, in several human breast cancer cell lines, the
epoxide forms of eugenol, lupeol, and lutein have been
reported to induce apoptosis [101], while methyl-eugenol
inhibited cancer cell proliferation [102]. These effects were
recapitulated in the case of eugenol as well, via the downreg-
ulation of the breast cancer oncogene E2F1 and its antiapop-
tosis target survivin and upregulation of the cell cycle arrest-
inducing protein p21WAF1, respectively [103]. Indeed, the
proapoptotic effect of eugenol was confirmed not only in
the case of breast cancer but also in human oral squamous
carcinoma cells [104] and human cervix cancer and mela-
noma lines, respectively [105]. Treatment with this com-
pound led to cell cycle deregulation and DNA damage via
cytoplasmic membrane disruption, ROS overproduction,
mitochondrial membrane potential decrease, and the down-
regulation of proliferating cell nuclear antigen, an essential
factor in DNA replication and repair [105]. Excessive ROS
generation, dissipation of the mitochondrial membrane
potential, and DNA fragmentation have also been reported
by other studies as mechanisms of eugenol-induced apopto-
sis. Thus, in a human colorectal adenocarcinoma cell line,
these effects were accompanied by p53 and caspase-3 activa-
tion [106], while in a human promyelocytic leukemia cell
line, the reduction of the antiapoptotic Bcl-2 protein level

Table 2: Continued.

Eugenol
properties

Parameters/tumor type Biological effects Ref.

Anticarcinogenic
Human KB oral squamous carcinoma cells and

DU-145 androgen-insensitive prostate cancer cells
Cell growth inhibition and apoptosis stimulation [104]

Anticarcinogenic
MDA-MB-231, MCF-7 (breast cancer lines),

SIHA (cervix cancer lines), SK-Mel-28, and A2058
(melanoma lines)

Apoptosis stimulation through cell cycle deregulation and
DNA damage, ROS overproduction, disruption of the
cytoplasmic membrane, mitochondrial failure, PCNA

downregulation

[105]

RA-PBMCs: PBMCs isolated from rheumatoid arthritis patients; TPA: 12-O-tetradecanoylphorbol-13-acetate; MAPK: mitogen-activated protein kinases; SOD:
superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; PARP: polyadenosinediphosphate-ribose polymerase; MPT: mitochondrial permeability
transition; PCNA: proliferation cell nuclear antigen; ΔΨm: mitochondrial membrane potential.
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and the release of cytochrome c into the cytosol were
recorded [107]. However, it must be noted that eugenol was
reported to also induce nonapoptotic cell death through oxi-
dative stress and reduction of ATP utilization in a human
oral squamous cell carcinoma line [108].

The anticarcinogenic (chemopreventive-antioxidant and
cytotoxic, prooxidant, and proapoptotic) effects of eugenol
were the topic of a recent excellent review [109].

3.3. Modulation of Mitochondrial Metabolism by Eugenol.
Mitochondrial dysfunction is currently accepted as the cen-
tral pathomechanism of cancer. Therefore, targeting mito-
chondrial metabolic pathways has emerged as a valuable
strategy to inhibit tumor growth. The mitochondria-
targeted drugs or phytochemicals induce selectively disrup-
tion of cancerous mitochondria (and subsequent death of
malignant cells) via several mechanisms, such as inhibition
of respiratory function and ATP depletion, induction of the
mitochondrial permeability transition, and, the previously
mentioned, mitochondrial DNA damage [110].

Eugenol’s effect on mitochondrial respiration can be
traced back to the late 70s when Cotmore et al. firstly reported
in isolated rat liver mitochondria a dose-dependent inhibition,
particularly of the nicotinamide adenine dinucleotide- (NAD-
) supported respiration (using glutamate as substrate) together
with the uncoupling of the oxidative phosphorylation from the
electron transport [111]. Several years later, Usta et al. pro-
vided further insights into the effects of the compound on
mitochondrial function in the same in vitro model. In brief,
these authors demonstrated that eugenol dose-dependently
elicited the (i) inhibition of NADH oxidase (complex I of the
electron transport system), (ii) reduction of mitochondrial
membrane potential (ΔΨm), and (iii) stimulation of the
ATPase activity of F1F0-ATP-ase (complex V) with subse-
quent ATP depletion in rat liver mitochondria [112].

Eugenol is a weak lipophilic acid (i.e., it might permeate
the mitochondrial membranes and release a H+ into the
matrix) and also an analogue of dinitrophenol (a classical
mitochondrial uncoupler). Together with complex I inhibi-
tion, these properties might be responsible for the dissipation
of the proton gradient across the inner membrane (normally
used by the ATP synthase to generate ATP); subsequently,
the enzyme will work in the reverse mode and become an
energy-dissipating structure [113]. Of note, eugenol had no
effect on succinate dehydrogenase (complex II of the electron
transport system) activity in isolated rat mitochondria. More
recently, the same group reported the chemosensitivity of a
human breast cancer cell line MCF-7 to eugenol. The com-
pound elicited a dose-dependent: (i) decrease in cellular via-
bility and proliferation (EC50: 0.9mM), (ii) decrease in ATP
level and mitochondrial membrane potential, (iii) increase
in reactive oxygen species generation, (iv) release of
cytochrome-c and lactate dehydrogenase, and (v) nonapop-
totic Bcl-2 independent toxicity [114]. The last finding is in
line with the results from the group of Sakagami, which con-
firmed the nonapoptotic cell death in three human normal
oral cell types (gingival fibroblast, periodontal ligament fibro-
blast, and pulp cell) yet with no effect on ATP utilization
(except for periodontal fibroblasts). Importantly, Sakagami

et al. also reported that eugenol (2mM) elicited a rapid sup-
pression (after 20min incubation) of the tricarboxylic acids
cycle in all three cell lines mentioned above, whereas the
intracellular concentration of glycolytic metabolites slightly
increased [92]. In an elegant study, Yan et al. further pro-
vided mechanistic insights into the signal transduction
underlying the anticarcinogenic effect of eugenol in MCF10A
human breast epithelial cells transfected with the H-ras
oncogene (MCF10A-ras). These authors reported that euge-
nol (200μM) suppressed cell growth and inhibited oxidative
phosphorylation and fatty acids oxidation via the downregu-
lation of the c-Myc/PGC-1β/ERRα pathway. Of note, the lat-
ter was upregulated in the breast cancer MCF10A-ras cells
but not in the untransformed MCF10A cells [115].

In line with these observations, we aimed to investigate
the effect of eugenol, free, or encapsulated in polyurethane
nanoformulations [25], on both mitochondrial bioenergetics
and glycolysis in SCC-4 human squamous cell carcinoma
cells by means of the extracellular flux analyzer Seahorse
XF24e (Agilent Technologies Inc.). This automatic platform
provides a simultaneous measurement of oxygen consump-
tion rate (OCR) as an indicator of mitochondrial respiration,
and the extracellular acidification rate (ECAR) as an indirect
measurement of anaerobic glycolysis, according to a previ-
ously described method [116]. In brief, cellular metabolic
activity was challenged with the classic modulators of the
mitochondrial electron transport chain: the first automatic
injection was performed using oligomycin (1μg/ml), the
inhibitor of the mitochondrial ATP synthase; FCCP (3μM),
a classic uncoupler, was further injected, followed by antimy-
cin A (5μM), the inhibitor of mitochondrial complex III.
OCR was reported in units of pmoles/min and ECAR in
mpH/min. SCC-4 human squamous carcinoma cells were
incubated for 24h with eugenol (free or incorporated in poly-
urethane structures), and we found that free eugenol (50μM)
induced a decrease of OCR parameters (i.e., inhibition of
mitochondrial respiration) coupled with an increase of ECAR
(i.e., stimulation of glycolysis); surprisingly, opposite effects
were recorded for eugenol nanoformulations, i.e., an increase
in basal andmaximal respiration (OCR) plus a decrease in gly-
colysis (ECAR) [116]. The effects of free eugenol are in line
with the abovepresented literature data, yet the paradoxical
effect of nanostructures requires further investigations.

We further recapitulated the experiments using the nor-
mal HaCaT human keratinocytes incubated with 50μM free
eugenol (EU), polyurethane particles alone (P), and EU
encapsulated in polyurethane structures (EU+P) for 24, 48,
and 72 h. First, the cytotoxic effect of the compounds on
HaCaT cells was assessed at 24h—Figure 1(a), 48 h—Fi-
gure 1(b), and 72 h—Figure 1(c), respectively. Cytotoxicity
was evaluated by means of the MTT assay, as previously
described [117]. HaCaT cells were seeded in 96-well culture
plates (1 × 104 cells/well) and allowed to attach. Next, the
medium was replaced and cells were incubated for 24, 48,
and 72h, respectively, with the tested compounds. Cells were
randomized into 5 groups: control group—untreated cells
(CTRL); DMSO group—cells treated with 50μM DMSO
used to prepare the free EU stock solution (DMSO); group
treated with 50μM free EU (EU); group treated with 50μM
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polyurethane structures which were used to encapsulate EU
(P); and group treated with 50μM encapsulated EU (EU
+P). A volume of 10μL of 5mg/mL MTT solution from
the MTT toxicology assay kit (Sigma-Aldrich) was added in
each well. In the presence of NADPH-dependent cellular oxi-
doreductases, MTT precipitated as the insoluble formazan
(during 4 h). The reduced MTT was measured spectrophoto-
metrically at 570nm, using a microplate reader (xMarkMi-
croplate Spectrophotometer, Bio-Rad). All experiments
were performed in triplicate.

At 24h poststimulation, EU elicited a discrete, nonsignif-
icant cytotoxic effect, whereas the polyurethane structures (P,
EU+P) provoked an unexpected mild increase in cell viabil-
ity (Figure 1(a)). Similar results were obtained at 48 h of stim-

ulation (Figure 1(b)), while at 72 h, the EU group also showed
a trend for an increase in cell viability vs. CTRL (Figure 1(c)).

We further evaluated the effect of the compound (50μM)
on HaCaT cell migration using the scratch assay, as previ-
ously described [118]. To this aim, 2 × 105 cells/well were cul-
tured in 12-well plates for 48 h prior to the experiment.
Scratches were drawn in well-defined zones of the cells
monolayer (at a confluence of 90%) using a sterile pipette
tip. The detached cells were removed by washing with PBS
before stimulation, and afterward, the cells were incubated
with the compounds. Images of the cells were taken at the
starting point of the experiment, and after 3 and 24h, respec-
tively, using the inverted microscope Olympus IX73 and the
cellSense Dimension software. Figure 2 shows that P and EU

150

100

0

Ce
ll 

vi
ab

ili
ty

 (%
)

50

CTRL DMSO EU P EU+P
24 h stimulation

⁎

(a)

150

100

0

Ce
ll 

vi
ab

ili
ty

 (%
)

50

CTRL DMSO EU P EU+P
48 h stimulation

(b)

150

100

0

Ce
ll 

vi
ab

ili
ty

 (%
)

50

CTRL DMSO EU P EU+P
72 h stimulation

(c)

Figure 1: The time-dependency of HaCaT cell viability. (EU: free eugenol; P: polyurethane nanostructure alone; EU+P: eugenol included as
nanoformulation). Data are presented as mean ± SD. Experiments were performed in triplicate (∗p < 0:05 vs. Ctrl).
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Figure 2: The effects of compounds (50 μM) on HaCaT cell migration. (EU: free eugenol, P: polyurethane nanostructure alone, EU+P:
eugenol included as nanoformulation). Pictures were taken at 0, 3, and 24 h poststimulation (10× magnification).
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+P groups exhibited a promigratory effect upon HaCaT cells
at 24 h poststimulation vs. the control group. EU alone elic-
ited at 24 h stimulation a mild reduction of cellular migration
as compared to P/EU+P groups.

Finally, we evaluated the bioenergetic profile of HaCaT
human keratinocytes treated with the compounds (50μM)
at 24 h—Figure 3, 48 h—Figure 4, and 72 h—Figure 5 using
the Seahorse extracellular flux analyzer, as previously
described.

No significant effect on OCR and ECAR was observed
after 24 h of treatment (Figure 3). At variance, a significant

metabolic inhibition was noticed for the two other periods
of exposure (Figures 4 and 5). Thus, in the EU and EU+P
groups, both OCR and ECAR significantly decreased at 48h
of incubation (Figure 4). Surprisingly, at 72 h, not only EU
and EU+P but also P, the polyurethane particles per se,
induced a significant inhibitory effect on both metabolic
pathways, oxidative phosphorylation, and glycolysis
(Figure 5).

The polyurethane nanostructures represent a safe formu-
lation as previously reported [25], since they neither elicited a
cytotoxic effect on HaCaT cells regardless of the incubation
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Figure 3: The effects of 24 h incubation of HaCaT cells on OCR and ECAR. Data are presented asmean ± SD. Experiments were performed in
triplicate.
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period (Figures 1(a)–1(c), P group) nor interfered with their
migration (Figure 2, P group). However, the nanoformula-
tions significantly depressed the cellular metabolism at 72 h
(Figure 5, P group).

4. Conclusions

Eugenol is a versatile molecule that has successfully survived
the test of time in dental medicine. Nowadays, it has emerged
as a promising phytochemical in the armamentarium of
adjunctive anticancer therapeutics via the modulation of
chronic inflammation, oxidative stress, and mitochondrial
dysfunction, the major pathomechanisms of noncommunic-
able diseases. The current understanding of the signaling
pathways responsible for eugenol interaction with cellular
metabolism is far from being elucidated. Further studies
aimed at characterizing its effects on bioenergetics and mito-
chondrial metabolism in both normal and malignant cell
lines are fully warranted.
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