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Myocardial ischemic/reperfusion (MI/R) is a leading cause of cardiovascular disease with high morbidity and mortality. However,
the mechanisms underlying pathological reperfusion remain obscure. In this study, we found that dioscin, a natural product, could
be a potential candidate for treating MI/R through modulating cardiac dysfunction. Mechanistically, our work revealed that
dioscin could suppress the production of reactive oxygen species (ROS) via repressing the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 2 (Nox2) and enhancing the expression of antioxidant enzymes, including superoxide dismutase
(SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx). These findings indicate that dioscin may be a
potential candidate for therapeutic interventions in MI/R injury.

1. Introduction

Myocardial ischemic/reperfusion (MI/R), a leading cause of
cardiovascular disease with high morbidity and mortality, is
caused by the blood recovery after a vital period of coronary
artery occlusion, which easily leads to myocardial infarction
or heart failure [1–3]. Previously, literature reported that lethal
reperfusion injury accounts for up to 50% of the final myocar-
dial infarct size [4]. It is well known that the pathogenesis of
MI/R injury includes oxidative stress, inflammatory response,
calcium overload, and mitochondrial dysfunction [5–8]. Since

the oxidant stress is accompanied with the pathological pro-
cess of cardiac dysfunction, inhibition of oxidant stress is a
potential therapeutic strategy for MI/R injury [9].

Oxidative stress is originated from the overwhelmed reac-
tive oxygen species (ROS) and the insufficient antioxidant
defense systems [10]. Under the physiological condition,
ROS is crucial and maintains normal cellular metabolism pro-
cesses, balancing at the dynamic stage between antioxidants
and oxidant response [11]. However, abundant of ROS is gen-
erated in two stages of MI/R, including ischemia and reperfu-
sion [12]. Due to sudden overburden of the high oxygen

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 3766919, 8 pages
https://doi.org/10.1155/2021/3766919

https://orcid.org/0000-0002-0024-334X
https://orcid.org/0000-0002-8236-2296
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3766919


tensions, reperfusion contributes to elevated levels of oxygen
free radical (OFR) production, which leads to oxidative
damage, such as protein carbonylation and DNA oxidation
[13, 14]. Nevertheless, various traditional antioxidants do
not present with therapeutic efficacy [15, 16]. Some active
natural products, including pentamethylquercetin, isorhycho-
phylline, myricetin, and fisetin from medicinal plants, have
shown excellent activities against MI/R injury [17–20]. Thus,
it is reasonable to exploit effective natural products from herbs
for the treatment of MI/R injury.

Dioscin, a natural steroid saponin isolated from the root
bark of wild dioscorea nipponica, is currently widely used for
cardiovascular disease treatment [21]. Our previous investiga-
tions have demonstrated that dioscin elevates lncRNA MAN-
TIS in therapeutic angiogenesis for myocardial infarction [22].
What is more, dioscin plays a beneficial role in hepatic
ischemia-reperfusion injury, intestinal ischemia-reperfusion
injury, and gastric ischemia-reperfusion injury [23–25]. How-
ever, whether dioscin protects cardiac injury against MI/R
remains unclear.

Hence, dioscin was systematically investigated in a
MI/R-injured mouse model in vivo and in H9C2 cardiomyo-
cytes in vitro subjected to hypoxia/reoxygenation (H/R)
injury, presenting the cardioprotective role of dioscin and
additionally demonstrating the beneficial function of dioscin
against reactive oxygen species, in order to provide new
options for the clinical treatment of MI/R.

2. Materials and Methods

2.1. Animals. Male C57BL/6 mice (22-24 g) were purchased
from the Animal Core of Nanjing Medical University (Nan-
jing, China). The mice were kept with a standard vivarium
with free access to food and water. All animal experiments
were approved by the National Institutes of Health Guide
for the Care and Use of Laboratory Animals, and the proto-
cols used were also consistent with the Animal Ethics Com-
mittee of Nanjing Medical University, Nanjing, China
(IACUC-2003006).

The myocardial ischemia/reperfusion injury model was
produced as previously reported [26]. Briefly, the left ante-
rior descending (LAD) coronary was tied by a slipknot with
a 6-0 silk suture. After 30min of ischemia, the slipknot was
released smoothly and gently until a feeling of release was
sensed, at which time, the myocardium began reperfusion
and was kept for 3 days. Sham-operated control mice under-
went the same surgical procedure, except the suture placed
under the left coronary artery was not tied.

Dioscin (80mg/kg/day, Di’ao Group, Chengdu, China)
was administrated to mice for 3 days beginning on the day
of operation. Briefly, the dioscin was first dissolved in dimethyl
sulphoxide (DMSO), and then, 5% sodium carboxymethyl
cellulose (CMC-Na) was added to make the volume ratio for
1 : 19. Consequently, the mice were given the dissolution by
intragastric administration. The preparation and application
of the drug’s dissolution should be completed in one day. If
precipitation occurred in the preparation process, it could be
assisted by heating or ultrasound.

2.2. Measurement of Cardiac Function by Echocardiography.
Echocardiographic measurements were performed on mice
using a VisualSonics Vevo® 2100 Imaging System (VisualSo-
nics, Toronto, Canada) with a 40MHz MicroScan transducer
(model MS-550D) [27]. The M-mode echocardiogram was
acquired from the parasternal short axis view of the left
ventricle at the midpapillary muscle level. Echocardiographic
parameters were calculated using the primary measurements
and accompanying software. The echocardiographer was
blinded to the genetic identity of the mice for all studies.

2.3. Histological Assays. Mouse hearts were dissected out,
then fixed in 4% paraformaldehyde (PFA, Electron Micros-
copy Sciences) overnight. After dehydration through a series
of ethanol baths, samples were embedded in paraffin wax.
Further, 5μm thick samples of the heart were obtained to
perform hematoxylin and eosin (HE) and Masson trichrome
staining. Slides were imaged under a light microscope.

2.4. Determination of Enzyme Activities. The detection kits
of superoxide dismutase (SOD), catalase (CAT), glutathione
(GSH), and glutathione peroxidase (GPx) were purchased
from a company (Solarbio, China). The activities of these
enzymes in the heart were evaluated following the manufac-
turer’s instructions.

2.5. Determination of Reactive Oxygen Species (ROS). The pro-
duction of ROS was measured as previously described [28].
The samples of the heart section were incubated with the
DHE (Beyotime, China) at 37°C for 30min, then washed three
times with PBS for 5min, and further costained with DAPI
(Beyotime, China). The fluorescence intensity was examined
using a confocal scanning microscope, and all images were
analyzed using ImageJ software.

2.6. Quantitative RT-PCR. Total RNA was isolated using the
TRIzol Reagent (Invitrogen) from cell or tissue samples. The
mRNA expression levels were determined by quantitative
reverse transcription polymerase chain reaction (PCR) using
SuperScript II Reverse Transcriptase (Thermo Fisher Scientific
Inc.) for reverse transcription and a Power SYBR Green PCR
Master Mix (Thermo Fisher Scientific Inc.) for quantitative
reverse transcription PCR reaction with PCR primers. The
measurable of corresponding genes were detected by real-
time PCR Detection System (Bio-Rad) and were analysed by
CFX Manager 3.1 software (Bio-Rad). The sequences of
primers were as follows: Anp-F: 5′-ACC TCC CGA AGC
TAC CTA AGT-3′, Anp-R: 3′-CAA CCT TTT CAA CGG
CTC CAA-5′; Bnp-F: 5′-GAG GTC ACT CCT ATC CTC
TGG-3′, Bnp-R: 3′-GCC ATT TCC TCC GAC TTT TCT
C-5′; β-Mhc-F: 5′-GAG GGT GGC TCT CAC ACA TTC-
3′, β-Mhc-R: 3′-TTG GCC TTC GTA AGC AAA CTG-5′;
Sod1-F: 5′-AAC CAG TTG TGT TGT CAG GAC-3′, Sod1-
R: 3′-CCA CCA TGT TTC TTA GAG TGA GG-5′; Sod2-F:
5′-CAG ACC TGC CTT ACG ACT ATG G-3′, Sod2-R: 3′-
CTC GGT GGC GTT GAG ATT GTT-5′; Cat-F: 5′-AGC
GAC CAG ATG AAG CAG TG-3′, Cat-R: 3′-TCC GCT
CTC TGT CAA AGT GTG-5′; Nrf2-F: 5′-CCA TTT ACG
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GAG ACC CAC CGC CTG-3′, Nrf2-R: 3′-CTC GTG TGA
GAT GAG CCT CTA AGC GG-5′; Nox2-F: 5′-ACT CCT
TGG GTC AGC ACT GG-3′, Nox2-R: 3′-GTT CCT GTC
CAG TTG TCT TCG-5′; and 18s-F: 5′-GCC TCC TCC
TCC TCT CTC-3′, 18s-R: 3′-GCT ACT GGC AGG ATC
AAC C-5′.

2.7. Statistical Analysis. Continuous variables that approxi-
mated the normal distribution were expressed as mean ±
SD. Comparison between groups was subjected to ANOVA
followed by the Bonferroni correction for post hoc t-test.
Data expressed as proportions were assessed with a chi-
square test. Two-sided tests have been used throughout,
and P values < 0.05 were considered statistically significant.
GraphPad Prism 8 was used to evaluate data.

3. Results

3.1. Dioscin Improves Cardiac Dysfunction in MI/R-Injured
Mice. In order to explore the protective role of dioscin in
response to MI/R injury in vivo, mice were subjected to
myocardial ischemic/reperfusion surgery. Echocardiography
exhibited that the significant increases of cardiac function
markers of the left ventricular ejection fraction (LVEF) and
the left ventricular fractional shortening (LVFS) were
observed in the MI/R with the dioscin treatment group com-
pared to the MI/R group (Figures 1(a) and 1(b)). Further-

more, we found that mice subjected to MI/R treated with
dioscin presented improved cardiac function, as evidenced
by the preserved left ventricular end diastolic internal dimen-
sion (LVID; d) and left ventricular end systolic internal
dimension (LVID; s), when compared with vehicle-treated
mice (Figures 1(c) and 1(d)).

To examine whether the cardiac fibrosis was prevented by
dioscin or not, a series of staining were performed on heart
sections. Hematoxylin and eosin (HE) staining revealed wide-
spread myocardial structural disorder, while treatment with
dioscin markedly ameliorated histological features in myocar-
dial tissue (Figure 2(a)). Moreover, collagen accumulation in
the interstitial space, which was detected by Masson’s tri-
chrome staining, increased obviously in the heart sections of
the MI/R group, and this increase was improved significantly
in the MI/R with treatment dioscin group (Figures 2(b) and
2(c)). We further examined the expression of biomarkers for
cardiac function, finding that the expression of natriuretic
peptide A (Anp), natriuretic peptide B (Bnp), and beta-
myosin heavy polypeptide cardiac muscle (β-Mhc) was
reduced after being treated with dioscin in MI/R injury hearts
compared to theMI/R group (Figures 2(d)–2(f)). These results
indicated that dioscin improves cardiac function and alleviates
cardiac fibrosis against MI/R injury.

3.2. Dioscin Modulates Antioxidant Status in MI/R Mice.
Because of the involvement of ROS in MI/R injury, we
detected the ROS levels in perfused hearts. Dihydroethidium
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Figure 1: Dioscin improves cardiac function in ischemic/reperfusion mice. The C57BL/6 mice were subjected to myocardial
ischemic/reperfusion (MI/R) surgery. Echocardiographic parameters for (a) left ventricular ejection fraction (LVEF, %), (b) left ventricular
fractional shortening (LVFS, %), (c) left ventricular end diastolic internal dimension (LVID; d, mm), and (d) left ventricular end systolic
internal dimension (LVID; s, mm). n = 8 each group. Data are mean ± SD. ∗P < 0:05 vs. sham group, #P < 0:05 vs. I/R group.
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(DHE) staining was performed using heart sections, indicat-
ing that the levels of ROS in MI/R-induced heart tissues
were significantly increased compared with those in the
sham group, and dioscin treatment markedly attenuated
the elevated production of ROS (Figures 3(a) and 3(b)).

To identify the mechanism underlying how dioscin regu-
lates antioxidant stress in response to MI/R injury, we subse-
quently detected the mRNA level of corresponding oxidative
genes. We found that the expressions of superoxide dismutase
1 (Sod1), superoxide dismutase 2 (Sod2), catalase (Cat), and
nuclear factor erythroid 2-related factor 2 (Nrf2) were upregu-
lated in hearts from the MI/R group compared to sham mice,
which was prevented by dioscin treatment (Figures 3(c)–3(f)).
These results might reveal that the upregulated expression of
ROS in the period of perfusion causes the increase expression
of antioxidant genes, while the production of ROS is elimi-
nated by treatment with dioscin to further suppress the
expression of antioxidant genes.

To further explore the mechanism underlying the pro-
tective role of dioscin against MI/R injury, we further mea-
sured the activities of antioxidant status-related enzymes.
Superoxide dismutase (SOD) is the typical antioxidant
enzyme as ROS scavenger. In the MI/R group, the activities
of SOD were significant decreased compared to those of
sham mice, but the downregulation was prevented by dios-
cin (Figure 4(a)). What is more, neither catalase (CAT),
glutathione (GSH), nor glutathione peroxidase (GPx) plays
a protective role in cells from oxidative damage. Dioscin
suppressed the declination of MI/R-induced activities of
CAT, GSH, and GPx (Figures 4(b)–4(d)). We suspect that
the dynamic balance between the antioxidants and oxidant
response was damaged by an overburdened high ROS, which
further injures these antioxidant enzymes. However, treat-
ment with dioscin recues the decline. Taken together,
dioscin could regulate the antioxidant status to repress the
production of the ROS level in the MI/R heart.
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Figure 2: Dioscin alleviates cardiac fibrosis in MI/R injury mice. (a) Representative images of HE staining (bar = 100μm), n = 3 each group.
(b) Representative images of Masson trichrome-stained (bar = 100μm), n = 3 each group. (c) The measurement of relative fibrosis area (%).
The mRNA expression of (d) Anp, (e) Bnp, and (f) β-Mhc. n = 6 each group. Data aremean ± SD. ∗P < 0:05 vs. sham group, #P < 0:05 vs. I/R
group.
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3.3. Dioscin Scavenges ROS in Perfused H9C2 Cells. Consid-
ering the results from the in vivo experiments, we further
verified whether dioscin abolishes ROS accumulation in
myocytes in an oxidant condition. We further performed
dihydroethidium (DHE) staining to detect the level of
ROS in H2O2-incubated H9C2 cells, showing that dioscin
treatment markedly attenuated the elevated levels of ROS
production (Figures 5(a) and 5(b)). Because the nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase
2 (Nox2) plays a central role in catalyzing the production
of superoxide from oxygen, we identified that the expres-
sion of Nox2 was obviously increased in H2O2-cultured
H9C2, and the increase was prevented after dioscin treat-
ment (Figure 5(c)). These results verified that dioscin allevi-
ates perfused injury via downregulation of the oxidant
response.

4. Discussion

In this study, we demonstrated that dioscin, as a natural
product, showed a cardioprotective role in response to
myocardial ischemic/reperfusion (MI/R) injury. Dioscin
has a therapeutic effect via downregulation of oxidant stress,
reflecting from the elevated levels of the antioxidant enzyme
activities, accompanying with the ROS scavenger. These
results exhibited that dioscin has potent effects for the treat-
ment of MI/R injury.

Multiple events take part in the pathogenesis of MI/R,
including accumulation of ROS, inflammation, perturbation
of calcium handing, and metabolic derangements. Consider-
ing ROS as the primary cause among these stimuli, the phar-
macological antagonists of accumulated succinate sufficiently
ameliorated in vivo myocardial ischemia/reperfusion injury
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Figure 3: Dioscin changes the oxidant response after I/R. (a) Representative images of double staining of heart sections with
dihydroethidium (DHE) (red) and DAPI (blue) (bar = 20μm), n = 3 each group. (b) The quantification of relative expression of reactive
oxygen species. The mRNA expression of antioxidant genes, including (c) Sod1, (d) Sod2, (e) Cat, and (f) Nrf2. n = 6 each group. Data
are mean ± SD. ∗P < 0:05 vs. sham group, #P < 0:05 vs. I/R group.
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Figure 4: Dioscin modulates antioxidant status in IR hearts. The enzyme activities for (a) SOD, (b) CAT, (c) GPx, and (d) GSH. n = 6 each
group, repeated twice. Data are mean ± SD. ∗P < 0:05 vs. sham group, #P < 0:05 vs. I/R group.
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Figure 5: Dioscin abolishes the accumulation of ROS production in H9C2 cells. Representative images of double staining of H9C2 cells with
dihydroethidium (DHE) (red) and DAPI (blue) (bar = 50μm), n = 3 each group. (b) The quantification of relative expression of reactive
oxygen species. (c) The mRNA expression of Nox2. n = 6 each group. Data are mean ± SD. ∗P < 0:05 vs. control group, #P < 0:05 vs.
H2O2+reoxygen group.
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via repressing extensive ROS generation [29]. Further, uric
acid aggravates MI/R-induced activation of the NOD-like
receptor pyrin domain-containing protein 3 (NLRP3) inflam-
matory cascade and pyroptosis by promoting ROS generation,
while inflammasome inhibitors and ROS scavengers partly
reverse the injury [30]. What is more, ROS scavenger N-
acetyl cysteine (NAC) was able to reduce the amount of ROS
and prevent cell death [31]. Herein, we identified that dioscin
was considered as the ROS scavenger in the process of MI/R
injury.

Dioscin plays a beneficial role in cardiac protection via
reducing the production of ROS. MI/R injury is mediated by
the elevated production of ROS, which occurs particularly at
reperfusion [32]. The nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase family is considered as one major
source of ROS in cardiomyocytes [33]. Meanwhile, many anti-
oxidant enzymes participate in the elimination of ROS in
response toMI/R injury [34]. Additionally, it was reported that
dioscin alleviated doxorubicin-induced cardiotoxicity through
modulating miR-140-5p-mediated myocardial oxidative stress
[35]. Furthermore, dioscin has renoprotective effects against
fructose-induced renal damage via adjusting sirtuin 3-
mediated oxidative stress [36]. And dioscin significantly pro-
tected against renal damage by decreasing blood urea nitrogen
and creatinine levels and reversing oxidative stress [37].

Summarily, dioscin ameliorates myocardial ischemia/re-
perfusion injury through suppressing reactive oxygen species
via downregulation of Nox2 and upregulation of the antioxi-
dative enzyme, including SOD, CAT, GPx, and GSH, leading
to alleviate cardiac dysfunction. Our results indicated that
dioscin, providing a potential therapeutic strategy, would be
beneficial for myocardial ischemic/reperfusion injury.
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