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A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is
indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research
fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based
exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can
be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many
organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall
picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be
exhaustive, the most commonly used forms of exercise are presented.

1. Introduction

Sport can be thought of as a therapeutic tool or a prevention
strategy for different disorders. It is beginning to be learned
that physical exercise exerts its effects via extensive molecu-
lar pathways by which it maintains and improves the quality
of life. It is well known that regularly maintained training
has several beneficial effects on overall health, from cells to
whole organ systems [1]. Nonetheless, physical inactivity
entails numerous health issues from systemic inflammation
to hormonal dysfunctions which raises the risk of wide-
ranging noncommunicable diseases, such as type II diabetes,
metabolic syndrome, cardiovascular and neurodegenerative

disorders, and even cancer [2–5]. Over and above, sedentary
lifestyle-related redox disturbance further aggravates preex-
isting pathological processes [6]. The main purpose of
training-related research studies has been targeted on the
health benefits of exercise to be able to prevent and treat
these conditions. Comprehending the underpinning
systemic changes provoked by exercise helps us to develop
more efficient treatment methods and prevention strategies
against widespread diseases. With the help of animal models,
it is possible to study the most complex effects of exercise at
all levels of organization. The appropriate animal species
and the duration, frequency, and intensity of the training
should be chosen according to the purpose of the study
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[7]. The most common types of exercise used in animal
experiments are voluntary wheel running, forced wheel run-
ning, treadmill running, swimming, and resistance training
[8, 9]. Aerobic exercise modalities are suitable for almost
every noncommunicable disorder-related research area,
while anaerobic training modalities are applicable in a much
narrower field of research, including muscle formation stud-
ies [8–11]. In this review, we discuss the far-reaching bene-
fits of physical exercise and its interpretation in different
animal models. Our aim is to provide a comprehensive
picture of the different exercise modalities used with rodents
and their far-reaching effects on organ systems affecting the
most researched noncommunicable diseases.

2. Beneficial Effects of Exercise on Different
Organ Systems

2.1. Bones and Skeletal Muscle. Exercise has major effects on
body composition. It is well established that physical activity
improves bone properties such as bone quality or density.
Consequently, it lowers the risk of osteoporosis. Osteoporo-
sis is a condition characterized by low bone mass and bone
fragility and mainly occurs among elderly people and post-
menopausal women as a result of hormonal changes [12].
Exercise is considered to be the best nonpharmacologic
approach in preventing osteoporosis; recent studies dis-
cussed that long-term exercise is able to increase bone
strength and formation; therefore, it is effective in improving
bone quality [13, 14].

Along with bones, exercise is able to increase muscle
strength and improve balance and coordination. The most
noticeable effect of long-term exercise, especially resistance
training, is the increase of muscle mass. This process affects
the basal metabolic rate and body composition in a favorable
way. Besides, physical activity is proved to be promising in
the regeneration and rejuvenation of muscle stem cells
[15]. Exercise is also effective in age-related muscle atrophy,
called sarcopenia. A recent work of White et al. supported
the fact that long-term voluntary exercise can prevent sarco-
penia in the hindlimb muscles in female and male rats as
well [16]. Taken together, these results indicate that regular
exercise has many beneficial effects on skeletal muscle func-
tion, regeneration, and bone quality at any age.

2.2. Metabolic Health. In the absence of exercise as a result of
chronic positive energy balance, weight gain occurs. In this
pathological condition, an increase in the number and size
of adipocytes is observed, which leads to the disruption of
leptin signaling and eventually to chronic inflammation
[17]. On the contrary, exercise promotes metabolic health
by decreasing body weight along with the amount of circu-
lating lipids and the concentration of leptin and positively
affects glucose tolerance and insulin sensitivity [18, 19].
Studies have shown that regular exercise significantly
improved glucose homeostasis in diabetic and prediabetic
status [20]. Moreover, regular exercise is efficient enough
to reduce plasma leptin and insulin levels in hormone defi-
ciency as well; thus, it plays an important part in the
improvement of pathophysiological changes in connection

with metabolic syndrome [21, 22]. Furthermore, exercise is
able to increase the expression of glucose transporter 4 and
contributed to balanced glucose homeostasis and insulin
sensitivity in rats [23]. Hence, regular exercise is able to
reduce the risk for metabolic disorders and the resulting
cardiovascular complications.

2.3. Cardiovascular System. Physical exercise has far-
reaching cardiovascular effects as well. Studies have shown
that sustained physical activity lowers the individual’s rest-
ing heart rate and blood pressure while it increases physio-
logical cardiac hypertrophy [24, 25]. Exercise affects the
cardiovascular system in different ways; it modulates numer-
ous signaling pathways and improves oxygen delivery
throughout the body via angiogenesis and vasodilation
[26]. Nitrogen monoxide (NO) production in the endothe-
lium rises significantly as a result of training and causes a
well-known vasodilating phenomenon [27]. By enhancing
nitrogen monoxide synthase activity, exercise has an undeni-
able role in the maintenance of normal blood pressure and
in the treatment of hypertension [28]. Besides vasodilata-
tion, NO has anti-inflammatory and platelet inhibitory
effects as well, thereby contributing to the mitigation of ath-
erosclerotic risk [29]. Additionally, exercise influences blood
vessel morphology by extending the capillary network in the
cardiovascular system. In a recent study of ours, we proved
that a 12-week-long voluntary exercise was an effective ther-
apeutic tool to improve cardiac function in aged rats; we
clarified the exercise-moderated genetic modifications that
contributed to the functional improvement of the heart
[30]. Exercise can serve as a therapeutic tool after myocar-
dial infarction (MI) as well; recent studies supported that
after a postmyocardial injury, recreational exercise was able
to improve cardiac health and antioxidant status [31, 32].

2.4. Nervous System. Numerous studies demonstrated the
effects of physical activity on mental health, cognitive pro-
cesses, and brain activity [33–35]. It is clarified that exercise
affects several complex mechanisms including cerebral
perfusion, neurogenesis, and synaptic plasticity [36, 37].
The findings of Kleemeyer et al. discussed that 6 months of
exercise is associated with a hippocampal neuron density
increase [38], while the work of Ruscheweyh et al. discov-
ered a significant augmentation of the gray and white matter
as a result of aerobic training [39]. Interestingly, encourag-
ing results were obtained not only in young rats but also in
older animals (19-month-old rodents). Scientists found that
1.5 months of voluntary exercise elevated gliogenesis by 20%
and reverted age-related decline in neurogenesis by 50%
[40]. Trophic factors such as the brain-derived trophic factor
(BDNF) and vascular endothelial growth factor (VEGF)
greatly support the cognition in young and older individuals
as well. Several studies verified that running exercise at any
age increased the expression of BDNF and VEGF in the
hippocampus, which the phenomenon was correlated with
the improvement of spatial learning and memory [41, 42].
In addition, exercise has been recommended as one of the
best lifestyle interventions against neurodegenerative
diseases (e.g., Alzheimer’s disease, Parkinson’s disease)
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[43]. It is well established that exercise has a crucial role in
the protection of neurons, but recent results have also sug-
gested that it is promising in the prevention of amyloid-β
and tau protein plaque formation [44, 45]. According to
recent studies, swimming, voluntary wheel running, and
treadmill exercise have also proven to treat neuropathic pain
in a mouse model [46, 47]. In addition, regular exercise is
well known to trigger the release of serotonin and dopamine,
which neurotransmitters help to overcome the symptoms of
depression and anxiety [48].

2.5. Antioxidant and Anti-Inflammatory Effects of Exercise.
A number of studies have shown that besides many favor-
able effects on different organ system functions (e.g., cardio-
vascular or metabolic), physical exercise is able to decrease
proinflammatory markers and improve antioxidant status
systemically [49–51]. Regular exercise mitigates reactive
oxygen species-mediated cell damage by boosting antioxi-
dant functions and reducing C-reactive protein, interleu-
kin-6, and tumor necrosis factor-alpha (TNF-α) levels [52,
53]. Furthermore, it is proved to reduce reactive oxygen spe-
cies (ROS) production; therefore, it plays a key role in the
maintenance of redox balance [54]. Regular training leads
to the adaptation of the antioxidant capacity and protects
the cells against adverse oxidative processes [55]. Sustained
exercise has been demonstrated to be essential not only in
the elimination of oxidative stress but also in the prevention
of the abovementioned complex disorders, such as type II
diabetes, metabolic syndrome, and cardiovascular and even
neurodegenerative diseases [56]. Numerous animal studies
also demonstrated the antioxidant effects of physical exercise
by the enhancement of several enzymatic pathways includ-
ing glutathione (GSH) and the heme oxygenase (HO) system
[57, 58]. Szabo et al. supported that 12 weeks of sustained
training is an efficient method to enhance the antioxidant
GSH and nitrotyrosine-3 levels as well [59]. Moreover, in a
hormone-depleted rat model, 6 weeks of physical exercise
was proved to be a key process in the amelioration of antiox-
idant status by enhancing the HO enzyme system [31].
Besides GSH and HO, superoxide dismutase (SOD) is also
considered to be a first-line defense participant against
oxidative stress. According to animal studies, a significant
elevation can be observed in the production of SOD as a
result of recreational training [60, 61]. Proinflammatory
markers (e.g., myeloperoxidase (MPO), TNF-α, and IL-6)
are the main contributors of ROS generation and conse-
quently oxidative stress. Exercise, however, has also been
shown to be effective in the reduction of these well-
known inflammatory factors. Several studies showed that
increased physical activity resulted in diminishing inflam-
matory processes [49, 62, 63]. It is clarified that 6-week-
long voluntary exercise is effective enough to reduce
MPO activity and the level of TNF-α in hormone-
depleted rats [64]. It can therefore be concluded that exer-
cise represents a potent anti-inflammatory and antioxidant
strategy in healthy individuals and under pathological
conditions as well. It participates in reducing the risk of
morbidity and mortality through its direct and positive
impacts on human health.

2.6. Cancer Prevention. Studies provide numerous evidence
that physical activity reduces the risk of at least a dozen can-
cer types, including breast, colon, prostate, or lung cancer
[65]. In different chemical-induced or genetic tumor models,
all of the training modalities mentioned in this review have
been shown to be effective in reducing tumor growth or
metastasis [66, 67]. However, the underlying mechanisms
of this wide-ranging protection are not yet totally clarified,
but the possible mediators are inflammation-, antioxidant-,
and immune cell-related [68]. During physical activity, a sig-
nificant increase in muscle-derived myokines and intensified
mobilization of immune cells can be observed in the plasma.
While myokines have antiproliferative effects, immune cells
can be the most powerful components in the fight against
cancer [69, 70]. Pedersen et al. found a marked decrease in
tumor incidence and growth as a result of voluntary wheel
running in 5 different tumor types. They clarified that natu-
ral killer cells have a predominant role in this type of control
of tumor growth; with the induction of stimulatory cyto-
kines, enhancement of NK cell-related activated receptors,
and their intensified mobilization, they have a major role
in the training-related control of tumor growth [71].
Moreira et al. revealed that even a short-term voluntary
exercise decreased tumor growth and metastatic processes
in a tumor-bearing rat model [72]. A promising observation
was made by Hagar et al. as well that 8 weeks of training
enhanced antitumor immune processes, thus suppressing
tumor growth in mice [73]. Furthermore, aerobic exercise
resulted in enhanced tumor cell apoptosis, decreased tumor
weight, and diminished cell proliferation in a tumor-
bearing rat model compared to sedentary animals [74].
Physical activity has an unquestionable role in the primary
prevention of cancerous processes; however, it is also
extremely important in terms of health promotion after
the diagnosis. With the help of exercise, aerobic capacity
and muscle strength increase, while disease-free survival
may extend [75].

3. Characteristics of Animal Exercise Protocols

Animal models are essential in basic research including
every research field; thereby, choosing a well-designed exer-
cise protocol for the appropriate experiments is fundamen-
tal. Before initiating any exercise study, the most important
step is the proper selection of the animal model, as the objec-
tives of exercise-related research studies may be different.
For exercise training, rodents (rats and mice) are the most
commonly used animals due to their many advantages.
Rodents are the most affordable species for animal studies,
thanks to their low breeding cost. They have high fertility
and a relatively short gestational period with many offspring.
Another advantage of using rodents is that they require
comparatively small living space, and the experimental
apparatus designed for mice or rats are also easily accessible
[76]. Additionally, the capability of choosing genetically
modified strains designed for specific diseases has also
popularized these species in every research field. Despite
the several advantages of rodents in animal research, few
limitations are present in their application. In most animal
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studies, including exercise research, gender differences may
interfere with the results and make it difficult to generalize
data for both sexes, and although human and rodent genes
are largely similar, the small but more important differences
in the details (e.g., receptors) make rodents unsuitable for
some research areas. Considering all aspects, after choosing
the applicable animal model, we must consider the elemen-
tary factors of exercise. Physical activity can be characterized
according to its intensity, duration, modality, and frequency
[7, 77] (Figure 1).

Within the intensity of the training, we can distinguish
between the low- and high-intensity physical activities; in
terms of modality, we can differentiate between dynamic
training and static training. According to the duration, exer-
cise can be divided into short- or long-term exercise, while
the frequency of training can also be further subdivided into
several groups according to the goal of the study [8]. Exer-
cise must meet different criteria according to the purpose
of the research. As exercise research studies are designed
for assessing the impact of physical activity on several organ
systems, it is crucial to optimize the exercise protocol
according to the goal of the study. Furthermore, for the
successful outcome, exercise training must consist of several
fundamental phases including regeneration time. At the
beginning of the study (Phase I), animals should be familiar-
ized with the applied training in order to prevent any inju-
ries or exercise-induced stress. In this phase, adaptation to
the environment as well as acquaintance with new forms of
movement (e.g., swimming or running) takes place. Then,
the planned training with the appropriate intensity, modal-
ity, and duration is performed (Phase II). Last but not least,
in the case of a daily exercise period, resting time is also nec-
essary for the animals (Phase III) in order to restore physical
energy after training [8]. These previously described factors
fundamentally determine the outcome of the experiment;
thus, their understanding and accurate application are
essential for adaptation to human physiology. In the follow-
ing, we summarize the most often used aerobic and anaero-
bic training models with their possible areas of application.

4. Aerobic Exercise Models

The most commonly used aerobic exercise models in differ-
ent research fields are voluntary wheel running, forced wheel
running, swimming, and treadmill running (Table 1). The
aim of these studies can be twofold: to determine the role
of sport in disease prevention or to allocate its wide-
ranging effects on preexisting disorders.

4.1. Wheel Running. Voluntary wheel running is a form of
exercise where animals have free access to a metal wheel
for the whole training time. The running wheel is usually
built into the cages of the animals; therefore, they can use
the apparatus according to their needs at a lower intensity,
any time of the day for any length of time [76]. Running
wheels are suitable for smaller rodents (e.g., mice or rats)
and are nowadays often equipped with an activity tracking
device, which allows the scientist to track down the running
distance of the animals. This recreational training is the

most stress-free modality of exercise; thus, it is suitable for
aging studies and also in conditions where it is important
to avoid strenuous exercise [30]. As for the duration of the
experiment, voluntary wheel running is applicable for short-
and long-term interventions as well. Due to its voluntary,
nonstrenuous nature, it is often used for cardiovascular
and metabolic studies, but it is suitable for almost every
research area [78–80]. Long-term voluntary wheel running
is considered to be protective against cardiac injury [81]
and an effective tool to enhance antioxidant mechanisms
[82]. According to Cunha et al., 3-week-long wheel running
improved overall antioxidant status in mice [83]. Addition-
ally, 12 weeks of wheel running exercise exerted its positive
influence on lipid metabolism by resulting in a significant
decrease in the level of plasma triglyceride and leptin [21].
Along with metabolic effects, long-term voluntary wheel
running favorably affected bone properties as well in young
mice [84]. Voluntary wheel running was also a convenient
exercise protocol in neurodegenerative disorders, as it effec-
tively mitigated impaired spatial memory and neuropatho-
logical changes in aging rats through complex biochemical
processes [85]. This type of aerobic exercise is also a popular
therapeutic approach to tumor prevention and treatment in
cancer research [86].

A very similar form of movement to voluntary wheel
running is forced wheel running. Forced wheel running dif-
fers from the previously mentioned form of wheel running
in that its wheel is centrally motorized. This automatically
rotating wheel is connected to a specific software program,
which allows the scientist to adjust training intensity
throughout the running from low to intermediate levels.
This training modality offers better control of exercise
parameters compared to voluntary wheel running. Forced
wheel running is suitable for short-term and long-term
interventions as well, depending on the purpose of the study.
Similar to voluntary wheel running, this type of exercise is
applicable in many areas of research.

4.2. Treadmill Running. Treadmill running is considered to
be a forced training model, usually applied with smaller
rodents or dogs. Unlike voluntary wheel running, during
this exercise, animals are removed from their cages and
forced to run on a treadmill. Scientists can change several
parameters according to the goal of the study; it allows them
to perform moderate- or high-intensity training by adjusting
speed, duration, or inclination [76]. Treadmill running is a
widely used exercise modality, especially in cardiovascular
or metabolic research studies. It has been proved that high-
intensity treadmill training is an efficient method to reduce
cardiovascular risk factors. Haram et al. confirmed that it
was able to decrease blood pressure and improve endothelial
function and different metabolic parameters as well [87]. It
was also reported that high-intensity exercise stimulated
mitochondrial biogenesis, thereby contributing to cardiac
improvements [88]. Furthermore, this kind of exercise is
an applicable method to recreate exercise-induced physio-
logical cardiac hypertrophy. Kemi et al. proved that 4 weeks
of intensity-controlled treadmill running caused elevated
ventricular weights and normalized the structure and
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Exercise

Intensity Duration

Frequency Modality

Low

Moderate

High

1/2/3
days/week 

4/5
days/week

1/2/3
times/day 

Static

Long-term

Swimming

Treadmill
running

Voluntary
wheel

running

Dynamic

Short-term

0304

01 02

Figure 1: Fundamental elements of the exercise protocol. Intensity, duration, frequency, and modality are the four key components of an
exercise protocol. Further variants of these subgroups can be used to refine the form of training.

Table 1: Detailed summary of different exercise modalities (advantages, disadvantages, and areas of application).

Type of exercise Most common research areas Advantage Disadvantage

Aerobic

Voluntary wheel
running

Aging, cardiovascular research, behavioral research, cancer research,
metabolic research, stroke, liver and kidney disease, bone and muscle

physiology, memory
Nonstressful

Uncontrollable
(intensity,
duration)

Possible paw
injuries

Forced wheel
running

Aging, cardiovascular research, behavioral research, cancer research,
metabolic research, stroke, liver and kidney disease, bone and muscle

physiology, memory

Controllable (intensity,
duration, frequency)

Stressful
Possible paw

injuries

Treadmill
running

Cardiovascular research, behavioral research, cancer, metabolic research,
stroke, liver and kidney disease, bone and muscle physiology, memory

Controllable (intensity,
duration, frequency)

Stressful
Possible paw

injuries
Expensive
apparatus

Swimming
Aging, cardiovascular research, behavioral research, cancer, metabolic
research, stroke, liver and kidney disease, bone and muscle physiology,

memory, spinal cord injury

No paw injuries
Less expensive
apparatus

Stressful

Anaerobic (resistance)

Ladder climbing
Memory, behavioral research
Muscle hypertrophy model

With familiarization, it
is less stressful

Long
familiarization

process

Weight lifting Muscle hypertrophy model
Similar to human

training
Quantitative

Stressful to
animals

Special equipment
is needed

Electric
stimulation of the
muscles

Muscle hypertrophy model
Muscle injury

Controlled muscle
stimulation
Quantitative

Anesthesia
Surgery

Artificial muscle
contraction
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function of the heart in female and male mice [89]. The
work of Kim and Hwang discussed that a short-term (3
weeks) treadmill training was able to improve oxidative
parameters in rats with cardiomyopathy [90], while the work
of Cechetti et al. demonstrated that a moderate-intensity
treadmill training mitigated oxidative damage in the rat
hippocampus, therefore contributing to cognitive improve-
ments [91]. According to the results of Wu et al., 9 weeks
of treadmill exercise has beneficial effects against
depression-like behavior in rats [92]. In addition, 3 weeks
of forced running has also been shown to be beneficial in
doxorubicin-induced liver disease through the normaliza-
tion of oxidative stress markers [93]. Treadmill running is
an often-applied exercise modality in cardiovascular
therapy-connected research studies; however, conditions
occurring during this kind of exercise are generally stressful,
which circumstances may interfere with the experimental
results, and for that reason, it is not recommended in aging
studies. In addition to these areas of use, this type of training
at different intensities is able to change the microstructure of
the bones, according to Liu et al. [94]. Treadmill running is
effective in a hormone-depleted female rat model as well, as
its long-term application significantly increased bone mass
and strength in young and adult rats [95].

4.3. Swimming. Similar to treadmill running, swimming is
also a forced training model. This exercise modality obvi-
ously requires a simple swimming apparatus (e.g., a tank),
which has to be large enough for the training. It is filled with
30-32°C water, the depth of which must be appropriate to
the size of the animal [76]. In order to minimize the
water-induced stress response, animals must be familiarized
with the environment before the experiment. Unlike in the
case of running exercises, here, sedentary control animals
should also be placed in shallow water in order to exclude
the stressful effects of water [96]. In this type of exercise,
both the duration and the frequency can be adjusted accord-
ing to the purpose of the experiment. Based on these factors,
we can distinguish between the moderate- and strenuous-
intensity exercises. Moderate training means 1 hour/day, 5
days/week for 8 weeks, while strenuous exercise requires an
increasing duration of the sessions, finally reaching a 2.5-
hour-long training period/day for also 8 weeks [97]. Further-
more, the swimming procedure can be used as an aerobic
exercise with or without an attached weight workload [98].
Swimming with extra weight allows us to study the cardio-
vascular effects of an exhaustive, strenuous exercise. Olah
et al. proved that a 3-hour-long swimming exercise with an
extra 5% body weight attached to the animal resulted in ele-
vated plasma troponin T and creatine kinase. Furthermore,
they demonstrated that this kind of exhaustive training
caused elevated apoptotic signaling and matrix metallopro-
tease dysregulation in the heart [99].

Moderate-intensity swimming, however, is a suitable
exercise protocol to study physiological hypertrophy, similar
to treadmill running. The findings of Evangelista et al.
demonstrated that 90min of swimming twice a day, 5 days
a week for a 4-week-long period, induced physiological
hypertrophy in mice and contributed to normalized heart

function [100]. Besides cardiovascular effects, moderate-
intensity swimming was proved to be efficient in complex
metabolic mechanisms. Moustafa and Arisha clarified the
beneficial changes of swimming exercise in terms of
metabolic alterations [101]. Short-term swimming could be
effective by decreasing blood glucose levels and improving
insulin-connected pathways in diabetic rats [102]. Besides
metabolic influence, swimming exerts anti-inflammatory
effects by reducing proinflammatory cytokines in diabetic
rats according to de Lemos et al. [103]. It has also been
proven that 8 weeks of swimming training successfully mit-
igated the oxidative damage of the brain and increased its
antioxidant status as well [104]. Similarly, Stone et al. found
that moderate-intensity swimming was able to upregulate
the expression of GSH, SOD, and catalase enzymes, thus
ameliorating the antioxidant properties of the hippocampus
[105]. According to the latest findings of Alomari et al.,
short-term swimming resulted in a significant improvement
in short- and long-term memories in rats [106]. In this con-
text, Park et al. proved that swimming ameliorated memory
defects and psychological disorders by increasing serotonin
expression and neurogenesis [107]. The areas of application
of swimming extend to the osteoskeletal system as well, as
clear results were obtained by Hart et al., who proved that
12-week-long swimming training was effective in the
improvement of bone density, structure, and formation in
a hormone-depleted female rat model [108].

5. Resistance (Anaerobic) Training

Resistance training is an exercise modality designed to
enhance muscular strength, power, or physical capacity. In
this type of training, external assistance (e.g., electric stimuli,
surgery, and specific equipment) is essential to provoke the
animals to perform the exercise. Resistance training is usu-
ally used for studies in connection with cognitive function
and muscle hypertrophy or atrophy [11, 109].

5.1. Ladder Climbing. In this type of resistance training, rats
are trained to climb a ladder with a load apparatus stabilized
to their tail. To perform ladder climbing, no noxious stimuli
or motivators are necessarily needed; thus, it can be consid-
ered a voluntary exercise. Animals need to be progressively
familiarized and trained with climbing the specially designed
ladder before the experiment. The intensity of this exercise is
defined by how many climbing repetitions are performed
during one training phase. It can be applied as a short-
term or long-term exercise model as well. Due to the
increased muscle workload, in this type of exercise modality,
significant muscle hypertrophy is obtained [110]. Jung et al.
clarified that 8 weeks of ladder climbing upregulated the
muscle hypertrophy-related myokines in young and adult
rats [111]. In addition to muscle hypertrophy, ladder models
are increasingly used for studies involving the central
nervous system. In this context, according to the results of
Cassilhas et al., 8 weeks of ladder climbing exercise
improved hippocampus-dependent memory tasks in rats
[10]. It also increases cell proliferation and the expression
of antiapoptotic proteins in the hippocampus [112].
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5.2. Weight Lifting. Unlike humans, rodents can perform
weight lifting by standing upright and lengthening their
hindlimbs. In a specific squat training apparatus, additional
weight is added to the animals by using a belt or a shoulder
harness. The main disadvantage of this type of resistance
training is the use of harmful stimuli in order to motivate
the animals to complete the training. This protocol results
in nearly 20% hypertrophy of the leg muscles; thus, it is suit-
able for research on muscle development [113].

5.3. Electric Stimulation of the Muscles. In order to perform
this protocol, animals must be anesthetized. This model also
requires an implanted electric stimulator placed into the
muscle to be examined [114]. Scientists can control the
degree of electric stimulation, which can occur bilaterally
or unilaterally. This modality of training evokes significant
muscle hypertrophy [115]. The advantage of this protocol
is that cooperation of the animals is less needed as a result
of anesthesia, although this also implies its disadvantage, as
anesthetics may influence the physiology of the animal [76].

6. Concluding Remarks

All things considered, the positive effects of physical activity
on overall health are unquestionable. Even though animal
exercise models have their own limitations, the data
obtained through their applications could bring us closer
to solving global health issues. As seen, even short-term
training can upregulate the antioxidant defense system and
induce multifaceted beneficial effects throughout the body.
With this nonpharmacological, health-promoting tool, a
large percentage of noncommunicable diseases, including
metabolic syndrome, CVDs, or even cancer, could be
averted. In order to gain a better insight into exercise phys-
iology and its impacts on health status, well-designed animal
models are needed.
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