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Osteoarthritis (OA), characterized by chronic systemic low-level inflammation and cartilage degeneration, is a type of arthritis
closely associated with aging. Inflammation and aging play a pivotal role in the occurrence and progression of OA. NLRP3
inflammasome is involved in many inflammatory and aging diseases, and NLRP3 inhibitor MCC950 has anti-inflammatory and
antisenescence effects on some diseases such as Alzheimer’s disease. In the present study, we found that NLRP3 protein was
upregulated in human and mouse OA cartilage. Moreover, NLRP3 and Caspase1 expression induced by IL-1β in chondrocytes
was blocked by MCC950. In addition, MCC950 inhibited the expression of inflammatory mediators, matrix-degrading enzymes,
senescence marker protein P16 (INK4A), and β-galactosidase, as well as excessive production of ROS. Meanwhile, MCC950
promoted autophagy-related protein expression and autophagy flux under the inflammatory condition. However, autophagy
inhibitor 3-MA reversed anti-inflammatory and anticatabolic effects of MCC950. In in vivo experiments, intra-articular
administration of MCC950 further showed its protective effect on cartilage degeneration. Bioinformatic analysis and in vitro
experimental results revealed that MCC950 might play a protective role in cartilage by regulating Nrf2/HO-1/NQO1,
PI3k/Akt/mTOR, P38/MAPK, and JNK/MAPK pathways. In conclusion, our work demonstrated that NLRP3 inhibitor
MCC950 might serve as a promising strategy for OA treatment.

1. Introduction

Osteoarthritis (OA) affects more than 250 million people
worldwide, among which middle-aged and elderly people
are vulnerable [1]. OA is widely known as a disease of the
whole joint, with the cartilage, synovial tissue, and subchon-
dral bone to be regarded as the main lesions in the initiation
and propagation of the disease [2]. Joint pain, swelling, and
stiffness are common symptoms in OA, in which inflamma-
tion and aging play a crucial role [3, 4]. Current clinical prac-
tices mainly rely on nonsteroidal anti-inflammatory drugs to
relieve symptoms such as pain, while the drug-related cardio-
vascular and gastrointestinal side effects cannot be avoided.
Thus, there is an urgent need to explore new targeted drugs
with fewer side effects.

Low-grade systemic chronic inflammation is one of the
main characteristics of OA [5]. Inflammatory factors such
as IL-1β can induce matrix degradation, oxidative stress,
cell senescence, and impaired autophagy in chondrocytes,
leading to cartilage degeneration [6]. Inflammasomes play
a vital role in the initiation and development of inflamma-
tion via promoting the maturation and secretion of IL-1β
[7]. NLRP3 (NOD-, LRR-, and pyrin domain-containing
protein 3), which contributes to the occurrence of many
inflammatory diseases such as rheumatoid arthritis (RA)
[8], atherosclerosis [9], and gout [10], has received exten-
sive attention in recent years. Moreover, numerous studies
have shown that NLRP3 can interact with autophagy neg-
ative regulation protein mTOR and antioxidant protein
Nrf2 to disrupt cell homeostasis [11, 12]. And inhibition

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 4139048, 14 pages
https://doi.org/10.1155/2021/4139048

https://orcid.org/0000-0003-0047-6343
https://orcid.org/0000-0001-6284-643X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4139048


of NLRP3 can promote autophagy [13] and alleviate oxi-
dative stress [14] as well as aging-related diseases [15],
indicating that NLRP3 might be a promising therapeutic
target for OA.

MCC950, a selective inhibitor of NLRP3, inhibits the
expression of Caspase1 and IL-1β [16], thereby blocking sub-
sequent inflammation. In addition, MCC950 is qualified with
the capacity of pain alleviation [17], antioxidation [18],
autophagy regulation [19], and antiaging effect [20]. More-
over, MCC950 is supposed to enter the future clinical trial
for Parkinson’s disease owing to its antineuroinflammatory
action [21]. Currently, the effect of MCC950 on synovitis in
RA has been reported [22], whereas there are limited reports
about the protective effect of MCC950 on chondrocytes.

The purpose of our study is to explore the probable effect
and underlying mechanism of MCC950 on cartilage via
in vivo and in vitro experiments, thus providing more clues
for its therapeutic effect on OA.

2. Materials and Methods

2.1. Chemicals and Reagents. MCC950 was purchased from
TOPSCIENCE. R&D Systems (501-RL-010, USA) provided
mouse IL-1β cytokine. Primary antibodies against iNOS
were obtained from Abcam (Shanghai, China). Components
of the MAPK and PI3K/Akt/mTOR pathway, COX-2,
Atg5/12, Beclin-1, and LC3A/B were acquired from CST
(Beverly, MA, USA). In addition, Proteintech Group
(Wuhan, Hubei, China) provided the corresponding pri-
mary antibody for GAPDH, MMP-13, collagen II, and
components of the Nrf2/HO-1/NQO1 pathway. Primary
antibody for ADAMTS5, secondary antibodies, collagenase
type II, tyrisin, and phosphate buffer saline (PBS) buffer
solution were purchased from Boster Biological Technology
(Wuhan, Hubei, China). LC3 autophagy double-labeled ade-
novirus was acquired from Hanbio (Shanghai, China). The
nuclear and cytoplasmic protein extraction kit, ROS assay
kit, and senescence β-galactosidase staining kit were pur-
chased from Beyotime (Shanghai, China).

2.2. Tissue Collection and Ethics Statement. Osteoarthritis
human articular cartilage tissues were obtained from
patients (n = 6) with knee OA undergoing total knee arthro-
plasty. The stage of OA was assessed by combining X-ray
with the Kellgren-Lawrence grading scale. Normal human
articular cartilage tissues were collected from patients
(n = 6) without OA undergoing lower limb amputation
owing to trauma. All patients were informed and signed
consent. All experimental procedures were approved by the
Ethical Committee of Tongji Medical College, Huazhong
University of Science and Technology.

2.3. Identification of MCC950 Target Genes, Their Interaction
Network, and OA-Related KEGG Pathways Containing
MCC950 Target Genes. We predicted MCC950 target genes
via using the PharmMapper database, then imported them
into the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) for KEGG pathway enrichment
analysis. To further explore the interaction of these genes,

we used Cytoscape 3.7.2 and MCC algorithm to screen tar-
geted genes and construct protein-protein interaction (PPI)
networks. Moreover, we intersected KEGG pathways of these
genes with OA-related pathways obtained from the miRWalk
2.0 database [23] to identify MCC950-related OA pathways.
The Venn Diagram (Venny2.1, http://bioinfogp.cnb.csic.es/
tools/venny/index.html) was used to show the common
pathways.

2.4. Top KEGG Pathway Enrichment Analysis and Centrality
Evaluation of MCC950 Target Genes. We selected the top six
KEGG pathways from the intersection pathways and pre-
sented KEGG pathway enrichment analysis via using Path-
way Builder Tool 2.0 (https://www.proteinlounge.com).
Furthermore, we also evaluated the centrality of all the
MCC950 target genes in the network by Cytoscape 3.7.2.
Then, the degree, betweenness, and closeness centrality of
MCC950 target genes in the network were presented in the
string figure by using the circlize R package, which also
included where genes are located on chromosomes and
how they are connected.

2.5. Cell Viability Assay. Cytotoxicity of MCC950 on mouse
articular chondrocytes was assessed by a CCK8 kit. Cells
were seeded into 96-well plates in proper density (5000-
10000/well). Then, stimulated with various concentrations
(0.01, 0.1, and 1μM) of MCC950 for 24 h, 10μl CCK-8 solu-
tion was subsequently added to each well. Four hours later, a
microplate reader (Bio-Rad, Richmond, CA, USA) at 450nm
was utilized to acquire OD (optical density) values of each
well to assess the cell viability of chondrocytes.

2.6. Western Blotting. Each well in six-well plates was added
into 100μl RIPA Lysis Buffer (1% of protease and phospha-
tase inhibitors) and laid on ice for 0.5 h. Then, the cell mix-
ture was centrifugated at 12000 r/min for 0.5 h at 4°C.
Protein concentration was evaluated by the OD value
obtained by using a microplate reader (Bio-Rad, Richmond,
CA, USA) at 562nm. Nuclear proteins and cytoplasmic pro-
teins were extracted by a kit (Beyotime, Shanghai, China)
following the protocol. Denatured protein samples were
subjected to 10% or 12% SDS-PAGE and transferred to
PVDF membranes. After blocking with 5% skimmed milk
for 1 h, the target proteins in the membrane were incu-
bated with the correspondent primary antibodies for 16h
at 4°C, subsequently incubated with secondary antibodies
for 1 h at room temperature. Supersensitive ECL chemilumi-
nescent substrates (Yeasen, Shanghai, China) and an imager
(Bio-Rad, USA) were utilized to develop the target proteins,
and the related average optical density value of proteins was
analyzed by ImageJ software.

2.7. mRFP-GFP-LC3 Adenovirus Infection. To observe the
autophagy flux, mRFP-GFP-LC3 autophagy double-labeled
adenovirus was used to overexpress LC3 protein and label
red and green fluorescence. When chondrocyte convergence
was about 50%, cells were infected with respective adenoviral
vectors at a multiplicity of infection (MOI) of 20 as previ-
ously reported [24]. Owing to the acid sensitivity of green
fluorescence, the green fluorescence will be quenched due
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to the formation of autolysosomes, and only red fluores-
cence will exist. Through counting the number of green
and red nodes, respectively, the number of autophagosomes
and intensity of autophagy could be assessed.

2.8. Quantification of ROS. The ROS assay kit (Beyotime,
Shanghai, China) was utilized to determine and assess the
production of ROS. After removing the medium containing
serum, cells were incubated with the DCFH-DA fluores-
cence probe (10μM) prepared with serum-free medium for
30min under a dark condition at 37°C, then detected by
fluorescence microscopy and flow cytometry.

2.9. Senescence β-Galactosidase Staining. We used a senes-
cence β-galactosidase staining kit to evaluate the activity of
β-galactosidase. Cells were fixed for 15min at room temper-
ature, then incubated with staining fluid overnight at 37°C
under no-CO2 condition, using light microscopy to observe
and count the number of blue spots.

2.10. OA Mouse Model. Seven-week-old C57 male mice were
subjected to three groups (n = 6 per group) at random,
including the sham group, the DMM group, and the DMM
+MCC950 group. After one week of adaption to the envi-

ronment, C57 male mice were utilized for experiments. We
just opened the joint cavity of mice anesthetized by intraper-
itoneal injection of pentobarbital (35mg/kg) in the sham
group on the right knee joint but further conducted destabi-
lization of medial meniscus (DMM) surgery in the other two
groups. After opening the joint cavity, the medial meniscus
tibial ligament was cut off to destabilize the mobility of the
medial meniscus. One week after the surgery, saline solution
was injected into the joint cavity of mice in the sham and
DMM groups, and mice in the DMM+MCC950 group
received MCC950 (3mg/kg) intra-articular injection. These
animals were asphyxiated to death with CO2 after eight
weeks of intra-articular injection. The right knee joint
(upper tibia and lower femur) was fixed with 4% paraformal-
dehyde for 24 h, then decalcified in EDTA-NaOH solution
on a horizontal shaker for 1 to 2 weeks. And the knee joints
were dehydrated and embedded in paraffin. 6mm sagittal
sections were taken through the entire joint at 80mm inter-
vals. Slides were stained with Safranin-O and fast green. The
degradation degree of mouse articular cartilage was evalu-
ated according to the Osteoarthritis Research Society Inter-
national (OARSI) score. Moreover, the expression of
NLRP3, MMP13, Beclin-1, and Nrf2 in mouse knee articular
cartilage was also evaluated by immunochemical staining.
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Figure 1: NLRP3 expression was enhanced in human OA cartilage. (a) Safranin-O and fast green and immunohistochemical staining of
human knee articular cartilage. Scale bar: 200μm and 100μm. (b) Quantification analysis of NLRP3 expression in human cartilage. Data
are shown as the mean ± SD. Significant differences between groups are indicated as ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. normal
group.
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2.11. Statistical Analysis. All experiments were repeated
three times independently. The data was analyzed by Graph-
Pad Prismv.7.01 software (GraphPad Inc., La Jolla, CA,USA).
The results are shown as means ± S:D: Student’s t-test was
used to compare differences between any two groups. One-
way analysis of variance (ANOVA) was utilized to determine
differences among two or more groups, followed by a Tukey
test. P value < 0.05 was considered significant.

3. Results

3.1. NLRP3 Expression Was Enhanced in OA Human Knee
Articular Cartilage. In our study, we detected the expression
of NLRP3 in both normal and OA cartilage. Results
(Figures 1(a) and 1(b)) showed that the number of NLRP3
positive cells in OA cartilage was much higher than in nor-
mal cartilage, especially in areas where the cartilage was
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Figure 2: MCC950 inhibited NLRP3 expression in IL-1β-treated chondrocytes. Mouse chondrocytes were stimulated with 5 ng/ml IL-1β for
24 h after pretreatment with MCC950 for 2 h. (a) Chemical formula of MCC950. (b) CCK-8 assay of MCC950. (c) Western blotting results
of NLRP3 expression in mouse chondrocytes only treated with MCC950 or not. (d) Quantification analysis of western blotting results.
∗P < 0:05 vs. control group. (e) Western blotting results of NLRP3, Caspase1, and Cleaved-Caspase1 expression in mouse chondrocytes
treated with MCC950 with or without IL-1β. (f) Quantification analysis of western blotting results. Data are shown as the mean ± SD.
Significant differences between groups are indicated as #P < 0:05 vs. control group; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. IL-1β
group.
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worn away, which showed a potential association between
NLRP3 and cartilage degeneration.

3.2. MCC950 Inhibited NLRP3 Expression in IL-1β-Treated
Mouse Chondrocytes. We found that MCC950 was safe to
chondrocytes at suitable concentrations ranging from 0.01
to 1μM through the CCK8 cytotoxicity assay (Figure 2(b)).
MCC950 inhibited the expression of NLRP3 both in normal
mouse chondrocytes (Figures 2(c) and 2(d)) and IL-1β-
treated mouse chondrocytes (Figures 2(e) and 2(f)) in a
dose-dependent manner. Meanwhile, Caspase1 and Cleaved-
Caspase1, downstream molecule of NLRP3, were also inhib-
ited at the protein level in inflammatory conditions.

3.3. MCC950 Repressed Inflammation and Catabolism in
IL-1β-Treated Chondrocytes. To further evaluate the anti-
inflammatory and catabolism regulatory effect of MCC950
on chondrocytes, we detected the expression of inflammatory,
anti-catabolic, and anabolic mediators. Under the stimulation
of IL-1β, the protein expression of iNOS, Cox2, MMP13, and
ADAMTS5 was substantially upregulated, and Col2 expres-
sion was highly downregulated (Figures 3(a) and 3(b)).
However, MCC950 significantly reversed the increase of
inflammatory and anti-catabolic factor expression and res-
cued the decrease of Col2 expression.

3.4. MCC950 Ameliorated Autophagy Downregulation in
IL-1β-Treated Chondrocytes. Autophagy plays a critical role
in the regulation of inflammation, anabolism, and catabolism.
Thus, we aimed to identify whether the anti-inflammatory
effect of MCC950 is associated with autophagy. It was
observed that the expression of autophagy-related proteins,
such as Atg5, Atg12, Beclin-1, and LC3II (Figures 4(a) and

4(b)), as well as the number of autophagosomes and autolyso-
somes (Figures 4(c) and 4(d)), was decreased under the stim-
ulation of IL-1β. When pretreated with MCC950, the
autophagy-related protein expression and the amount of
autophagosomes were increased compared with the IL-1β
group. Then, we found that 3-MA, an autophagy inhibitor,
abolished the anti-inflammatory and anticatabolic effect of
MCC950 (Figures 4(e) and 4(f)).

3.5. MCC950 Reduced IL-1β-Induced Oxidation Stress in
Chondrocytes. It is reported that IL-1β could promote the
expression of ROS [25, 26], and excessive production of
ROS is a potent inducer for OA. We therefore investigated
the possible effect of MCC950 on the production of ROS
and explored the underlying mechanism. We found that
administration of MCC950 effectively suppressed the
production of substantial ROS (Figures 5(a)–5(c)) incurred
by IL-1β stimulation in chondrocytes both from the obser-
vation of fluorescent microscope and flow cytometry. Based
on this, we further detected the expression of Nrf2/HO-
1/NQO1 pathway protein under the stimulation of
MCC950. As anticipated, nuclear protein and plasma pro-
tein expression of Nrf2 was enhanced significantly after
being treated with MCC950 alone (Figures 5(d) and 5(e)).
Consistent with the data reported previously [27], we found
that IL-1β increased Nrf2 expression, and pretreatment with
MCC950 could further enhance the expression of Nrf2, HO-
1, and NQO1 proteins (Figures 5(f) and 5(g)).

3.6. Inhibitory Effect of MCC950 on Cell Senescence-Related
Indicators in Chondrocytes. Chondrocyte senescence is a
typical phenomenon in the progression of OA, and inflam-
mation is a paramount inducer of aging. Under the
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Figure 3: Anti-inflammatory and anti-catabolic effects of MCC950. Mouse chondrocytes were pretreated with MCC950 for 2 h, then
stimulated with 5 ng/ml IL-1β for 24 h. (a) Western blotting results of inflammatory mediators and matrix-degrading enzymes. (b)
Quantification analysis of western blotting results. Data are shown as the mean ± SD. Significant differences between groups are indicated
as #P < 0:05 vs. control group; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. IL-1β group.
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Figure 4: Regulation of autophagy by MCC950. (a, b) Western blotting results and quantification analysis of autophagy-related protein
expression, including Atg5, Atg12, Beclin-1, and LC3I/II in chondrocytes treated with IL-1β with or without MCC950. #P < 0:05 vs.
control group; ∗P < 0:05 vs. IL-1β group. (c, d) Autophagy detection of chondrocytes transfected with the mRFP-GFP-LC3 adenovirus.
Autophagosomes were represented by yellow puncta and autolysosomes by red puncta in merged images. #P < 0:05 vs. control group;
∗P < 0:05 and ∗∗P < 0:01 vs. IL-1β group. Scale bar: 50 μm. (e, f) Western blotting results and quantification analysis of inflammatory
mediators and matrix-degrading enzymes in chondrocytes treated with or without 3-MA (5mM) before treatment with MCC950 or
IL-1β. #P < 0:05 vs. control group; ∗P < 0:05 vs. IL-1β group.
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Figure 5: Continued.
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Figure 5: Antioxidative effect of MCC950. Mouse chondrocytes were pretreated with MCC950 for 2 h, then stimulated with 5 ng/ml IL-1β
for 24 h. (a) ROS production observed under a fluorescence microscope. Scale bar: 200μm. (b) Flow cytometry results of ROS production.
(c) Quantification analysis of the mean fluorescence intensity (MFI) of ROS in chondrocytes. #P < 0:05 vs. control group; ∗P < 0:05 vs. IL-1β
group. (d, e) Western blotting results and quantification analysis of Nrf2 nuclear/plasma protein expression. ∗P < 0:05 vs. control group.
(f, g) Western blotting results and quantification analysis of Nrf2/HO-1/NQO1 pathway proteins. ∗P < 0:05 and ∗∗P < 0:01 vs. control group.
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Figure 6: Inhibitory effect of MCC950 on senescence phenotype. Mouse chondrocytes were stimulated with 5 ng/ml IL-1β for 24 h after
pretreatment with MCC950 for 2 h. (a, b) Western blotting results and quantification analysis of senescence marker protein P16 (INK4A). (c)
β-Galactosidase staining of chondrocytes. Scale bar: 100μm. (d) Quantification analysis of β-galactosidase activity. Data are shown as the
mean ± SD. Significant differences between groups are indicated as #P < 0:05 vs. control group; ∗P < 0:05 and ∗∗P < 0:01 vs. IL-1β group.
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stimulation of IL-1β, senescence marker protein P16
(INK4A) expression was enhanced significantly. However,
MCC950 reduced the production of P16 protein in IL-1β-
treated chondrocyte without influencing its basal expression
(Figures 6(a) and 6(b)). Moreover, we also assessed the activ-
ity of β-galactosidase which is an essential enzyme involved
in regulating the aging process. In normal chondrocytes, the
expression of β-galactosidase is low, but it has high activity
in IL-1β-treated chondrocytes. Pretreatment with MCC950
could effectively inhibit this phenomenon (Figures 6(c) and
6(d)), which was correlated with the western blot result.

3.7. Bioinformatic Analysis of MCC950 Target Genes and
OA-Related KEGG Pathways. We utilized bioinformatic
methods to ascertain the potential target genes of MCC950
on the basis of the PharmMapper database. Through KEGG
pathway enrichment analysis of these target genes
(Figure 7(a)), we found that PI3K/Akt, MAPK, and Ras sig-

naling pathways were the three pathways enriched with the
most genes. To further clarify the association among
MCC950 target genes, we selected 40 genes to construct
the PPI network (Figure 7(b)). Among these genes, Akt1,
MAPK8, SRC, ALB, and CASP3 are regarded as the top five
genes according to the results of weight assessment. Then, 59
MCC950-related pathways were obtained through KEGG
pathway enrichment analysis of the 40 genes. Meanwhile,
we screened 105 OA-related pathways from the miRWalk2.0
database. On this basis, 17 common pathways (Figure 7(c))
were obtained by taking the intersection of the KEGG
pathway of the 40 genes above and the OA-related pathway;
thus, OA-related pathways that MCC950 may act on were
acquired.

3.8. Top KEGG Pathways and Hub Genes of MCC950 Target
Genes. Figure 7(d) shows the enrichment information of
the top six KEGG pathways of MCC950 target genes,
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Figure 7: Bioinformatic analysis of MCC950 target genes and pathways. (a) KEGG pathway enrichment analysis of MCC950 target genes.
(b) Interaction network diagram of MCC950 target genes. (c) Intersection of MCC950 KEGG pathways and OA-related pathways (Veen
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including proteoglycan in cancer, MAPK, PI3K/Akt, endo-
crine resistance, focal adhesion, and Ras pathways, and the
six pathways were also included in OA-related pathways.
We also found that SRC, CASP3, and Akt1 are the top three
genes according to their own degree. Moreover, Akt1 was
regarded as the hub gene owing to its association with all
the top six pathways. The circular diagram (Figure 7(e)) rep-
resents the chromosomal position and connectivity of the
MCC950 target genes. Among these genes, Akt1 also shows
a greater degree, betweenness, and closeness centrality.

3.9. MCC950 Inhibited the Activation of PI3K/Akt/mTOR and
MAPK Pathways in IL-1β-Treated Mouse Chondrocytes.
PI3K/Akt/mTOR and MAPK pathways, which are closely
linked to inflammation, metabolism, and autophagy, play a
key role in the development of OA. Meanwhile, in order to
verify the prediction results of bioinformatic analysis, wemea-
sured the protein expression of the two pathways. Results

(Figures 8(a)–8(d)) showed that IL-1β significantly promoted
the activation of these pathways, whereas pretreatment with
MCC950 effectively blockaded their activation which mani-
fests as phosphorylation. In addition to the ERK/MAPK
pathway, phosphorylation of other pathway proteins was also
repressed markedly by MCC950.

3.10. Protective Effect of MCC950 on Mouse Knee Articular
Cartilage. Degradation of cartilage is a typical characteristic
of OA. In our experiment, we used the DMM model to sim-
ulate the process of OA and observed the wear and peeling
of cartilage in the DMM group (Figures 9(a) and 9(b)) com-
pared with the sham group. After MCC950 (3mg/kg) was
injected into the articular cavity for 8 weeks, amelioration
of cartilage degradation could be observed. Moreover, the
OARSI score in the DMM+MCC950 (3mg/kg) group was
lower than that in the DMM group. In addition, we also
evaluated the expression of NLRP3, MMP13, Beclin-1, and
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Figure 8: MCC950 inhibited activation of MAPK and PI3K/Akt/mTOR pathways in IL-1β-treated chondrocytes. (a, b) Western blotting
results and quantification analysis of MAPK pathway proteins. (c, d) Western blotting results and quantification analysis of
PI3K/Akt/mTOR pathway proteins. Data are shown as the mean ± SD. Significant differences between groups are indicated as #P < 0:05
vs. control group; ∗P < 0:05 vs. IL-1β group.
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Nrf2 in mouse cartilage via using immunochemical staining.
Compared with the sham group, cartilage in the DMM
group showed more NLRP3 positive and MMP13 positive
chondrocytes, but less Beclin-1 positive chondrocytes. How-
ever, there were nonsignificant differences in the number of
Nrf2 positive chondrocytes between the two groups
(Figures 9(a) and 9(c)). In contrast to the DMM group,
NLRP3 and MMP13 positive chondrocytes were decreased
significantly, but Beclin-1 and Nrf2 positive chondrocytes
were increased in the DMM+MCC950 (3mg/kg) group.

4. Discussion

Inflammation plays an important role in the occurrence and
development of OA. For example, substantial inflammatory

factors were produced during the process of synovitis, thus
contributing to the production of matrix-degrading enzymes
and promoting cartilage degeneration consequently [28]. In
addition, endogenous inflammation of chondrocytes also
plays an important role [29]. NLRP3 inflammasome has
been reported to be involved in hydroxyapatite-induced
synovitis of the knee [30], and the application of NLRP3
inhibitor MCC950 can also significantly ameliorate RA
[22]. Our study showed that MCC950 decreased the expres-
sion of NLRP3 in normal chondrocytes and IL-1β stimu-
lated chondrocytes and reduced the wear of articular
cartilage in OA mice. Therefore, we proposed that NLRP3
may be directly involved in the degeneration of cartilage in
OA. MCC950 may play a protective role by inhibiting the
expression of NLRP3 in articular cartilage and synovial
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Figure 9: MCC950 ameliorated cartilage destruction in a mouse OA model in vivo. (a) Safranin-O and fast green and immunochemical
staining of MMP13, NLRP3, Beclin-1, and Nrf2 expression. Scale bar: 200μm and 100μm. (b) Quantification analysis of OARSI score of
knee cartilage in mice. (c) Quantification analysis of immunochemical staining of MMP13, NLRP3, Beclin-1, and Nrf2 expression. Data
are shown as the mean ± SD. Significant differences between groups are indicated as #P < 0:05 vs. sham group; ∗P < 0:05 vs. IL-1β group.
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membrane and thereby inhibiting the inflammatory
response mediated by NLRP3.

Inflammatory mediators are paramount for the develop-
ment of OA, among which IL-1β is of utmost importance to
the activation of various inflammatory pathways, such as
NF-κB, MAPK, and PI3K/Akt pathways, leading to activa-
tion of downstream inflammatory proteins (iNOS, Cox2)
and catabolism-related enzymes (MMP13, ADAMTS5)
[31], which are involved in cartilage degradation. Multiple
lines of evidence suggested that inhibition of these pathways
can significantly reduce the expression of inflammatory fac-
tors and matrix-degrading enzymes and ameliorate cartilage
degeneration [32, 33]. As an upstream activator of IL-1β,
NLRP3 plays a key role in the maturity and secretion of
IL-1β. Our results showed that MCC950 inhibited the acti-
vation of P38/JNK/MAPK and PI3K/Akt pathways, whereas
MCC950 has no effect on the activation of the P65/NF-κB
pathway (Supplementary Figure 1). Meanwhile, iNOS, Cox2,
MMP13, and ADAMTS5 were also downregulated, and
Caspase1 protein directly related to the activation of IL-1β
was also inhibited. Therefore, MCC950 may exert anti-
inflammatory and anti-catabolic effects by inhibiting the
activation of IL-1β and inflammation-related pathways.

Autophagy is an important physiological function of
cells to clean up and reuse damaged organelles and macro-
molecules [34]. Late OA cartilage shows a decrease of the
autophagy level, while activation and recovery of autophagy
can play a protective role in OA [35, 36]. As a negative
autophagy regulatory protein, mTOR is considered a prom-
ising therapeutic target for OA. Previous studies have shown
that NLRP3 can interact with mTOR to promote the phos-
phorylation of mTOR [37], and mTOR can also participate
in the ROS-induced activation of NLRP3 [11]. In our exper-
iment, NLRP3 protein expression and mTOR phosphoryla-
tion were both increased in chondrocytes after stimulation
with IL-1β, while MCC950 could not only downregulate
NLRP3 expression but also suppress mTOR phosphoryla-
tion in IL-1β-treated chondrocytes. Meanwhile, the expres-
sion of autophagy-related proteins and the formation of
autophagosome also recovered accordingly. These results
indicated that under the IL-1β-induced inflammatory condi-
tion, NLRP3 may inhibit autophagy through interaction
with mTOR, thus participating in the pathogenesis of OA,
and MCC950 can protect against the detrimental change
through inhibiting this pathological process. In addition,
we found that the expression of inflammatory and catabolic
mediators was increased after treatment with an autophagy
inhibitor 3-MA, which weakened the protective effect of
MCC950, suggesting that autophagy is involved in the pro-
tective effect of MCC950 on chondrocytes. However, further
studies are merited to confirm whether the autophagy regu-
latory effect of MCC950 acts directly on the autophagy path-
way or by interfering with the interaction between NLRP3
and mTOR.

Oxidative stress and aging are important causes of organ
damage and degeneration. Excess production and accumulation
of ROS can destroy the homeostasis of intracellular redox reac-
tion, damage the mitochondrial function of chondrocytes, lead
to senescence and death of chondrocytes, and eventually trigger

cartilage degeneration [38]. Moreover, chronic inflammation is
regarded as a major cause of chronic oxidative stress and aging
[39]. Nrf2, as a key node in the regulation of oxidative stress, is
involved in the regulation of ROS production, inflammation,
and catabolism [27]. The experimental results showed that
MCC950 can promote the entry of Nrf2 into the nucleus and
activation of the Nrf2/HO-1/NQO1 pathway, inhibiting the
excessive production of ROS. In addition, it could suppress
the activity of β-galactosidase and the expression of P16
(INK4A) protein. The results suggested that MCC950 may
exert a protective effect on cartilage by inhibiting oxidative
stress and ameliorating senescence.

Cartilage degeneration is one of the characteristic lesions
of OA, and delaying degeneration and promoting regenera-
tion are the two intervention methods currently [40]. The
results of animal experiments in this study showed that
MCC950 can ameliorate the degeneration of OA cartilage,
which was manifested by a lower OARSI score and ECM
loss. Meanwhile, MCC950 markedly decreased NLRP3 and
cartilage degrading enzyme MMP13 and upregulated the
expression of autophagy markers like Beclin-1 and antioxi-
dative translator Nrf2. These in vivo data further validated
the protective effect of NLRP3 inhibitor MCC950 on OA.

In conclusion, it was found that the expression of the
inflammasome protein NLRP3 was significantly upregulated
in mouse OA cartilage, and the expression of inflamma-
some proteins was well inhibited by MCC950. Meanwhile,
MCC950 also activated Nrf2/HO-O1/NQO1 and inhibited
MAPK and PI3K/Akt/mTOR pathways to play antioxi-
dant, anti-inflammatory, inhibition of catabolism, recovery
of autophagy, and antisenescence effect to delay cartilage
degeneration. This study provides a new idea for the
cartilage protective effect of MCC950, suggesting that
MCC950 may inhibit synovitis and also exert a direct car-
tilage protective effect via inhibiting the endogenous
inflammation of cartilage. At present, the role of NLRP3
in the occurrence and development of OA still needs to
be further studied, such as the role and mechanism of
NLRP3 in the subchondral bone and other OA affected
parts, to fully explain the pathogenesis of OA and explore
new therapies.
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