
Review Article
Novel Insight into the Role of Endoplasmic Reticulum Stress in the
Pathogenesis of Myocardial Ischemia-Reperfusion Injury

Hang Zhu1 and Hao Zhou 1,2

1Institute of Geriatric Cardiovascular Disease, Medical School of Chinese People’s Liberation Army, China
2Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, USA

Correspondence should be addressed to Hao Zhou; zhouhao@plagh.org

Received 7 February 2021; Revised 28 February 2021; Accepted 17 March 2021; Published 28 March 2021

Academic Editor: Daniele Vergara

Copyright © 2021 Hang Zhu and Hao Zhou. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are
employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded
protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular
defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent
cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after
revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury.
Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand
the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this
review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER
stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into
potential therapies for cardioprotection through control of ER homeostasis.

1. Introduction

Myocardial ischemia/reperfusion (I/R) injury occurs when
myocardial tissues or cardiomyocytes are resupplied with
fresh blood flow following a period of ischemia. In that situ-
ation, tissues/cells not only fail to recover from the ischemic
damage but also develop additional injury caused by the
reperfusion itself [1, 2]. This phenomenon is particularly
prominent in the heart, liver, and brain [3–5]. Clinically,
cardiac surgery and coronary artery bypass graft may cause
myocardial I/R injury [6–8]. It is now generally believed that
the main mechanisms of reperfusion injury are excessive
formation of free radicals within the tissue and intracellular
calcium overload [9–11]. Among the various biochemical
mechanisms and signal pathways that may be involved
[12–14], endoplasmic reticulum (ER) stress has been found
to be associated with reperfusion-mediated oxidative stress
and cardiomyocyte death [15, 16]. ER stress refers to a path-
ological process associated with hypoxia, starvation, calcium
imbalance, and free radical overproduction that disrupts the

physiological functions of the ER [17, 18]. These stimuli may
cause signaling from the ER to the cytoplasm and nucleus,
where adaptive responses or the apoptotic program will be
ultimately activated [19, 20].

Recent studies have reported a close relationship between
ER stress and cardiac I/R injury [21, 22]. This suggests reduc-
ing ER stress through genetic approaches or pharmacological
treatments could potentially reduce myocardial I/R injury
[23–25], thereby bringing clinical benefits on many patients
with cardiovascular disease. This review focuses on the cur-
rent research investigating the role played by ER stress in
myocardial I/R injury with the aim of identifying clinical
approaches that may be applied to reduce cardiac I/R injury
in the future.

2. Overview of Myocardial I/R Injury

Nutrients are supplied to tissues and metabolic waste carried
away by the circulation. Insufficient blood flow to a tissue,
such as the myocardium, results in ischemia [26, 27], which
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can lead to cell death and tissue damage. Myocardial ische-
mia is usually caused by occlusion of one or more coronary
arteries, which is followed by a decline in oxygen tension
within the myocardium [2, 28, 29]. Myocardial ischemia
severely hinders oxidative metabolism of fatty acids, glucose,
pyruvate, and lactic acid, which causes energetic stress within
cardiomyocytes [30, 31]. It also slows or even stops
mitochondrial respiration [32, 33], diminishing oxidative
phosphorylation and ATP production. In the absence of
sufficient oxygen, ATP production through glycolysis is
enhanced, which leads to overproduction of lactic acid
[34, 35] and, in turn, intracellular acidosis. In addition,
ischemia interrupts β-oxidation of fatty acids and thus pro-
motes accumulation of incomplete fatty acid metabolites in
the cytoplasm [36, 37]. The most important change within
the ischemic myocardium is the reduced generation of
high-energy phosphoric compounds (e.g., ATP) and cardio-
myocyte death due to ATP deficiency [38, 39]. As a result
of the ATP undersupply, the calcium pump within cardio-
myocytes cannot effectively remove calcium from the
cytoplasm, resulting into calcium overload [40, 41]. The
resultant abnormal calcium signal blunts ventricular con-
traction and promotes the development of cardiac dys-
function [42–44].

From the perspective of treatment, timely restoration of
blood flow to the myocardium is an effective way to relieve
tissue ischemia and insufficient nutrient supply [45, 46].
Interestingly, however, reperfusion of ischemic tissue can
cause additional damage due to I/R injury [47, 48]. This
concept was first proposed in 1955 by Sewell et al., based
on observations made in dogs after coronary artery ligation
[49]. They reported that removing the coronary ligation,
and thus restoring of myocardial perfusion, induced ventric-
ular fibrillation and death [50, 51]. This concept was further
validated in 1960 by Jennings et al. [52], who reported that
when tissue or cells regain a blood supply after transient
ischemia, they undergo I/R injury. It was also shown that
myocardial ischemia and subsequent reperfusion injury are
independent but interrelated pathophysiological processes
[53, 54]. Consequently, the prevention and treatment of
reperfusion injury should start during the ischemic period,
and the ischemia must be removed as soon as possible
[55, 56]. The shorter the duration of ischemia, the smaller
are the ischemic changes and the possibility of injury after
reperfusion [57, 58]. At present, there is no particularly
effective way to cope with myocardial I/R injury [59–61].
Several studies have been conducted to understand the
molecular mechanisms underlying myocardial I/R injury.
Oxidative stress, microvascular damage, inflammatory
responses, autophagy inhibition, immune disorders, platelet
activation, cardiomyocyte metabolic disturbance, ER stress,
and mitochondrial dysfunction are all reported to be poten-
tial pathological factors contributing to the development of
cardiac I/R injury [62–66].

3. Molecular Basis of ER Stress

3.1. Overview of the ER. The ER is a membranous tubular
organelle within eukaryotic cells [67]. It is found in two

forms: rough and smooth [68]. Rough ER localizes with ribo-
somes and is mainly responsible for protein folding and post-
translational modification [69, 70]. Smooth ER, on the other
hand, functions to maintain lipid biosynthesis and calcium
storage [71]. ER stress is a state in which an external stimulus
disrupts ER homeostasis and triggers the accumulation of
unfolded or misfolded proteins within the ER lumen [72].
Calcium overload and abnormal lipid metabolism, due to
ER dysregulation, will further promote ER stress [73]. The
stimuli thought to cause ER stress include nutritional defi-
ciency, hypoxia, ischemia, oxidative stress, and DNA damage
[74–76]. When ER stress occurs, the cell reduces protein syn-
thesis and promotes degradation of misfolded proteins [77].
However, under continuous strong stimulation, excessive
ER stress is associated with cell apoptosis [78].

3.2. Activation of ER Stress. ER stress in mammals has four
components: inhibition of protein translation, upregulation
of molecular chaperones, activation of the protein degrada-
tive program, and induction of apoptosis [79]. ER stress sig-
nal transduction is mediated via three crucial enzymes
(Figure 1) [80]: protein kinase R-link ER kinase (PERL), acti-
vating transcription factor-6 (ATF-6), and inositol-requiring
enzyme-1 (IRE1). ER molecular chaperones acting as sensors
of ER homeostasis play a key role in monitoring the accumu-
lation of unfolded proteins within the ER [81]. Under
physiological conditions, GRP78 (also known as binding
immunoglobulin protein; BiP) binds to PERK, ATF-6, and
IRE1 [82] within the ER. However, GRP78 has greater affin-
ity for unfolded proteins; consequently, when ER homeosta-
sis is disrupted, leading to accumulation of unfolded proteins
within the ER, GRP78 dissociates from PERK, ATF-6, and
IRE1, which results in the activation of ER stress signaling
transduction pathways [83].

3.3. The Transduction Pathways of ER Stress

3.3.1. PERK Pathway. PERK is a transmembrane protein in
the ER membrane [84]. After dissociation of GRP78, it forms
a homodimer and is then activated by autophosphorylation.
Phosphorylated PERK catalyzes the phosphorylation of
eukaryotic initiation factor-2α (elF2α) [85], which inacti-
vates eIF2α-mediated translation. This effect significantly
represses the transcription of most mRNA and, in turn,
protein synthesis, which reduces the protein load on the
ER [86]. Interestingly, elF2α phosphorylation is associated
with an increase in the transcription of activating transcrip-
tion factor-4 (ATF-4), which, after translation, translocates
the cell nucleus and functions to upregulate ER molecular
chaperones [87]. However, if ER homeostasis cannot be
restored, the continuous overexpression of ATF-4 will pro-
mote the upregulation of C/EBP homologous protein
(CHOP), a potential proapoptotic protein regulating cell
death [88].

3.3.2. ATF-6 Pathway. Like PERK, ATF-6 is an ER
transmembrane protein [89]. After dissociation of GRP78,
ATF-6 translocates to the Golgi apparatus where it is cleaved
and activated by the proteases Sit-1/2. The activated ATF-6
migrates into the nucleus where it forms homodimers or
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heterodimers with other transcription factors, leading to the
upregulation of ER chaperone genes [90].

3.3.3. IRE1 Pathway. Upon dissociation of GRP78, the ER
transmembrane protein IRE1 forms a homodimer and
undergoes autophosphorylation activation [91]. Activated
IRE1 has endoribonuclease activity [92], which can cut the
mRNA encoding XBP1 (x-box binding protein-1) to form a
new transcript encoding a second XBP1 isoform [93]. When
abundant, the translated XPB1 protein migrates into the
nucleus, where it upregulates the expression of genes related
to ER stress [94]. Long-term activation of the IRE1 is associ-
ated with apoptosis activated via the TRAF2/ASK1/JNK
pathway.

3.4. Unfolded Protein Response. After synthesis on the
ribosomes, proteins must be folded and packaged correctly
within the ER. Protein folding is carried out under redox
conditions and requires two ER stress reactive proteins
[95]: ER stress oxidoreductase (ERO) and disulfide proteo-
lytic enzyme. After dissociation of GRP78 and their autoacti-
vation (as described above), IRE1, ATF-6, and PERK respond
to the presence of incorrectly folded proteins associated with
ER stress [96, 97]. This is called the “unfolded protein
response” (UPR) [98]. A key function of the ER is identifica-
tion, control, and correction of protein quality. Proteins that

cannot be folded correctly will be transferred from ER to the
cytoplasm for degradation by the 26S proteasome [99]. The
early stage of the URP is the activation of proteasome-
induced degradation of unfolded proteins and the upregula-
tion of XBP1 and ATF-4 [100]. These alterations are aimed
at reducing the load of unfolded or misfolded proteins within
ER. Later, an inflammatory response is activated via NF-κB
and JNK [101], which enhances defensive responses within
the cytoplasm. If these responses are unable to restore ER
function or cell homeostasis, the cell apoptosis program will
be activated as the final stage of the UPR.

4. Role of ER Stress in Myocardial I/R Injury

4.1. ER Stress and Calcium Overload.Myocardial contraction
relies on the oscillation of cytoplasmic free calcium concen-
tration. Within cardiomyocytes, smooth ER (termed sarco-
plasmic reticulum; SR) contains the primary calcium store.
Excessive calcium release from SR into the cytoplasm leads
to intracellular calcium overload, which is closely associated
with cardiomyocyte contraction dysfunction and cell death
[102–104]. ER dysfunction-mediated calcium overload plays
an important role in myocardial I/R injury. During reper-
fusion, the function of the sodium-calcium exchanger and
L-type calcium channels is impaired as a result of the
insufficient oxygen supply during the ischemia [105]. By
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Figure 1: The regulatory mechanisms of endoplasmic reticulum (ER) stress. ER stress in mammals has four components: inhibition of
protein translation, upregulation of molecular chaperones, activation of the protein degradative program, and induction of apoptosis [79].
ER stress signal transduction is mediated via three crucial enzymes [80]: protein kinase R-link ER kinase (PERL), activating transcription
factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1). ER molecular chaperones acting as sensors of ER homeostasis play a key role in
monitoring the accumulation of unfolded proteins within the ER.
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contrast, the expression of calcium-sensitive receptors,
such as 1,4,5-inositol trisphosphate receptor (IP3R), is sig-
nificantly increased due to hypoxic stress or upregulation
of hypoxia-inducible factor-1 (HIF1) [106]. These effects
enhance calcium release from SR into the cytoplasm under
conditions where physiological extrusion of calcium from
the cell is suppressed. Thus, ER stress is an upstream trig-
ger of cardiomyocyte calcium overload.

4.2. ER Stress and Cardiomyocyte Apoptosis. Once UPR fails
to control the level of unfolded or misfolded proteins, ER
stress will trigger the activation of apoptotic signaling. It is
currently believed that ER stress can cause cardiomyocyte
apoptosis via three pathways (Figure 2).

4.2.1. CHOP Pathway. CHOP is a transcription factor
belonging to the C/EBP family. Under normal circumstances,
CHOP expression is very low. The transcription and transla-
tion of CHOP are primarily regulated by IRE1α, ATF-6, and
PERK [107, 108], and CHOP plays a key role in ER-induced
apoptosis, such as that induced by I/R injury [109]. Upregu-
lation of CHOP induces the expression of a variety of
downstream proapoptotic and antiapoptotic genes, including
Bcl-2, Bax, Bim, growth arrest and DNA damage-inducible
protein 34 (GADD34), ER oxidoreductase-1α (ERO1α),
and the death receptor 5 (DR5) [110]. Among those,
GADD34 promotes the expression of protein phosphatase-
1 (PP1), which in turn augments transcription of genes
related to UPR [111]; ERO1α triggers calcium leakage from
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Figure 2: Role of endoplasmic reticulum (ER) stress in myocardial ischemia/reperfusion injury. ER stress is activated by accumulation of
ROS, metabolic disorder, or inflammation response, which is featured by GRP78 isolation from ER. Then, unfolded protein accumulation
in ER will activate the unfolded protein response (UPR) which is followed by calcium disorder, apoptotic gene upregulation, and
inflammation response, resulting into cardiomyocyte death or survival dependent on the extent of ER stress.
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the ER through IP3Rs, which leads to calcium overload-
dependent cell apoptosis [112, 113]; and DR5 triggers apo-
ptosis through activation of caspase-8 [114].

4.2.2. IRE1α/JNK Pathway. IRE1α is a component of the
most conserved pathway in mammalian UPR [115]. It has
two active enzyme domains: a serine/threonine kinase
domain and an endoribose nuclease (RNase) domain. When
ER stress is induced, unfolded or misfolded proteins in the
ER lumen directly bind to and activate IRE1α. Once acti-
vated, IRE1α recruits tumor necrosis factor receptor-related
factor-2 (TRAF2) and apoptotic-signaling kinase-1 (ASK1)
[116], after which JNK is phosphorylated by the resultant
IRE1α-TRAF2-ASK1 signaling complex [117, 118]. Follow-
ing cardiac I/R injury, activated JNK may promote cardio-
myocyte apoptosis through phosphorylation of various
members of the Bcl-2 family [119, 120]. For example, JNK
catalyzes phosphorylation of the antiapoptotic protein Bcl-
2, which impairs its activity. At the same time JNK catalyzed,
phosphorylation enhances the proapoptotic activity of Bim
[121]. These alterations work together to mediate apoptosis
in cardiomyocytes.

4.2.3. The Caspase-12 Pathway. The caspase-12 pathway
is considered to be an ER-specific, nonmitochondrial-
dependent apoptotic pathway [122]. Caspase-12 activation
is also a feature of ER stress-mediated cardiomyocyte apopto-
sis [123]. Under normal circumstances, caspase-12 binds to
the ER membrane and forms a complex with TRAF2. ER
stress directly induces caspase-12 dissociation from the ER
membrane, enabling it to be activated by calpain [124, 125]
or the IRE1α-TRAF2 complex [126]. Once activated,
caspase-12 cleaves and activates caspase-9, which in turn
cleaves and activates caspase-3 to promote apoptosis [127].

5. Summary and Outlook

ER stress arises via multiple signaling pathways, expression
of multiple genes, and participation of multiple stress factors.
In cases of mild or early myocardial injury, ER stress involves
a variety of protective proteins, which reduce the pathologi-
cal stress on cardiomyocytes. However, excessive ER stress
is associated with protein quality control disorder, resulting
in the upregulation of apoptotic proteins. Notably, the role
of ER stress during ischemia differs from that during
reperfusion. It remains unclear whether ER stress is pro-
tective in the ischemic heart and only becomes lethal fol-
lowing reperfusion. In addition, although the molecular
mechanisms underlying ER stress and its role in I/R injury
have been characterized, the interactive effects of ER stress
and other pathological alterations that occur during car-
diac I/R injury, such as oxidative stress and mitochondrial
dysfunction, are still not fully understood. Moreover, there
are still no specific drugs targeting ER stress available in
clinical practice. Additional investigations are therefore
required to help us better understand the role of ER stress
in myocardial I/R injury.
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