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Background. In the general population, acute myocardial infarction (AMI) represents a significant cause of mortality. This study is
aimed at identifying novel diagnostic biomarkers to aid in treating and diagnosing AMI.Methods. The Gene Expression Omnibus
(GEO) database was explored to extract two microarray datasets, GSE66360 and GSE48060, which were subsequently merged into
a single cohort. Both AMI and control samples were analyzed for differentially expressed genes (DEGs), which were
subsequently subjected to weighed gene coexpression network analysis (WGCNA) to identify the most significant module.
Gene Ontology (GO) and pathway analyses subsequently carried out the most significant gene modules along with
construction of a protein-protein interaction network (PPI). Cytoscape plugin cytoHubba allowed for the prediction of the
top 4 key genes according to the network maximal clique centrality (MCC) algorithm. The expression levels and diagnostic
value of the four key genes were additionally verified in the GSE62646 dataset. Results. A WCGNA analysis revealed 878
DEGs which were clustered into 6 modules. The module with the most significance in AMI was colored blue. Subsequent
GO and KEGG pathway enrichment analysis on blue module genes revealed that they were primarily enriched in the
inflammation-related pathways. These findings, in combination with PPI and coexpression networks, resulted in the
identification of the top four genes by cytoHubba, which included leukocyte immunoglobulin-like receptor B2 (LILRB2),
toll-like receptor 2 (TLR2), neutrophil cytosolic factor 2 (NCF2), and S100A9. Among them, LILRB2, NCF2, and S100A9
were validated in the GSE62646 dataset. Conclusions. The results suggested that LILRB2, NCF2, and S100A9 could be
potential gene biomarkers for AMI.

1. Introduction

Acute myocardial infarction (AMI) denotes the presence of
acute myocardial injury detected by abnormal cardiac bio-
markers in the setting of evidence of acute myocardial
ischaemia [1] and carries high mortality [2]. The diagnosis
of AMI is made using a combination of clinical acumen,
serum biomarker tests, and electrocardiographic analysis.
Commonly used AMI biomarkers used in the clinical setting
are comprised of myoglobin, creatine kinase-MB (CK-MB),
cardiac troponin I (cTnI), and cardiac troponin T (cTnT)
[3, 4]. However, elevated levels of these biomarkers also

can be detected in patients with heart failure, renal failure,
and thyroid disease [5]. It is therefore important to discover
more AMI-specific biomarkers.

The advancement of bioinformatics and microarray
analyses has resulted in higher numbers of novel gene dis-
covery. In previous studies by our group, we carried out
microarray analysis on peripheral blood samples belonging
to AMI patients [6] as well as in mouse myocardial tissue
[7] to determine the presence differentially expressed genes
(DEGs). However, intergene relationships were more fully
explored. Weighted gene coexpression network analysis
(WGCNA) is a simple analysis method that allows for the
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construction of gene expression networks through clustering
of highly correlated genes into modules [8]. This method
enables the visualization of genes which are most representa-
tive of AMI. Central elements of these biological networks
are more likely to represent essential genes which exhibit
more important functions. The Cytoscape plugin cytoHubba
provides a user-friendly interface to explore important
nodes in biological networks [9], allowing for the identifica-
tion of critical key genes.

This investigation involves two microarray datasets of
AMI (GSE66360 and GSE48060) which were downloaded
from GEO. A single cohort was formed by merging the
two datasets. We systematically analyzed clusters of differen-
tially expressed genes (DEG) which possessed similar
expression patterns with WGCNA. The blue module was
found to be strongly associated to AMI. Four key genes were
identified from further analysis of the blue module. Three of
these appeared to be correlated well in the GSE62646 corre-
lation dataset and may represent potential candidate bio-
markers of AMI.

2. Materials and Methods

2.1. Microarray Data Sources. The Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)
was explored, and two independent AMI gene expression
datasets were selected for this study (GSE66360 and
GSE48060). These two datasets were derived from the
chip-based platform GPL570 [HG-U133_Plus_2] Affyme-
trix Human Genome U133 Plus 2.0 Array. GSE66360 con-
sisted of 99 circulating endothelial cell samples from 49
AMI patients and 50 patients without AMI, and GSE48060
comprised 52 and 21 serum samples from AMI and without
AMI patients, respectively. No ethical approval was required
given the lack of human or animal subjects in this study.

2.2. DEG Identification. The R software (version 3.6.1) and
Bioconductor Packages (version 3.10) were used for data
mining and statistical analyses. The “ComBat” tool from
the R-package “sva” was used to merge the 2 datasets into
a metadata cohort, removing batch effects. The raw data
were first subjected to background correction and quantile
normalization using the Affy package of R/Bioconductor
[10]. We screened for significant DEGs using the Limma
(linear models for microarray data) tool [11]. An adjusted
false discovery rate P < 0:01 and fold change ðFCÞ > 1:5 were
set as the threshold for identifying significant DEGs. The R-
package “ggplot2” and “pheatmap” were used to visualize
the volcano plot and heatmap.

2.3. Weighted Gene Coexpression Network Analysis and Hub
Gene Identification. A weighted gene coexpression network
(WGCNA) algorithm was performed for the analysis of the
coexpression network as well as to determine hub genes
[12]. In brief, the WGCNA R package (version 1.68) allowed
for WGCNA analysis. The soft threshold power was calcu-
lated using the function pickSoftThreshold of the WGCNA
package. In this function, soft threshold was chosen as 8
for the correlation matrix. Based on the matrix, a topological

overlap matrix (TOM) was used to measure similarity.
Genes were then hierarchically clustered and visualized in
a dendrogram according to the dissimilarity TOM (1-TOM).

Each first principal component of each gene module was
determined as the module eigengenes (MEs). The ME
expression was then taken to represent all genes in each
module. We then sought for correlations between clinical
features and MEs in order to determine AMI-associated
modules [13]. Gene significance (GS), defined as the abso-
lute correlation between the gene and the trait, was used to
identify the associations between each gene and AMI. The
module membership (MM) was determined to be the degree
of correlation between MEs and gene expression profiles.
Correlations between MM and GS were analyzed to deter-
mine modules of interest. Hub genes were those with a
MM> 0:8 and GS > 0:2.

2.4. Functional and Pathway Enrichment Analysis of Hub
Genes. The R package clusterProfiler (version 3.14.3) was
used for gene ontology (GO) enrichment analysis [14]. Bio-
conductor provided the reference database located at http://
org.Hs.eg.db 3.10.0 with options being fun = “enrichGO,”
pAdjustMethod = “BH,” pvalueCutoff = 0:01, and
qvalueCutoff = 0:05.

Signaling pathways of hub genes were investigated with
reference to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [15], which collects pathway-related information
regarding molecule networks. The R software clusterProfiler
was used to carry out KEGG pathway enrichment analyses
[14]. Statistical significance was granted when P value <
0.05.

2.5. PPI Network Construction and Key Gene Screening. We
used the online database Search Tool for the Retrieval of
Interacting Genes (STRING; http://string-db.org) for predic-
tion of protein-protein interaction (PPI) networks [16]. PPIs
located in AMI-associated module hub genes were screened
and selected based on a confidence score > 0:4. The networks
were then imaged using the Cytoscape software (version
3.7.2). A plugin of Cytoscape, cytoHubba, enabled us to pre-
dict the top 4 crucial genes according to the maximal clique
centrality (MCC) algorithm [9].

2.6. Validation of Key Genes. GSE62646, comprising of
serum samples from 28 ST-segment elevation myocardial
infarction (STEMI) patients and 14 patients with stable cor-
onary artery disease (CAD) as controls, was extracted from
the GEO database and utilized as a validation dataset.
According to the GPL6244 [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array annotation platform, the probe
annotation was performed. Identification of DEGs was per-
formed utilizing the Limma package. Unpaired Student’s t
-test from the R software was used to contrast intergroup
gene expression variances. The diagnostic value of the 4
selected hub genes was assessed using a receiver operating
characteristic (ROC) curve created using the “pROC” pack-
age in R [17], and MedCalc (MedCalc 19.4.1 version, Med-
Calc Inc., Mariakerke, Belgium) and was based on the
GSE62646 dataset.
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Figure 1: Continued.
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3. Results

3.1. Identification of DEGs. 878 DEGs which conformed to
the selection criteria were identified, and 450 upregulated
DEGs and 428 downregulated DEGs were included. These
are visualized in volcano plots in which each dot represents
a gene (Figure 1(a)). Figure 1(b) represents a heatmap of the
expression levels of these DEGs.

3.2. Construction of Weighted Coexpression Networks. AMI
hub genes were assessed by WGCNA studies on the coex-
pression network of the 878 DEGs. The power value is the
most important variable that may impact the average degree
of connectivity and independence of the coexpressed mod-
ules. Various soft threshold powers were applied on the
screened network topology, with β = 8 selected for later anal-
ysis (Figure 1(c)). WGCNA was used to construct a gene
coexpression network based on the hierarchical clustering
of the predetermined dissimilarities. Six modules were then
obtained (Figure 1(d)).

3.3. Identifying Genes in Blue Module Associated with AMI.
All gene modules were also studied in association with clin-
ical features, resulting in six identified modules which dem-
onstrated evidence of association with P < 0:05 (Figure 2(a)).
Genes that were not able to be clustered are represented with
the grey module. Those belonging to the blue module were
significantly positively correlated with AMI (r = 0:55, p = 3e
− 13). The module significance of the blue module was
higher than that of any other, suggesting its stronger connec-
tion with AMI (Figure 2(b)). Genes included in the blue
module were also significantly associated with gene signifi-
cance and are plotted in Figure 2(c).

3.4. GO Function and KEGG Pathway Annotation of Module
Hub Genes. GO function and KEGG pathway enrichment

analyses were performed to assess the function of 255 genes
in the blue module. 479 enriched GO terms were in biolog-
ical process (BP), 22 enriched GO terms were in cellular
component (CC), and 19 enriched GO terms were in molec-
ular function (MF). The top 8 BP, CC, and MF terms are
shown in Figure 3(a). 11 significantly enriched KEGG path-
ways were identified in this module. The most significant
KEGG pathways included osteoclast differentiation, tubercu-
losis, and staphylococcus aureus infection. The top 10
KEGG pathways are shown in Figure 3(b).

3.5. PPI Network Construction and Key Genes Identification.
The 255 genes in the blue module were used to construct a
PPI network, which was composed of 74 nodes and 361
edges, extracted from the STRING database and imaged
with the Cytoscape software (Figure 3(c)). The top 4 key
genes were identified by the MCC method utilizing the cyto-
Hubba plug-in of Cytoscape, including leukocyte
immunoglobulin-like receptor B2 (LILRB2), toll-like recep-
tor 2 (TLR2), neutrophil cytosolic factor 2 (NCF2), and
S100A9 (Figure 3(d)).

3.6. Validation of Key Genes Using Other Datasets. Data val-
idation was performed using the GSE62646 dataset. We ana-
lyzed the expression levels of LILRB2, TLR2, NCF2, and
S100A9 in AMI samples (blood samples on the first day of
myocardial infarction) and stable coronary artery disease
(CAD) controls (Figure 4). The expressions of LILRB2,
NCF2, and S100A9 were noted to be significantly changed
between the AMI and CAD groups while that of TLR2 was
not remarkably different.

These three genes also demonstrated powerful discrimi-
nation ability in the GSE62646 dataset with an AUC of 0.911
(95% CI: 0.827–0.995) in LILRB2, AUC of 0.753 (95% CI:
0.604–0.901) in S100A9, AUC of 0.689 (95% CI: 0.525–
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Figure 1: WGCNA of DEGs in AMI. (a) Volcano plots of DEGs. (b) AMI DEGs visualized using a heatmap. (c) Soft thresholding power
analysis allowed for provision of scale-free fit index of network topology. (d) Coexpression clusters were conducted with hierarchical cluster
analysis with corresponding color assignments encoded using WGCNA.
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0.853) in NCF2, and AUC of 0.551 (95% CI: 0.356–0.746) in
TLR2 (Figure 5). Among them, the combined diagnostic
ability of LILRB2 demonstrated an AUC over 0.9, highlight-
ing its strong diagnostic ability. TLR2 on the other hand
demonstrated a poor diagnostic performance.

Both sensitivity and positive predictive values of LILRB2
are very high; thus, LILRB2 will allow for the early identifi-
cation of AMI. The optimized cut-point value of LILRB2 is
11.38, with a specificity of 100%. LILRB2 over 11.38 may
predict early AMI and facilitate the evaluation of early inter-
vention trials (Table 1).

4. Discussions

AMI is the primary cause of global morbidity and mortality.
The occurrence and development of AMI are a multifacto-
rial process that has largely been identified; however, there
is a lack of highly specific diagnostic and therapeutic bio-
markers for this disease. Hence, it is important to explore
genes associated with the mechanisms of AMI. Our investi-
gation identifies critical genes which correlate strongly with
AMI with the help of bioinformatics analysis of available
microarray data.
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Figure 2: Significant modules associated with AMI. (a) Correlation of module eigengenes with AMI. (b) Bar plot of average gene
significance of each AMI-associated gene. (c) Correlation between gene significance and MEblue membership.
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(d)

Figure 3: Function and pathway enrichment analysis and key gene cluster. (a) TheGO function enrichment of DEGs in the bluemodule. (b) KEGG
pathway enrichment of the DEGs in the blue module. (c) PPI network of genes in blue module. (d) Top 4 key genes explored by cytoHubba. GO:
Gene Ontology; DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction.
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In the study, 878 DEGs comprising of 450 upregulated
and 428 downregulated genes were discerned from the
GSE66360 and GSE48060 datasets. Gene correlation at the
RNA level is able to be explored using WGCNA-based gene
coexpression network analyses. Based on WGCNA, we
found that AMI-specific genes may be represented by the
blue module. Subsequent GO functional enrichment analysis
clarified that DEGs were primarily enriched in the following
functional categories, including neutrophil activation and
degranulation involved in immune response. It is widely
accepted that neutrophil-mediated cardiovascular occlusion
is an important phenomenon in AMI [18]. Strong, short
bursts of neutrophil activation have been documented to
occur in the early phases of an AMI and have been linked

to trigger thrombotic vessel occlusion [19]. KEGG pathway
enrichment analysis revealed DEGs to be mainly enriched
in the inflammation-related pathways, such as Staphylococ-
cus aureus infection, phagosome, NF-kappa B signaling
pathway, and C-type lectin receptor signaling pathway.
The inflammatory cascade is important in the occurrence
of AMI [20]. The NF-kappa B has been repeatedly empha-
sized to play a central role in inflammation-mediated cardiac
remodelling post-AMI [21, 22]. These results offer a glimpse
in the biological function and associated gene pathways in
AMI progression.

Genes belonging to the blue module were then utilized in
PPI network construction using the STRING database. The
top four hub genes were identified by cytoHubba, which
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Figure 5: ROC curves of the 4 key genes. (a–d) ROC curves for LILRB2, S100A9, NCF2, and TLR2, respectively. The error bars represent
the standard deviation of measurements for 28 STEMI patients and 14 patients with stable CAD as controls (n = 42).

Table 1: Diagnostic accuracy of 4 key genes.

Key genes AUC (95% CI) Cut-point value
Specificity (%)

(95% CI)
Sensitivity (%)

(95% CI)
PPV (%)
(95% CI)

NPV (%)
(95% CI)

TLR2 0.551 (0.39-0.71) 10.01 64.29 (0.35-0.87) 64.29 (0.44-0.81) 78.3 (0.63-0.89) 47.4 (0.32-0.63)

S100A9 0.753 (0.60-0.87) 11.31 92.86 (0.66-1.00) 50 (0.31-0.69) 93.3 (0.67-0.99) 48.1 (0.38-0.58)

NCF2 0.689 (0.53-0.82) 11.27 57.14 (0.28-0.82) 75.00 (0.55-0.89) 77.8 (0.65-0.87) 53.3 (0.34-0.72)

LILRB2 0.911 (0.78-0.98) 11.38 100 (0.77-1.00) 75.00 (0.55-0.89) 100 (-) 66.7 (0.51-0.79)
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included LILRB2, TLR2, NCF2, and S100A9. The GSE62646
dataset was used to validate the relationship of these 4 key
genes in AMI. With the exception of TLR2, the expression
levels of the other three genes were markedly different in
AMI samples in contrast to control samples. ROC curves
were constructed in order to further discern the diagnostic
utility of these biomarkers. As expected, only TLR2 demon-
strated inadequate diagnostic utility. Both S100A9 and
NCF2 were of acceptable diagnostic values. Moreover, the
AUC of LILRB2 was more than 0.90, which indicated a good
diagnostic ability. Thus, LILRB2, S100A9, and NCF2 may be
critical in AMI progression.

S100A9 is rapidly released in response to inflammatory
stimuli and acts as a potent activator of the innate immune
response in conditions which demonstrate immune and
inflammatory components, such as AMI [23]. S100A9 has
been identified as a potential therapeutic target in treating
AMI [24]. It has recently been shown that S100A9 repre-
sents a gene that is highly upregulated in the myocardium
in the immediate postischemic period, further supporting
its role as an important first responder to ischemic injury
[25, 26]. Moreover, high levels of S100A9 in AMI patients
during the first 24 hours post-MI appeared to be related in
higher risks of major adverse cardiovascular events and
heart failure [25, 27]. Similarly, our study found S100A9 to
be upregulated in AMI patients of both the GSE66360 and
GSE48060 datasets.

LILRB2 is a member of the leukocyte immunoglobulin-
like receptor family, which can negatively regulate immune
cell activation by acting on intracellular immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) [28]. Limited evi-
dence hints towards a positive association between LILRB2
expression and AMI progression [29, 30]. In our study,
LILRB2 was primarily enriched in the signaling pathway
related to T cell activation, a finding that is in accordance
with previously documented functions of LILRB2 [31]. T
cells are considered to be the primary immune competent
cells that modulate atherosclerotic plaque formation [32].
T cell-associated cytokine imbalance has been confirmed to
be related to AMI and may predict outcomes in those with
ischemic heart disease outcomes [33, 34]. However, the role
of LILRB2 in AMI requires further confirmation.

NCF2 is part of the leukocyte NADPH oxidase complex
responsible for producing superoxides. Several autoimmune
conditions such as systemic lupus erythematosus (SLE) and
Crohn’s colitis have been found to harbor mutations in this
gene [35, 36]. A report suggests that NCF2 may mediate
changes in blood pressure along with cerebral strokes related
to unstable atherosclerotic plaques [37, 38]. However, no
research has linked NCF2 to AMI. It has been well estab-
lished that high levels of reactive oxygen species (ROS) are
deleterious and can result in myocardial infarction [39, 40].
NADPH oxidases are primary nonmitochondrial sources of
ROS. These membrane-associated multiprotein complexes,
including NFC2, are essential and crucial components.
NFC2 may be a pathogenic factor and potential target in
diagnosing and treating AMI.

Despite the discovery of 3 novel AMI-associated genes,
our study is limited by its retrospective design which inevitably

contained some degree of incomplete clinical information.
The reproducibility of our results should also be validated
across additional datasets to enhance its robustness.

5. Conclusions

In conclusion, this study identified 4 key genes through
WGCNA analysis which may contribute towards AMI
development. The function of three of these genes, S100A9,
LILRB, and NCF2, performed well in the validation dataset
and may act as potential biomarkers for AMI.
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