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Oxidative stress (OS) refers to endogenous and/or exogenous stimulation when the balance between oxidation and antioxidants in
the body is disrupted, resulting in excessive production of free radicals. Excessive free radicals exert a series of negative effects on
the body, which can result in the oxidation of and infliction of damage on biological molecules and further cause cell death and
tissue damage, which are related to many pathological processes. Pathways related to OS have always been the focus of medical
research. Several studies are being conducted to develop strategies to treat cancer by exploring the OS pathways. Therefore,
this study is aimed at determining the correlation between the OS pathway and kidney renal clear cell carcinoma (KIRC)
through bioinformatics analysis, at proving the effect of common anticancer drugs on the OS pathway, and at constructing a
prognosis model of patients with KIRC based on several genes with the strongest correlation between the OS pathway and
KIRC. We first collected and analyzed gene expression and clinical information of related patients through TCGA database.
Then, we divided the samples into three clusters according to their gene expression levels obtained through cluster analysis.
Using these three clusters, we performed GDSC drug analysis and GSEA analysis and examined the correlation among the OS
pathway, histone modification, and immune cell infiltration. We also analyzed the response of anti-PD-1 and anti-CTLA-4 to
the OS pathway. Thereafter, we used LASSO regression to select the most suitable nine genes, combined with the
clinicopathological characteristics to establish the prognosis model of patients with KIRC, and verified the scientific precision
of the model. Finally, tumor mutational burden was calculated to verify whether patients would benefit from immunotherapy.
The results of this study may provide a reference for the establishment of treatment strategies for patients with KIRC.

1. Introduction

Oxidative stress (OS) is usually caused by an imbalance
between the cellular antioxidant mechanism and oxidative
free radical substances produced by metabolism. This imbal-
ance leads to the accumulation of excessive reactive oxygen
species (ROS) (including O2-, H2O2, OH

-, O3, and other
oxygen-containing free radicals) in the body cells, causing

irreversible or reversible damage to the structure and sub-
stances of cells [1]. Since there are various antioxidant mech-
anisms and enzymes in the body, such as superoxide
dismutase, peroxidase, and glutathione peroxidase, for the
removal of excess ROS, the normal physiological level of
ROS does not cause harm to the body [2]. However, when
these corresponding mechanisms are abnormally inacti-
vated, excessive ROS levels are generated that attack the
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components and structure of cells, causing detrimental
effects, such as instability of cell membranes and structural
damage to genetic materials, DNA, and proteins [3].

The Nrf2 pathway plays a core regulatory role in the OS
response [4]. Nrf2 (encoded by the NFE2L2 gene) regulates
the expression of approximately 250 genes involved in cell
homeostasis, including antioxidant proteins, detoxifying
enzymes, drug transporters, and several cell-protective
proteins. Nrf2 targets genes involved in cellular defense and
contains antioxidant response elements (ARE), which encode
antioxidant enzymes (glutamate-cysteine ligase (GCL)), drug
metabolic enzymes (cytochrome P450, glutathione S-
transferase (GST)), chaperone DNA repair enzymes, and pro-
teasome subunits. Nrf2-mediated gene transcription depends
on Nrf2 heterodimerization with small Maf proteins (MafG,
MafK, and MafF), which is necessary for effective binding of
ARE and electrophilic response element. Transcription of these
protective genes enables cells to maintain redox equilibrium
and to eliminate proteins that are damaged under oxidative
and allogeneic stress conditions [5]. Studies have shown that
Nrf2 also regulates the synthesis of SOD, CAT, and other
enzymes that remove excess ROS to regulate antioxidant activ-
ities in the body [6, 7].

On the one hand, Nrf2 regulates cellular oxygen reduc-
tion balance to combat heterologous substances and oxida-
tive damage. On the other hand, it reduces the damage
caused by OS by reducing the sensitivity of cells to stressors.
Thus, Nrf2 can be considered a protective gene in normal
cells [8]. However, Nrf2 confers protection to cancer cells
from ROS attacks, resulting in the failure of treatments, such
as chemotherapy and radiotherapy that are used to eliminate
the cancer cells by facilitating the production of substantial
amounts of ROS [9]. Thus, Nrf2 is considered a risk factor
in cancer cells. Owing to the dual nature of NRF2, the role
of the mechanism of OS in the occurrence and development
of cancer is vague. This poses challenges for studies con-
ducted to target the OS pathways for cancer treatment.

According to Globocan 2018 estimates of cancer incidence
and mortality, compiled by the International Agency for
Research on Cancer, kidney cancer incidence and mortality
were 2.2% and 1.8%, respectively [10]. The most commonly
reported type of kidney cancer is kidney renal clear cell carci-
noma (KIRC), accounting for approximately 85% of the cases.
In KIRC, hemorrhages, necrosis, cystic degeneration, andcal-
cification are often observed in the renal parenchyma. Follow-
ing growth, it infiltrates, compresses, and destroys the renal
pelvis and calyces; furthermore, it develops outside the renal
capsule and results in the formation of hemangioma emboli
or metastasizes to lymph nodes and other organs. KIRC pre-
sents with a poor prognosis and high mortality rates. There-
fore, more attention has been focused on clinical treatment.

In this study, more than 30 genes closely related to OS
were selected using the REACTOME database, including
multiple pathway genes and gene families such as NFE2L2,
SOD, CAT, and NOX [11], to represent the expression of
the OS pathway. The correlation between its expression level
in KIRC and the occurrence and progression of KIRC and
the clinicopathological characteristics were explored using
bioinformatics analysis techniques to accurately decipher

the role of OS mechanisms in KIRC. Concurrently, we used
LASSO regression to screen out genes with a good fit for the
establishment of the prognostic model of KIRC. These
results can provide a valuable reference for the development
of drugs targeting the OS pathway and for the treatment of
OS.

2. Materials and Methods

2.1. Data Acquisition and Analysis. Based on the REACTOME
dataset (https://reactome.org/) [12] and the GSEA website
(http://www.gsea-msigdb.org/gsea/index.jsp) [13], 32 genes
strongly associated with the OS pathways were identified and
the genes were selected for further analysis. Mutations in these
genes were studied to investigate their effect on the develop-
ment of cancer. The genetic and clinical data for cancer were
obtained from TCGA database projects (https://tcga-data.nci
.nih.gov/tcga/) [14]. There were a total of 32 cases, each repre-
senting a type of cancer. TCGA database is aimed at establish-
ing a comprehensive map of tumor genes through large-scale
gene sequencing and comprehensive, multidimensional analy-
sis to identify the genetic changes caused by the occurrence
and development of tumors. To obtain data on the genes, we
included the CNV and SNV of genes, gene expression levels,
clinical survival landscape, and clinicopathological features.
Gene expression data were analyzed using Perl and visualized
using the TBtools software for observation. Survival curves
were plotted for all significant genes associated with KIRC,
visually representing the specific role played in KIRC develop-
ment. Statistical significance was set at p < 0:05.

2.2. Analysis of SOD2 Expression Using the GEPIA Website.
GEPIA is currently a well-known online tool used for visu-
alization analysis using TCGA data [15]. It is simple and
effective with good operability. For the gene SOD2, which
is known to directly regulate the process of OS, the GEPIA
website (http://gepia.cancer-pku.cn/) combined with TCGA
and GTEX databases was used to compare the differences
in gene expression between normal tissues and cancer tis-
sues in a variety of cancers. Statistical significance was set
at p < 0:05.

2.3. Generation of the Plot of Protein-Protein Interaction
(PPI) Using STRING. STRING is a database platform that
is used to explore interactions between proteins [16]. It
includes both direct physical interactions between proteins
and indirect functional correlations between proteins. The
STRING platform (http://string-db.org/) was used to map
the protein-protein relationships among these 32 genes.
Cytoscape was used to identify the protein-protein interac-
tion (PPI) network obtained from the platform. The rela-
tionships between these genes are shown and explained at
the protein level.

2.4. Derivation of Three Clusters Based on Cluster Analysis.
The OS score (OS score) was obtained from the data on
mRNA expression levels, which was used to quantify the
expression of genes in the OS pathway. Based on the OS
score, we used cluster analysis, termed as “unsupervised
hierarchical clustering,” to obtain the following three
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clusters of samples: Cluster1 (high expression of the OS
pathway gene), Cluster2 (normal expression of the OS path-
way gene), and Cluster3 (low expression of the OS pathway
gene). Three clusters represent different expression levels of
OS-related genes, and subsequent studies are based on these
three clusters. To verify the accuracy of the three clusters, we
used a violin diagram to verify and illustrate their gene
enrichment and subsequently compared the survival curves
of triclusters, summarized the gene expression level and
the clinicopathological characteristics of the three clusters,
and used a heatmap to depict the obtained results. Statistical
significance was set at p < 0:05. We used “gplots” in R for
cluster analysis and “survival” in R to plot the survival curve
of the three clusters. A heatmap was generated using “pheat-
map” in R to describe the relationship among the three
groups of clusters and the clinicopathological characteristics
of patients with KIRC. The cluster analysis is based on the
“ward.D” algorithm. We used the drawing software package
in R to construct a violin plot.

2.5. GSEA Analysis of the Three Clusters. To determine the
enriched gene sets in each cluster, GSEA analysis was per-
formed using the GO database. GSEA analysis was used to
interpret the genome-level expression data and to analyze
their common biological functions. We selected 30 upregu-
lated and downregulated pathways from Cluster1, Cluster2,
and Cluster3, respectively, and used them to generate a heat-
map of the pathways to display different gene sets enriched
in different clusters. “ClusterProfiler” and “GSVA” in R were
used to perform the analysis, while “gplots” and “pheatmap”
in R were used to plot the data obtained.

2.6. Histone Modification-Related Genes and Common
Oncogenes. Several classical or newly discovered oncogenes,
such as VHL and EGFR, have been considered to refine our
perspective. We analyzed the expression levels of classical
oncogenes in the tricluster and generated a heatmap to intui-
tively reflect their different expression patterns in different
clusters. The same method has also been used to explore genes
related to histone modifications, such as the sirtuin family
genes and HDAC family genes. Histone modification is
directly related to gene mutations. Histone modification usu-
ally refers to methylation and acetylation. Sirtuin (SIRT) [17]
is a highly conserved class of deacetylases from bacteria to
humans, and histone deacetylase (HDAC) [18] is a protease
that plays an important role in chromosome structural modi-
fication and gene expression regulation. Statistical significance
was set at p < 0:05.

2.7. Application of the pRRophetic Algorithm Based on the
GDSC Database. GDSC is a public database that presents
an integration of drug, gene, and tumor information [19].
It provides free and publicly available genomic data for the
formulation of cancer therapy and is committed to discover-
ing potential cancer therapeutic targets to improve cancer
therapy. It is the largest public database of its kind in the
world. The GDSC database was used to predict chemother-
apy responses. Several classic and novel targeted drugs were
selected to treat KIRC tumor cells, including pazopanib,

sorafenib, sunitinib, nilotinib, vorinostat, axitinib, gefitinib,
temsirolimus, lapatinib, metformin, bosutinib, and tipifar-
nib. We used the “pRRophetic” package to implement the
pRRophetic algorithm in R to estimate the IC50 of samples
in three clusters through ridge regression [20]. All parame-
ters were set by using default values with the removal of
the batch effect of “combat” and tissue type of “allSoldTu-
mours,” and duplicate gene expression was summarized as
the mean value. Based on the results obtained, we illustrated
a box diagram to visually indicate the different IC50 values
of each drug in the three clusters and the correlation
between them. Statistical significance was set at p < 0:05.

2.8. Immune Cell Infiltration and Immunotherapy. Many
common immune cells were quantified using ssGSEA analy-
sis in combination with TCGA database. The results of their
correlations are expressed in the form of a heatmap. ssGSEA
analysis can be performed by applying data on genetic sig-
nals expressed by a population of immune cells to a single
sample. The 29 immune cells and regulators used in this
study included the molecules involved in innate and adap-
tive immunity. The correlation between 29 immune cells/re-
gulators and OS-related genes was depicted directly using a
histogram. Data on APC-costimulation and macrophages
were separately selected to highlight the correlation with
OS score through a scatter diagram in regression analysis.
Five R software packages, namely, “data.table,” “dplyr,”
“tidyr,” “ggplot2,” and “ggstatsplot,” were used to analyze
and to generate the figure. Two types of immune regulatory
factors related to T cell-killing tumor cells, PD-1 [21], and
CTLA-4 [22] have been reported. The correlation among
CTLA-4, PD-1, and OS score was demonstrated through
visual correlation matrix analysis. The results of the regres-
sion analysis can be visualized in the matrix. TIDE was used
to predict the inhibitory response of a single sample immune
checkpoint, and a submap was used to predict the subtype
immune response. The two analyses were used to assess
the possibility of PD-1 and CTLA-4 exhibiting responses
to the agonists and inhibitors of OS-related genes. The Bon-
ferroni correction was used to correct the p values at the test
level. “pheatmap” in R was used to plot a heatmap.

2.9. Differentially Expressed Genes and LASSO Regression
Analysis. Differential expression in normal and KIRC tissues
is shown via a heatmap using “pheatmap” in R. “corrplot” in
R was used to describe the coexpression relation between
any two of the OS pathway genes. The regression relation-
ship between SOD2 and other genes is shown separately in
the scatter plots. Hazard ratio analysis was performed to
analyze the relationship between the pathway and the pro-
gression of KIRC and to better understand the prognostic
role of OS-related genes in ccRCC. We performed a univar-
iate Cox regression analysis of the expression of OS-related
genes using TCGA database. The correlation between high
gene expression and patient survival rate was determined
by analyzing the HR values in the results. The results are
shown using a forest map. LASSO regression curve gener-
ated using the “glmnet” package was used to establish a risk
model. We determined the cut-off value of each risk score in
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Figure 1: Continued.
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Figure 1: The results of gene expression derived from TCGA database. (a) Heatmap shows the level of the CNV gain mutations of the 32
genes in 32 types of cancer. The area and color of a circle show the level of gain mutation; the larger and closer the circle to a warm color, the
higher its level. (b) Heatmap showing the level of the CNV loss mutations of the genes. The area and color of a circle show the level of loss
mutation, the same as those in (a). (c) The PPI network diagram showing the interaction among the 32 oxidative stress- (OS-) related genes.
(d) Heatmap showing the level of the SNV frequency of the genes; the color bar on the right side shows cool colors that indicate a lower level
and warm colors that indicate a higher level of frequency.
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Figure 2: Continued.
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the tumor group using the “survminer” package. We divided
the samples into the high-risk and low-risk groups based on
the best cut off value. Two survival curves representing the
high- and low-risk groups were obtained using the “survival”
package in R studio. The “survival-ROC” software package is
used to plot the curves of ROC and to obtain the value of
AUC. The expression levels of nine genes selected through
LASSO regression analysis are shown using a heatmap illus-
trated with the clinicopathological features.

2.10. Establishment and Verification of the Prediction Model.
Sankey diagram plotted using the “ggalluvial” software pack-
age shows the attributes of expression and prognosis among
selected genes. HPA (https://www.proteinatlas.org/) pre-
sents a complete map of protein levels in all major tissues

and organs of the human body. Data on the protein levels
of SOD2 were obtained from the HPA website and were
used to verify the prediction of SOD2. GSEA with the
REACTOME database revealed the enrichment of genes
related to OS. Univariate and multivariate Cox regression
analyses were performed to indicate the correlation of age,
stage, grade, T (tumor), M (metastasis), and risk score in
the model. N (node) was not included in the analysis
because the sample quantity was not substantial enough to
support the study. A nomogram was constructed using the
“rms” software package in R. All statistical analyses were
performed using the R studio. Statistical significance was
set at p < 0:05. GSEA with the GO and KEGG databases
helped elucidate the pathway by which the OS-related genes
of the different risk groups were enriched.

p = 0.02
Hazard ratio = 1.45
95% CI: 1.04 − 2.04

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p = 0.01
Hazard ratio = 1.5
95% CI: 1.09 − 2.05

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 1.99
95% CI: 1.45 − 2.73

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 2.12
95% CI: 1.54 − 2.92

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.58
95% CI: 0.42 − 0.8

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.45
95% CI: 0.32 − 0.63

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.47
95% CI: 0.34 − 0.66

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.58
95% CI: 0.42 − 0.79

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.41
95% CI: 0.3 − 0.57

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001
Hazard ratio = 0.52
95% CI: 0.37 − 0.74

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

KIRC

TXNRD1

NFE2L2CAT

HMOX1

NOX1
MT1XSOD2

NFKB1
MAPK10

GCLC

TXNRD1
> 14.27 (156)
< 14.27 (351)

SOD2
> 85.92 (209)
< 85.92 (298)

MT1X
> 17.2 (200)
< 17.2 (307)

NOX1
> 0.22 (339)
< 0.22 (168)

HMOX1
> 98.29 (318)
< 98.29 (189)

NFKB1
> 9.63 (337)
< 9.63 (170)

CAT
> 41.65 (295)
< 41.65 (212)

NFE2L2
> 18.96 (352)
< 18.96 (155)

GCLC
> 3.58 (343)
< 3.58 (164)

MAPK10
> 1.45 (317)
< 1.45 (190)

(d)

Figure 2: (a) Heatmap showing the expression of oxidative stress-related genes. According to the color bars provided, red indicates the high
expression of genes and blue indicates the low expression of genes on the opposite; grey indicates no significance. (b) Boxplot of SOD2
expression level in both tumor and normal tissues. The data was derived from TCGA and GTEx databases; the red asterisk indicates
significance. (c) Heatmap showing the nature of OS-related genes in cancer. According to the color blocks provided, red represents risky
genes, blue represents protective genes, and grey represents no significance (p > 0:05). (d) The survival curve of the high-risk and low-
risk groups in 10 genes of significance in KIRC.
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Figure 3: Continued.
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Figure 3: (a) Three clusters of the KIRC sample data derived from TCGA database according to the OS score; the clusters are represented in
red (C1), green (C2), and black (C3), respectively. The level of OS score depends on the expression level of mRNA, which is shown using the
heatmap. (b) Violin plot illustrating the enrichment score of the genes in three clusters. (c) The survival curves of three clusters, showing the
difference in survival. (d) The heatmap showing the correlation between OS score and the clinicopathological characteristics (T, M, stage,
grade, age, fustat, and futime) of patients with KIRC (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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Figure 4: (a, b) Heatmap showing GSEA analysis of the enriched gene sets among the three clusters. The rows and columns are defined by
using different gene sets based on GO analysis and three clusters successively. Cluster1, Cluster2, and Cluster3 are represented by green, red,
and blue successively. Two figures have been used to show the results based on the regulation of the pathway, indicating upregulation and
downregulation. Classical cancer pathway genes (c); sirtuin family genes (d); HDAC family genes (e); the expression of both in KIRC is
shown using the heatmap (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001). Blue represents Cluster1, red represents Cluster2, and
green represents Cluster3. The color bar on the right indicates that warm colors represent high gene expression, while cool colors
represent low gene expression (red to blue).
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Figure 5: Continued.
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Figure 5: (a–l) Boxplots showing the estimated IC50 of cancer cells of the common anticancer drugs. The yellow, blue, and red boxes
represent Cluster1, Cluster2, and Cluster3 successively. The value on the horizontal line represents the p value; p < 0:05 is considered
significantly different. The 12 types of chemotherapeutic agents considered for analysis are pazopanib, sorafenib, sunitinib, nilotinib,
vorinostat, axitinib, gefitinib, temsirolimus, lapatinib, metformin, bosutinib, and tipifarnib.
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Figure 6: (a) Heatmap showing the correlation between the immune infiltration and the OS-related genes. The level of correlation is
represented with colors; red represents positive correlation, and blue represents negative correlation (∗p < 0:05, ∗∗p < 0:01). (b) The plot
shows the degree of correlation, the area of the circle represents the abs (correlation), and the color bar on the right side shows the p
value. (c, d) APC-costimulation and macrophages were selected, and a scatter diagram has been used to show the correlation with OS
score (OS score). (e) The plot shows the correlation analysis of PD-1, CTLA-4, and OS score. The scatter diagram and color bar
represent the correlation and coefficient, respectively. (f) Submap analysis shows that the OS-inactive cluster could be more sensitive to
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitor (nominal p value = 0.01). However, data obtained after the Bonferroni
correction indicated that it was not significantly different (p value is represented by the color block; purple indicates high values and
yellow indicates low values).

19Oxidative Medicine and Cellular Longevity



CYP1A1⁎⁎⁎
TXNRD2⁎⁎⁎
TXN2⁎⁎⁎
CAT⁎⁎⁎
GSR⁎⁎⁎
MAPK10⁎⁎⁎
SOD3***
GSTT2
JUNB
FOS⁎⁎⁎
UGT1A6
TXNRD1⁎⁎
NQO1⁎⁎⁎
NOX4⁎⁎
GPX3⁎⁎⁎
MT1X⁎⁎⁎
MAOA⁎⁎⁎

GPX1⁎⁎⁎
NOX1⁎⁎
SOD1⁎⁎⁎
NOX5⁎⁎⁎
XDH⁎⁎

NOX3⁎⁎
SP1⁎⁎⁎
MAPK14⁎⁎
NFKB1⁎⁎⁎
GCLC
NFE2L2⁎⁎⁎
NFIX⁎⁎⁎
MGST1⁎⁎⁎
HMOX1⁎⁎⁎
SOD2⁎⁎⁎
CYBB⁎⁎⁎

Type

Type
N
T

−4

−2

0

2

4

(a)

MGST1
HMOX1
NOX4
MAPK10
GPX1
SOD2
UGT1A6
GSTT2
CYP1A1
MT1X
XDH
TXNRD2
NOX1
NOX5
GPX3
MAPK14
SOD3
GCLC
NFKB1
SOD1
SP1
MAOA
CYBB
NFIX
TXNRD1
TXN2
CAT
NQO1
NOX3
JUNB
NFE2L2
FOS
GSR

p value
0.025
0.017
0.137
0.005
0.093
0.002
0.763
0.064
0.262

<0.001
0.874
0.708
0.001
0.907
0.273
0.573
0.494
0.001

<0.001
0.405
0.107
0.440
0.227
0.078

<0.001
0.290

<0.001
<0.001

0.643
0.901
0.010
0.102
0.200

Hazard ratio
1.012 (1.001 − 1.022)
0.997 (0.995 − 1.000)
0.974 (0.940 − 1.009)
0.718 (0.569 − 0.905)
1.001 (1.000 − 1.002)
1.003 (1.001 − 1.005)
1.002 (0.990 − 1.014)
2.849 (0.941 − 8.630)
0.702 (0.378 − 1.303)
1.003 (1.002 − 1.005)
1.012 (0.872 − 1.175)
0.977 (0.864 − 1.105)
3.835 (1.714 − 8.584)
0.979 (0.689 − 1.392)
1.000 (1.000 − 1.000)
0.984 (0.931 − 1.040)
0.996 (0.985 − 1.007)
0.863 (0.788 − 0.945)
0.918 (0.881 − 0.957)
1.002 (0.997 − 1.007)
0.978 (0.952 − 1.005)
0.996 (0.987 − 1.006)
1.005 (0.997 − 1.014)
0.975 (0.949 − 1.003)
1.023 (1.011 − 1.035)
0.993 (0.980 − 1.006)
0.982 (0.974 − 0.989)
1.016 (1.007 − 1.025)
0.533 (0.037 − 7.651)
1.000 (0.998 − 1.002)
0.972 (0.951 − 0.993)
0.999 (0.998 − 1.000)
0.991 (0.978 − 1.005)

0.031 0.062 0.125 0.250 0.500 1.00 2.00 4.00 8.00
Hazard ratio

(b)

Figure 7: Continued.

20 Oxidative Medicine and Cellular Longevity



10

20

30

40

100 200 300
SOD2

CY
BB

r = 0.44
P = 6.7e−30

10

20

30

100 200 300
SOD2

M
G

ST
1

r = 0.39
P = 3.5e−23

9

11

13

15

17

100 200 300
SOD2

TX
N

RD
1

r = 0.26
P = 3.9e−11

0.0

2.5

5.0

7.5

100 200 300
SOD2

U
G

T1
A

6

r = 0.25
P = 4.8e−10

7

8

9

10

11

100 200 300
SOD2

M
A

PK
14

r = 0.24
P = 3.4e−09

10

20

30

100 200 300
SOD2

M
A

O
A

r = 0.23
P = 7.5e−09

40

80

120

160

100 200 300
SOD2

FO
S

r = −0.15
P = 1.3e−04

40
50
60
70
80

100 200 300
SOD2

CA
T

r = −0.16
P = 8.9e−05

1.5

2.0

2.5

100 200 300
SOD2

M
A

PK
10

r = −0.19
P = 1.6e−06

10
15
20
25
30

100 200 300
SOD2

SO
D

3

r = −0.2
P = 4.2e−07

30

35

40

45

100 200 300
SOD2

TX
N

2

r = −0.25
P = 1.9e−10

2.0

2.5

3.0

3.5

4.0

100 200 300
SOD2

TX
N

RD
2

r = −0.26
P = 2.9e−11

SOD2

(c)

Figure 7: Continued.

21Oxidative Medicine and Cellular Longevity



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SP
1

M
A

PK
14

N
FK

B1

G
CL

C

N
FE

2L
2

H
M

O
X1

SO
D

2

CY
BB

G
ST

T2

N
FI

X

M
T1

X

M
G

ST
1

M
A

O
A

U
G

T1
A

6

TX
N

RD
1

N
Q

O
1

XD
H

N
O

X3

N
O

X5

G
PX

1

N
O

X1

SO
D

1

M
A

PK
10

N
O

X4

G
PX

3

TX
N

RD
2

TX
N

2

CA
T

G
SR

JU
N

B

FO
S

CY
P1

A
1

SO
D

3

SP1

MAPK14

NFKB1

GCLC

NFE2L2

HMOX1

SOD2

CYBB

GSTT2

NFIX

MT1X

MGST1

MAOA

UGT1A6

TXNRD1

NQO1

XDH

NOX3

NOX5

GPX1

NOX1

SOD1

MAPK10

NOX4

GPX3

TXNRD2

TXN2

CAT

GSR

JUNB

FOS

CYP1A1

SOD3

1 0.47

1

0.41

0.48

1

0.24

0.38

0.28

1

0.18

0.36

0.44

0.3

1

0.04

0.01

0.05

0.04

−0.23

1

0.19

0.24

0.2

0.03

0.02

0.21

1

0.37

0.48

0.38

0.21

0

0.29

0.44

1

0.03

0.02

0.01

−0.02

0.03

−0.07

−0.06

−0.06

1

0.29

0.14

0.26

−0.07

−0.04

0.1

0.05

0.11

0.1

1

−0.14

−0.16

−0.16

−0.13

−0.03

0.01

0.08

−0.11

−0.04

−0.12

1

0.12

0.14

−0.05

0.02

−0.15

0.26

0.39

0.13

−0.15

−0.04

0.18

1

0.1

0.14

−0.11

0.07

0.07

−0.03

0.23

−0.01

−0.07

−0.08

0.17

0.36

1

−0.01

0.15

0.12

0.03

0.1

0.11

0.25

−0.02

−0.05

−0.02

0.03

0.2

0.05

1

0.16

0.34

0.07

0.28

0.19

0.09

0.26

0.24

−0.08

−0.05

0.09

0.38

0.2

0.17

1

−0.12

0.05

−0.18

0.06

0.03

0.06

0.14

−0.1

0.01

−0.16

0.2

0.28

0.11

0.15

0.59

1

−0.1

−0.08

−0.1

0.03

−0.07

−0.05

0.03

−0.03

−0.05

−0.07

0.02

0.1

0.02

0.01

0.12

0.17

1

−0.06

−0.08

−0.08

−0.06

−0.08

−0.07

−0.05

−0.05

−0.01

−0.03

0.02

−0.02

−0.04

−0.04

−0.03

0.01

0.14

1

−0.02

0

0

0

0.01

−0.06

−0.04

−0.03

−0.01

−0.01

−0.02

−0.07

0.03

0.09

−0.01

0.02

0

0.04

1

−0.36

−0.25

−0.29

−0.21

−0.32

0.14

0.12

0.1

−0.09

−0.18

0.09

0.16

−0.04

−0.01

0.03

0.14

0.1

0.02

0.02

1

−0.18

−0.26

−0.38

−0.22

−0.15

−0.08

0

−0.21

0.01

−0.22

0

0.13

0.02

−0.05

−0.15

0.1

−0.01

0.15

0.03

0.2

1

−0.39

−0.19

−0.29

−0.15

−0.04

−0.06

−0.09

−0.34

−0.03

−0.28

0.1

0.25

0.19

0.06

−0.02

0.29

0.2

0.01

0.04

0.18

0.3

1

0.07

0.26

0.08

0.2

0.29

−0.35

−0.19

−0.17

0.15

−0.12

−0.07

−0.21

0.08

−0.07

−0.12

0.02

−0.13

−0.03

0.07

−0.34

−0.05

0.15

1

−0.15

0.12

−0.09

0.1

0.06

−0.07

0.06

−0.07

−0.09

−0.12

0.07

0.18

0.16

0.12

−0.05

0.09

−0.05

−0.03

0.04

−0.03

0.05

0.24

0.31

1

−0.2

0.03

−0.24

0.05

0

−0.03

0.01

−0.17

−0.09

−0.17

0.22

0.26

0.31

0.1

0.04

0.17

−0.05

−0.03

0.15

−0.05

−0.01

0.4

0.33

0.63

1

−0.35

−0.25

−0.2

0

−0.04

−0.25

−0.26

−0.28

0.01

−0.28

0.01

−0.19

−0.08

−0.08

−0.11

0.04

0.02

0.16

0.09

0.11

0.03

0.29

0.2

0.16

0.17

1

−0.47

−0.28

−0.35

−0.11

−0.03

−0.13

−0.25

−0.34

−0.04

−0.3

0.04

−0.05

−0.01

−0.05

−0.13

0.1

0.04

0.04

−0.01

0.47

0.12

0.39

0.08

0.13

0.23

0.54

1

−0.14

0.18

0.06

0.25

0.36

−0.31

−0.16

−0.19

−0.07

−0.28

−0.03

−0.1

0.22

0.03

−0.01

0.05

−0.05

−0.06

0.03

−0.11

−0.12

0.29

0.47

0.36

0.34

0.43

0.38

1

−0.2

0.08

−0.11

0.15

0.16

−0.18

0.04

−0.15

−0.11

−0.35

0.07

0.17

0.23

0.13

0.3

0.38

−0.03

−0.04

0.04

0.17

0.03

0.27

0.18

0.32

0.27

0.31

0.38

0.52

1

−0.06

−0.1

0.11

−0.13

0.21

0.09

−0.14

−0.12

0.12

0.09

0.03

−0.21

−0.16

−0.07

−0.08

−0.09

−0.09

−0.01

−0.03

−0.12

−0.06

−0.11

−0.01

−0.17

−0.14

−0.03

−0.05

−0.08

−0.2

1

0.01

0.02

0.06

−0.01

0.17

0.01

−0.15

−0.09

0.08

0.02

0

−0.18

−0.06

−0.06

−0.06

−0.06

−0.08

−0.02

−0.03

−0.18

−0.07

−0.08

0.12

−0.08

−0.06

−0.02

−0.04

0.06

−0.08

0.75

1

−0.07

0.01

−0.03

0.07

0.23

−0.16

−0.11

−0.06

−0.02

−0.12

−0.01

−0.15

0.04

−0.05

0.06

0.03

0.08

0.05

0

−0.04

0.02

0.02

0.13

−0.05

−0.05

0.16

0.12

0.27

0.17

0.05

0.08

1

−0.21

−0.03

−0.12

−0.32

0.1

−0.19

−0.2

−0.23

0.05

−0.06

0.03

−0.26

0.02

−0.08

−0.12

0.01

0

0.05

0.01

−0.02

0.09

0.16

0.3

0.05

0.08

0.18

0.16

0.2

0.08

0.23

0.18

0.19

1

(d)

Figure 7: Continued.

22 Oxidative Medicine and Cellular Longevity



−6 −5 −4 −3
12.3

12.4

12.5

12.6

12.7

12.8

12.9

13.0

Log (𝜆)

Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

12 12 12 12 12 12 11 11 11 10 9 8 8 7 5 2

(e)

−6 −5 −4 −3

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Log (𝜆)
Co

effi
ci

en
ts

12 12 10 7

1

2

3

4

5

6

7

8

9

10
11

12

(f)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0
Survival curve (p = 2.268e−09)

Time (year)

Su
rv

iv
al

 ra
te

High risk
Low risk

(g)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve (AUC = 0.696)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

3 year

(h)

Figure 7: Continued.

23Oxidative Medicine and Cellular Longevity



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve (AUC = 0.734)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

5 year

(i)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve (AUC = 0.702)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

7 year

(j)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve (AUC = 0.729)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

10 year

(k)

Figure 7: Continued.

24 Oxidative Medicine and Cellular Longevity



CAT

GCLC

NFKB1

MAPK10

NOX1

MT1X

HMOX1

TXNRD1

SOD2

Futime
Fustat⁎⁎⁎
Age
Grade⁎⁎⁎
Stage⁎⁎⁎
T⁎⁎⁎
M⁎⁎⁎
Risk

Risk
High
Low

M⁎⁎⁎

1

0

T⁎⁎⁎
4

1

Stage⁎⁎⁎
4

1

Grade⁎⁎⁎
4

1

Age
80

30

Fustat⁎⁎⁎
1

0

Futime
3500

500

−10

−5

0

5

10

(l)

Figure 7: A predication model of KIRC using OS-related genes. (a) The expression of OS-related genes in patients with KIRC. In the color
bar on the right side, red represents upregulation and blue represents downregulation. N (green) represents the normal sample; T (red)
represents the tumor sample (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001). (b) Hazard ratio analysis with 95% confidence intervals and p
values for the OS-related genes. (c) The scatter diagram shows the correlation of SOD2 and other genes, including CYBB, MGST1,
TXNRD1, UGT1A6, MAPK14, MAOA, FOS, CAT, MAPK10, SOD3, TXN2, and TXNRD2. (d) Coexpression analysis of OS-related
genes in KIRC. (e, f) The LASSO coefficient profiles of OS-related genes in KIRC. Nine genes were selected using the LASSO Cox
regression analysis. (g) The survival curve obtained using this model. Red and blue correspond, respectively, to the high-risk group and
the low-risk group. (h, k) ROC curve represents data on 3, 5, 7, and 10 years. AUC of the curve is marked at the head (3 years: 0.696; 5
years: 0.734; 7 years: 0.702; and 10 years: 0.729). (l) Heatmap shows the correlation of the nine selected genes and the clinicopathological
characteristics in two groups. The color bar represents the expression of genes; red represents upregulation and blue represents
downregulation.
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2.11. Tumor Mutational Burden. Tumor mutational burden
(TMB) [23] is an emerging biomarker considered for pre-
dicting ICI treatment response. TMB is often reported as
the number of mutations in 1Mb. First, we calculated the
TMB value of each sample and analyzed the correlation
between TMB and OS score. The samples were divided into
two groups, namely, H-TMB and L-TMB, according to
different TMB values. Survival was then predicted based on
the OS score, and the survival curve was plotted. Finally,
heatmaps were used to illustrate the results.

3. Results

3.1. Genetic Mutations of Oxidative Stress Pathway Genes Are
Widespread in Cancers. Copy number variation (CNV) and
single-nucleotide variation (SNV) data were downloaded from
TCGA database and analyzed using Perl and R language.
According to the results, MGST1, GPX3, SP1, TXNRD1,
MAPK14, and SOD1 presented with CNV gains among vari-

ous types of cancers. Meanwhile, GCLC, MAPK14, HMOX1,
TXN2, GSR, GPX1, NOX3, and SOD2 showed CNV loss
(Figures 1(a), 1(b), and 1(d), Tables S1 and S2). To better
explain the relationship between genes, we used
PPINETWORK to describe the relationship between genes via
the application of STRING (Figure 1(c), Table S5). Gene
expression investigations revealed that most genes were either
upregulated or downregulated (Figure 2(a), Table S3). The
survival landscape shows that NQO1, TXNRD1, SOD2,
MT1X, NOX1, and MGST1 are risk genes for KIRC and
HMOX1, NFKB1, GCLC, MAPK10, CAT, and NFE2L2 are
protective genes in KIRC (Figure 2(c)). Survival curves also
provided concrete evidence (Figure 2(d), Table S4). The
expression of SOD2 in different cancers listed on the GEPIA
website showed high values in KIRC (Figure 2(b)).

3.2. Obtainment of Three Clusters of Samples Using OS Score.
Through cluster analysis, all samples were divided into three
clusters according to the mRNA expression of the samples,
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Figure 8: (a) Sankey diagrams used to summarize the data on the nine selected genes, including their expression and prognosis. (b–d) The
association between OS-related genes and KIRC was confirmed at the protein level. The boxplot shows the SOD2 protein levels in normal
tissues and primary tumor tissues. Immunohistochemical images obtained from the HPA website. (e) The curve shows the result of the gene
enrichment score derived from the REACTOME database. (f) Forest plot of univariate Cox analysis. (g) Forest plot of multivariate Cox
analysis. (h) Nomogram of the prediction model. The total score is calculated using ABC, from which 5-, 7-, and 10-year survival rates
can be obtained. (i) The curve shows the enrichment of the different gene datasets in different physiological functions, including
dystroglycan binding, immunoglobulin complex, immunoglobulin complex (circulating), immunoglobulin receptor binding, and
phagocytosis, derived from the GO database. (j) The curve shows the result of gene enrichment in endocrine resistance, endocytosis,
FoxO signaling pathway, lysosome, and oxidative phosphorylation derived from the KEGG database.
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and different mRNA expression levels were expressed in the
form of OS score (Figure 3(a), Table S6–S7). The clustering
groups obtained were C1, C2, and C3, which represented OS
score active, normal, and inactive, respectively. The violin
diagram and survival curve highlight the characteristics of
these three groups of samples; the survival value of the OS
pathway upregulation was high, and the survival value of the
OS pathway downregulation was low (Figures 3(b) and 2(c)).
Using a heatmap, a close correlation was revealed among the
OS pathway genes in the three clusters and grade and fustat
in clinicopathology (Figure 3(d)).

3.3. GSEA of the Oxidative Stress-Related Pathway among the
Three Clusters. Through GSEA analysis of the three clusters,
we selected the 60 most representative gene sets from the three
clusters. A pathway heatmap was used to reveal the different
genes enriched in the different clusters. We divided the 60
gene sets into upregulated and 30 downregulated genes
according to the expression of different genes. According to
the results, the acyl-CoA dehydrogenase and NADH dehydro-
genase pathways were enriched in Cluster1, and the odorant-
binding protein and benzodiazepine receptor pathways were

enriched in Cluster3 in terms of upregulation (Figure 4(a)).
Additionally, the voltage-gated calcium channel pathway was
enriched in Cluster1 and the phosphatidylinositol kinase and
phosphotransferase pathways were enriched in Cluster3
(Figure 4(b)).

3.4. Expression of Other Common Genes in Three Clusters.
We continued to use the three clusters obtained through clus-
ter analysis to study the correlation among common renal cell
carcinoma-related genes, sirtuin family genes, HDAC family
genes, and KIRC (Figures 4(c)–4(e)). Sirtuin and HDAC are
closely related to histone modification [24]. According to the
heatmap generated and the p value obtained, most common
genes of KIRC were found to be strongly correlated with the
occurrence and development of tumors, except AKT1, which
regulates cell proliferation and growth and is involved in cellu-
lar processes, including apoptosis and glucose metabolism
(∗p < 0:05, ∗∗∗∗p < 0:001). All sirtuin family genes and most
genes of the HDAC family (except HDAC5 and HDAC6) also
have a strong correlation with the occurrence and progression
of tumors.
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Figure 9: (a) Scatter plots illustrating the correlation between OS score and tumor burden mutation. The different colors represent the three
clusters: Cluster1 (blue), Cluster2 (orange), and Cluster3 (red). (b) The survival curve of the high- and low-tumor mutation burden groups.
(c) The survival curve of high- and low-tumor mutation burden with high- and low-ICI scores. (d, e) The analysis of gene mutation in
ccRCC.
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3.5. Anticancer Drug Analysis Using GDSC. The GDSC data-
base was used to analyze the IC50 of tumor cells subjected to
treatment with different targeted anticancer drugs. Different
reactions of the three clusters revealed the efficacy of different
drugs influenced by the OS pathway. The results are shown as
boxplots. The results are summarized into the following cate-
gories: C1 and C3 > C2 (pazopanib, nilotinib, axitinib, temsir-
olimus, and bosutinib), C1 and C3 < C2 (sorafenib, gefitinib,
metformin, and tipifarnib), C1 > C2 > C3 (sunitinib, vorino-
stat), and C1 < C2 < C3 (lapatinib) (Figures 5(a)–5(l)).

3.6. Immune Cell Infiltration and Immunotherapy. Immuno-
therapy has always been the preferred method of cancer
treatment. By examining the relationship between immunity
and OS, we can understand the feasibility of treating KIRC
with immunotherapy related to OS. The heatmap shows that
immune cell infiltration strongly correlated with the OS
pathway genes (Figure 6(a)). In order to explore the correla-
tion between these genes and immune cell infiltration, it is
well known that the universal marker for macrophages is
CD68. Therefore, we used ten fresh kidney cancer tissues
to perform real-time fluorescent quantitative PCR experi-
ments to detect the correlation between SOD2, CAT, and
the macrophage marker CD68. The results show that there
is a clear positive correlation between SOD2 and CD68
and a clear negative correlation between CAT and CD68
(Supplementary Materials Figure S3). These results confirm
our findings. The histogram shows the specific correlation
coefficients. Infiltration of immune cells represented by
neutrophils and macrophages exhibited a strong positive
correlation with the OS pathway. The response of IFN-1
was negatively correlated with the OS pathway
(Figure 6(b)). The scatter plot revealed that macrophage
and antigen-presenting cell cosimulation demonstrated a
strong correlation with the OS pathway (Figures 6(c) and
(d)). Immune checkpoint-blocking antibodies, including
anti-CTLA-4 and anti-PD-1, can induce tumor responses
in a variety of tumor types [25, 26]. Therefore, the
treatment of KIRC with immune checkpoint blocking
antibodies is widely conducted [27]. In the correlation
analysis, we found that OS score was negatively correlated
with the expression of CTLA-4 and PD-1 (Figure 6(e)).
Therefore, it can be inferred that patients with OS pathway
inactivation may have higher expression of CTLA-4 and
PD1 than patients with OS pathway activation. The submap
algorithm of TIDE and GenePattern was used to predict the
possibility of two different subtypes (Cluster1 + Cluster2 and
Cluster3) exhibiting responses to immunotherapy. The
results show that the OS inactive cluster is more promising
regarding the generation of responses to anti-CTLA-4
therapy (Figure 6(f)). However, after data rectification using
the Bonferroni correction, the difference between the two
groups was not significant. This might be attributable to the
small sample size.

3.7. LASSO Regression for the Establishment of the Prediction
Model. Based on the consideration of two groups, namely,
the normal group (n = 72) and KIRC group (n = 539) from
TCGA database, we found that the expression of 32 of the

33 OS pathway genes was significantly different between
the two groups, as evidenced via analysis of gene expression
except GCLC (∗p < 0:05, ∗∗p < 0:005, and ∗∗∗p < 0:001)
(Figure 7(a)). The forest plot shows the results of hazard
ratio analysis, the relationship between these gene pathways,
and KIRC progression. NOX1, MT1X, SOD2, MGST1,
TXNRD1, and NQO1 exert a risk effect, and MAPK10,
HMOX1, GCLC, NFKB1, CAT, and NFE2L2 confer a protec-
tive effect (p < 0:05 was considered significant) (Figure 7(b),
Table S8). The results of coexpression analysis revealed a
correlation between two different genes, and we intercepted
the correlation between SOD2 and other genes. CYBB,
MGST1, TXNRD1, UGT1A6, MAPK14, and MAOA were
positively correlated with SOD2 expression. FOS, CAT,
MAPK10, SOD3, TXN2, and TXNRD2 were negatively
correlated with SOD2 (Figures 7(c) and 7(d)). LASSO
regression analysis was performed to select the appropriate
genes to construct the prediction model. The samples were
divided into two groups, namely, high-risk and low-risk
groups, based on the best cutoff value of the risk score.
Finally, the following nine genes were selected: CAT, GCLC,
NFKB1, MAPK10, NOX1, MT1X, HMOX1, TXNRD1, and
SOD2 (Figures 7(e)–7(g), Table S9). Receiver operating
characteristic (ROC) curve analysis was then performed to
analyze the predictive prognostic performance of the new
survival model in patients with KIRC. We obtained the
following four survival curves: 3 years with area under the
curve ðAUCÞ = 0:696, 5 years with AUC = 0:734, 7 years with
AUC = 0:702, and 10 years with AUC = 0:729 (Figures 7(h)–
7(k)). AUC > 0:7 was considered predictive [28]. The
heatmap shows the correlation between the nine genes and
the clinicopathological features (∗p < 0:05, ∗∗p < 0:005, and
∗∗∗p < 0:001) (Figure 7(l)).

3.8. Verification of the Prediction Models. The Sankey dia-
gram revealed the expression and prognosis of the nine
selected genes (Figure 8(a)). The box plot of SOD2 protein
expression showed that the protein expression of the tumor
tissue was higher than that of the normal tissue
(Figure 8(b)). The samples were obtained from the CPTAC
[29]. We also obtained the immunohistochemical informa-
tion on the proteins of selected genes from the Human Pro-
tein Atlas (HPA) website (Figures 8(c) and 8(d)). GSEA
analysis was performed using the REACTOME, GO, and
KEGG databases. The results showed that the highly
expressed genes were mainly enriched in chemokine recep-
tors, IFN-γ, IL-12, and IL-20, and neutrophil degranulation
pathways (Figure 8(e), Table S10-11). The high-risk group
and low-risk group genes were enriched in dystroglycan
binding, immunoglobulin complex, immunoglobulin
complex circulating, immunoglobulin receptor binding,
and phagocytosis recognition in the GO database and
endocrine resistance, endocytosis, foxO signaling pathway,
lysosome, and oxidative phosphorylation in the KEGG
database (Figures 8(i) and 8(j)). Univariate Cox regression
analysis showed that age, grade, stage, risk score, and
tumor node metastasis (TNM) without nodes existed as
risk factors. Multivariate Cox regression analysis revealed
that T and M were not significant (Figures 8(f) and 8(g),
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Table S12-13). Finally, the nomogram revealed the
prediction model and the total points of age, grade, stage,
and risk score derived from the survival ratio data of
patients with KIRC in 5, 7, and 10 years (Figure 8(h)).

3.9. Tumor Mutational Burden. TMB levels are generally
divided into three grades, namely, low TMB (1–5 muts/mb),
intermediate TMB (6–19 muts/mb), and high TMB (≥20
muts/mb) [30]. The scatter plot shows the correlation
between the OS score and TMB. It can be inferred from
the scatter plot that there is a correlation between OS score
and TMB, with a correlation coefficient of 0.28 (p < 0:05).
In this plot, different clusters are represented with different
colors to show the specific distribution of the different clus-
ters (Figure 9(a), Table S14). The survival curve shows the
comparison of survival rates among different TMB groups.
It can be deduced from the figure that the survival rates of
samples in the low-TMB group are better than those in the
high-TMB group. When both OS score and TMB were
considered, we found that the survival rate of the group
with low TMB and high OS score was significantly better
than that of the group with high TMB and low OS score,
which corroborated the conclusions of the previous cluster
analysis (Figures 9(b) and 9(c)). Based on the mutation
rate of specific genes in the two groups of samples divided
by the risk score, we illustrated a heatmap to show the
correlation between them (Figures 9(d) and 9(e)). To
improve the reliability of the research results, we
conducted a random internal sampling validation in the
KIRC dataset of TCGA database. Based on this risk model,
we divided 50 randomly selected KIRC patients into the
high-risk and low-risk groups. In the generated survival
curve, we found that the prognosis of patients in the high-
risk group was significantly lower than that in the low-risk
group (p = 0:009) (Supplementary Materials Figure S1A).
The expression of key genes such as CAT, NFKB1,
MAPK10, NOX1, MT1X, HMOX1, TXNRD1, and SOD2 is
also related to the poor prognosis of ccRCC patients
(Supplementary Materials Figure S1B-I). In addition, the
results of immunohistochemistry experiments on the
SOD2 and CAT on our KIRC clinical specimens are also
consistent with the above results, and the corresponding
results are shown in Supplementary Materials Figure S2A-
D. These results support our previous findings and make
our conclusions more credible.

4. Discussion

Oxidation occurs at all times in our bodies. When air is
inhaled, cells in our bodies utilize oxygen to trigger cellular
processes to produce energy for survival. This is a typical
chemical reaction occurring in the body. The process also
produces free radicals and molecules that can damage our
cells. Free radicals include ROS and other molecules with
unpaired electrons, which render them unstable and highly
chemically active. To achieve higher stability, free radicals
damage molecules that constitute the DNA, proteins, and
lipids (fats), leading to tissue damage [31]. In a few cases, a
transient increase in ROS, a type of free radical, can act as

a signaling mechanism that leads to a physiological cellular
response, including OS. The concept of OS was first pro-
posed in 1985 [3] and refers to a state of imbalance estab-
lished between oxidation and antioxidant activity in the
body, with a bias toward oxidation, leading to inflammatory
infiltration of neutrophils, increased protease secretion, and
the production of a substantial number of oxidative interme-
diates. OS is a negative effect produced by free radicals in the
body and believed to be an important factor in aging and
disease development. OS is feasible for the treatment of
Alzheimer’s disease [32], COPD [33], cardiovascular disease
[34], and other diseases. ROS, which are recognized as free
radicals, are the key products of OS. There is considerable evi-
dence that the continuous production of ROS in the body can
promote and inhibit the survival of cancer cells [1]. Increased
production of ROS has been detected in a variety of cancers
and has been shown to exert multiple effects. For example,
they can activate protumorigenic signals, enhance cell survival
and proliferation, and drive DNA damage and genetic insta-
bility. Conversely, ROS can also promote antitumor signaling
and initiate OS-induced tumor cell death, and the redox bal-
ance between tumor cells and normal cells is altered, suggest-
ing that ROS is a potential target for cancer therapy.

In this study, we focused on the genes and pathways
related to OS and determined whether OS was a potential
target for KIRC treatment by studying the correlation
among gene expression and gene mutations and by utilizing
clinical information reported for normal samples and KIRC
samples in TCGA database. We studied the therapeutic
effect of common cancer treatment drugs targeting the OS
pathway in KIRC and selected the genes related to OS which
were most closely associated with KIRC to establish a cancer
prognosis model. TMB was calculated to verify whether the
patients would benefit from immunotherapy [35]. At the
beginning of the experiment, we determined the expression
of genes in the OS pathway in patients with KIRC. In the
heatmaps of cancer survival landscapes related to the OS
pathway, we found that the ratio of risky and protective
genes was 1 : 1. Therefore, we preliminarily concluded that
the OS pathway was not completely carcinogenic or
tumor-suppressive, as reported in previous studies. In the
experiment, we focused on the SOD2 gene. SOD2 tran-
scribes superoxide dismutase, an antioxidant that protects
cells and mitochondria from ROS during inflammation
[36]. Therefore, SOD2 can be used as a representative gene
in the OS pathway. We studied the differential expression
of SOD2 in cancer tissues and normal tissues, explored the
hazard ratio of SOD2 with the survival curve, and analyzed
the coexpression relationship between SOD2 and other
genes in the later stage of the study, which collectively con-
firmed that SOD2 exerted a nonnegligible effect on KIRC.
The GSEA analysis showed that many genes in the OS path-
way were enriched in immune-related pathways; therefore,
we conducted an in-depth study on the correlation between
immune cell infiltration and the OS pathway. Previous stud-
ies have shown that the loss of SOD2 regulation can lead to
abnormal T cell development and function [37–39]. In the
heatmap of common KIRC-related gene expression and his-
tone modification-related gene expression, we found that in
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addition to the common order of high-medium-low or low-
medium-high, several genes exhibited the phenomenon of
high-low-high or low-high-low in Cluster1 to Cluster3. This
suggests that the expression of OS-related genes exerts a
nonlinear effect on certain physiological phenomena. It is
possible that any difference in OS gene expression, regard-
less of high or low expression, affects the expression of these
oncogenes or histone modifications. The results of the anal-
ysis showed that the OS pathway was positively correlated
with the antigen-presenting cell- (APC-) related pathway
and macrophage pathway, which also suggested a relation-
ship between OS and immunotherapy. As two checkpoints
of cancer immunotherapy, PD-1 and CTLA-4 have attracted
our attention [26]. In our study conducted on the respon-
siveness of three OS score clusters to PD-1 and CTAL-4
inhibitor targets, we combined Cluster1 and Cluster2 as
OS-active clusters and defined Cluster3 as an OS-inactive
cluster. The OS-inactive cluster is more promising in terms
of exhibition of responses to anti-CTLA-4 therapy. Unfortu-
nately, after correction using the Bonferroni test, the results
lost their statistical significance, and we hypothesized that
this might be due to the small sample size.

We then used LASSO regression analysis to select the
genes that could be used to construct the prediction model.
The nine selected genes were CAT, GCLC, NFKB1, MAPK10,
NOX1, MT1X, HMOX1, TXRND1, and SOD2. CAT, a regu-
lator of catalase, plays an important role in cancer tissues. The
mutation of CAT leads to different resistance extents of cancer
cells to ROS. Therefore, targeting the redox state of cancer cells
by regulating the expression of catalase is a novel approach to
enhance chemotherapy [40]. SOD2 and thioredoxin reductase
1 (TXNRD1), which regulate antioxidant enzymes, function
based on the same principle. MAPK is a downstream pathway
of Nrf2. It has been shown that Nrf2 can reduce the damage
caused by OS to cells by regulating the MAPK pathway. The
correlation betweenMAPK10 andOS has also been confirmed
[41]. NF-κB is an important transcription factor that regulates
a variety of inflammatory factors and pathways. In Parkinson’s
disease, it has been reported that polymorphisms in the
NFKB1 gene may affect the development of redox balance to
prooxidation framework and may help regulate disease pro-
gression [42]. Among the nine genes selected using LASSO
regression analysis, SOD2, NOX1 [11], and HMOX1 genes
were also closely related to the regulation of redox in the body.
NOX1 is involved in the synthesis of [43] nicotinamide
adenine dinucleotide phosphate oxidases, while HMOX1 has
been shown to inhibit the occurrence of OS. ForMT1X,metal-
lothionein has been documented as an antioxidant that pro-
tects cells from free radicals and OS generated by mutagens,
antitumor drugs, and radiation [44]. As the most abundant
nonprotein mercaptan, glutathione plays a key role in confer-
ring protection against OS injury. Glutathione is also a key
determinant of redox signaling. A key determinant of glutathi-
one synthesis is the activity of the rate-limiting enzyme
glutamate-cysteine ligase (GCL), which consists of a catalytic
subunit (GCLC) and a modified subunit (GCLM) [45]. There-
fore, GCLC is markedly associated with the regulation of OS.
It was found that the pathways or molecules regulated by these
nine selected genes played a key role in the balance regulation

of OS, which laid the biochemical foundation for our model.
After verifying the rationality of the model, we used a histo-
gram to plot the survival prediction model for patients and
finally used the TMB to confirm whether patients could bene-
fit from immunization and targeted therapy against OS.

5. Conclusions

Throughout our experiments, we focused on the OS path-
way, which led to the formulation of the first conclusion that
OS played a bidirectional role in cancer, especially in KIRC.
Three clusters representing gene expression of different OS
pathway gene expression were used as research tools, and
various analyses were conducted to confirm the previous
findings. Finally, based on the OS pathway genes, a survival
prediction model was constructed. Regulators used to build
the risk signature may also become targets for the diagnosis
and treatment of KIRC.
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