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Nowadays, the high prevalence of kidney diseases and their related complications, including endothelial dysfunction and
cardiovascular disease, represents one of the leading causes of death in patients with chronic kidney diseases. Renal failure leads to
accumulation of uremic toxins, which are the main cause of oxidative stress development. The renal replacement therapy appears
to be the best way to lower uremic toxin levels in patients with end-stage renal disease and reduce oxidative stress. At this moment,
despite the increasing number of recognized toxins and their mechanisms of action, it is impossible to determine which of them
are the most important and which cause the greatest complications. There are many different types of renal replacement therapy,
but the best treatment has not been identified yet. Patients treated with diffusion methods have satisfactory clearance of small
molecules, but the clearance of medium molecules appears to be insufficient, but treatment with convection methods cleans
medium molecules better than small molecules. Hence, there is an urgent need of new more validated, appropriate, and reliable
information not only on toxins and their role in metabolic disorders, including oxidative stress, but also on the best artificial renal
replacement therapy to reduce complications and prolong the life of patients with chronic kidney disease.

1. Introduction

As a result of the deterioration of kidney function, patients
with chronic kidney disease develop conduction, accumula-
tion of toxic substances called uremic toxins and related
symptoms. In dialyzed patients, the development of sarcope-
nia and deterioration in nutritional status may be associated
with increased mortality [1–3].

The development of chronic inflammation is associated,
among other things, with the accumulation of uremic toxins
and activation of neutrophils and monocytes, and the pro-
duction of proinflammatory cytokines and reactive oxygen
species increases oxidative stress [3, 4]. In patients with
chronic kidney disease, IL-6 and CRP may play a major role
in the pathophysiology of inflammation, and in dialyzed
patients also, IL-1, 2, 4, 5, 6, 8, 12, and 13 and tumor necrosis
factor-alpha (TNF-alpha) seem to be important [3–5].

The emerging chronic inflammation (increase in CRP
and IL-6 concentration) is proportional to the severity of

chronic kidney disease and may cause the development of
cardiovascular diseases and may affect renal function,
because oxidative stress damages the endothelium and
develops atherosclerotic lesions in the blood vessels [4–6].

2. Uremic Toxins and CKD

Among uremic toxins, there are 3 main groups that differ in
size, protein-binding ability, and hydro- and lipophilicity.
For this reason, these substances have different importance,
and the possibility of their elimination from the patient’s
body depends on the physicochemical characteristics of these
substances [7, 8]. In their work, La Manna and Ronco paid
attention not only to the size but also to the structure of the
particles. The virtual molecular radius (Einstein-Stokes
radius) or the radius of the ball describing the molecule
may be important for the rate of substance removal due to
changes in diffusion coefficient and screening values [8].
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Small hydrophilic particles with a molecular weight of up
to 500Da, not bonded to proteins, form a seemingly homo-
geneous group of substances. The best known example of this
group is urea; the high concentration of which leads to an
increase of osmotic pressure, impaired nitric oxide synthesis,
proinflammatory endothelial dysfunction and apoptosis, and
death of smooth muscle cells [9–11]. Other substances, such
as guanidine, may competitively inhibit NO synthase and
contribute to the development of hypertension, progression
of renal failure and renal fibrosis, and to adverse cardiovascu-
lar events and increased mortality in patients with renal
failure [12–14].

The adverse clinical effects of protein-related toxins,
including indoxyl sulfate (IS) and p-cresol sulfate (p-CS),
mostly concern glomerulosclerosis, interstitial fibrosis, and
deposits in the extracellular renal matrix [15, 16]. Atheroscle-
rotic lesions are also developed [17]. These toxins activate the
transforming growth factor-β1 (TGF-β1) and kappa B
nuclear factor (NF-κB), which reduce Klotho protein
expression, as well as the formation of free oxygen radicals
(e.g., by increasing the production of NAD(P)H oxidase
and reducing glutathione) [16, 18]. Additionally, epithelial
cells are inducted into mesenchymal cells and renin-
angiotensin-aldosterone system is activated [19].

The last group of toxins consists of middle molecules.
Similar to the previous groups, they may cause various bio-
chemical and metabolic disorders, which will intensify the
inflammation and damage the blood vessel wall [20]. Glor-
ieux et al. [21] investigated the serum beta2-microglobulin
(B2MG) and advanced oxidation protein products (AOPP)
as middle molecule uremic toxins and protein carbonyl
(PCO) as oxidative stress marker in uremic patients undergo-
ing high-flux versus low-flux hemodialysis (HD). They
showed that high-flux HD results in reduction of some of
the middle molecule toxins and protein carbonyl levels better
than low-flux HD, and was associated with a better response
to erythropoietin. The HEMO study confirmed the beneficial
effect of removing mid-sized uremic toxins on patient sur-
vival, and beta2-microglobulin concentrations had a signifi-
cant impact on patient mortality [22, 23]. In patients
undergoing long-term dialysis, beta2-microglobulin deposits
can be found in tissues, which some researchers associate
with the development of vascular disease and activation of
inflammatory markers such as TNF-alpha and IL-6 [24,
25]. Other important mid-sized toxins include advanced gly-
cosylation end products (AGEs), which in patients with
chronic kidney disease are formed as a result of carbonyl
stress [26]. An increase in their concentration results in an
increased inflammatory reaction and inactivation of nitric
oxide and tissue damage [7]. In patients with diabetes, the
formation of glycosylation end products amplifies tissue
damage and impairs their functions [27].

3. Oxidative Stress and Chronic Kidney
Disease (CKD)

Excessive production of reactive oxygen species (ROS) in cell
mitochondria by cytochrome oxidase enzymes or failure of
antioxidant mechanisms leads to oxidative stress, resulting

in changes in the structure and function of various biomole-
cules which may aggravate atherosclerotic lesions and accel-
erate organ damage, including kidney damage [28, 29].

Due to the increase in nicotinamide adenine dinucleotide
phosphate oxidase (NADPH) activity and decrease in super-
oxide dismutase (SOD) activity already in stage 3 chronic
kidney disease (CKD), there may be an increase in superox-
ides (O2

-), which are the cause of peroxynitrite (ONOO-)
and hypochlorous acid (HOCl) formation, and carbonyl
stress is the cause of inflammation [28].

In addition, elevated levels of endogenous nitric oxide
inhibitors (NOS), including asymmetric dimethylarginine
(ADMA), in the endothelium of patients with chronic kidney
disease decrease the bioavailability of nitric oxide (NO). The
abovementioned pathways may cause vasoconstriction,
hypertension, development of end-stage renal disease
(ESRD), cardiovascular events, and neurological and immu-
nological complications [30, 31]. Reduced ADMA level can
delay kidney function loss in CKD patients [32].

As mentioned above, 4 major oxidative stress pathways
are known: the classical pathway, associated with an imbal-
ance between NADPH and SOD, the nitrosative and chloride
pathways, associated with the synthesis of ONOO- and
HOCl, respectively, and the carbonyl pathway, associated
with increased production of AGEs [28, 33] (Figure 1).

In elderly patients, as well as those with chronic renal fail-
ure, diabetes, or chronic inflammation, neutrophils and
phagocytes are activated and ROS are increased. Similarly,
HD and PD treatments may increase O2

-, which is associated
with the use of bioincompatible accesses, membranes, and
dialysis solutions. Furthermore, uremic toxin accumulation
can simultaneously activate the prooxidant system and
inhibit the antioxidant system [28, 34–37] (Figure 1).

ROS activation results in the activation of oxidative stress
pathways, and the development of chronic kidney disease
due to glomerular damage and renal parenchymal fibrosis,
and various comorbidities such as atherosclerosis [32].

4. Endothelial Damage in Chronic Kidney
Disease (CKD)

The endothelium is a physical barrier, which affords move-
ment of small solutes in preference to large molecules
through vessel wall; therefore, it is involved in tissue
autoregulation, regulating cellular and nutrient trafficking.
The endothelial cells mediate vasoactivity. Normally, the
endothelium maintains the vessel in a relatively dilated state.
Secretion of nitric oxide, and in minor extent of prostacyclin,
C-type natriuretic peptide, and different endothelial-derived
hyperpolarizing factors by endothelial cells gives the vasodi-
lation effect; however, the endothelium can secrete also sev-
eral vasoconstrictor substances including thromboxane A2,
endothelins, angiotensin II, and reactive oxygen species
[38–40]. The endothelium maintains the local balance
between pro- and anti-inflammatory mediators, i.e., ICAM-
1 (intercellular adhesion molecule-1), VCAM-1 (vascular
adhesion molecule-1), E-selectin, nitric oxide, and nuclear
factor κB (NF-κB), and interacts with circulating blood cells,
i.e., mediates adherence of leukocytes and platelets to the
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vessel wall during injury and inflammation [38–41]. The
endothelial cells also maintain the local balance between pro-
coagulant and anticoagulant factor activities, i.e., nitric oxide
and prostacyclin which inhibit platelet aggregation, throm-
bomodulin which inactivates thrombin, and others: plasmin-
ogen activator (t-PA), its inhibitor (PAI-1), von Willebrand
factor (vWF), thromboxane A2, tissue factor pathway inhib-
itor (TFPI), and fibrinogen [38–41]. The endothelium is also
involved in new blood vessel generation—angiogenesis.
Endothelial cells are heterogeneous, which allow regulation
of their activity and functions in specific places, i.e., in the
glomeruli [42]. Generally, the steady-state endothelial cells
have a vasodilatory, antiadhesive, and anticoagulant pheno-
type, whereas the activated endothelium has vasoconstricting
proadhesive and procoagulant character [38, 43]. In patients
with CKD, endothelial cell damage is connected to distur-
bances in vasorelaxant, anti-inflammatory, and antithrom-
botic activities due to reduced level of nitric oxide [44].

In clinical practice, there are no reliable markers of endo-
thelial dysfunction, so confirmation of its disorders seems to
be difficult. On the other hand, the intact endothelium might
initiate or progress the disease. Progressive endothelial dam-
age in the renal medullary capillary system may be the cause
of progressive renal injury, and chronic renal failure may
develop endothelial dysfunction and atherosclerosis and can
lead to higher cardiovascular mortality and development of
microalbuminuria and renal failure in CKD patients [45, 46].

5. Oxidative Stress Induction by Uremic Toxins

Decreased renal function leads to development of inflamma-
tion due to longer half-lives of proinflammatory markers and

biochemical markers of endothelial dysfunction, e.g., IL-6,
CRP, and TNF-α [5, 47, 48]. Together with progression of
renal failure, higher activity of soluble adhesion molecules
(ICAM-1, VCAM-1, and vWF) and matrix metalloprotein-
ases can be observed due to activation of NF-κB pathway
and decrease of Klotho protein [49–51]. In the majority of
patients with CKD, alterations in calcium-phosphate balance
are present. High phosphate levels can suppress endothelial
NO synthase and increase ROS formation [52]. Endothelial
cell dysfunction in uremia can also be associated with low tri-
iodothyronine level which can change ADMA effect on
endothelial function [53, 54]. Increased AGE and decreased
soluble AGE receptor levels in patients with renal failure
can change glycation processes and increase atherosclerotic
formation [55, 56].

6. Uremic Toxins and Renal
Replacement Therapy

In patients with end-stage renal failure, the initiation of renal
replacement therapy and reduction of uremic toxin concen-
tration as a result of such treatment may be important to
reduce inflammation, although on the other hand, it may also
exacerbate inflammation, e.g., due to infections [34]. Renal
replacement therapy may also intensify the oxidative stress
generated by urea, but the mechanism depends on the type
of dialysis: hemodialysis (HD) increases lipid and protein
peroxidation, while peritoneal dialysis (PD) increases protein
oxidation [57].

Oxidative stress may not only increase due to the bioin-
compatible catheters, membranes, and dialysis fluids in HD
patients but also due to the low pH and high osmolarity of
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Figure 1: Endothelial dysfunction in patients with chronic kidney disease with its complications. RRT: renal replacement therapy; HD:
hemodialysis; PD: peritoneal dialysis; CKD: chronic kidney disease; CVD: cardiovascular disease; HA: arterial hypertension; NO2: nitric
dioxide; AGEs: advanced glycosylation end products.

3Oxidative Medicine and Cellular Longevity



fluids in peritoneal dialysis patients [28, 36, 37, 58]. In addi-
tion, the loss of vitamins and/or trace elements during HD
using high-permeable membranes may lead to disruption of
the antioxidant system [59].

Another problem is the formation of toxins in the
gastrointestinal tract, which worsens the effects of dialysis
treatment [60, 61]. Therefore, some authors propose the
use of symbiotics that reduce the production and absorption
of p-cresol sulfate and indoxyl sulfate [62].

The low, 50% 3-5-year survival rate of dialysis patients
may also result from the fact that dialysis is currently mainly
focused on urea elimination, although its toxicity is contro-
versial [22, 63]. It seems that using different renal replace-
ment therapies (intermittent hemodialysis or peritoneal
dialysis), it is possible to obtain urea and other small
particles’ clearance comparable to 15% of normal kidney
function, and only in the case of home night hemodialysis
performed 7 times a week or in renal transplant recipients,
urea clearance may reach 50% of normal kidney function.
Despite these results, patients with chronic kidney disease,
with urea clearance as high as 20-25ml/min, comparable
to patients on dialysis, have fewer clinical signs of uremia.
This may be related to a nonproportional clearance of other
substances, especially medium molecules [8, 64]. Improved
clearance of larger molecules can be achieved with the pro-
longed duration of treatments [64]. It has been shown that
lower concentrations of beta2-microglobulin in dialyzed
patients can also be observed in patients with preserved
renal residual function, as demonstrated in a study compar-
ing peritoneal dialysis patients with those treated with
hemodialysis [65].

6.1. Hemodialysis. The purification efficiency for different
substances varies depending on the type and parameters of
hemodialysis and the class of filtration membranes, which
differ in terms of biocompatibility, medium-molecular-
weight screening factor, start of molecular weight retention
and molecular weight cutoff for dissolved substances with
different molecular weight, presence of electric charges and
Z potential, thickness, and diffusion coefficient (Ko) for dif-
ferent substances [28, 66]. Cuprophan membranes used in
the past triggered inflammatory reactions and intensified
amyloidosis development [67].

Better biocompatibility of hemodialysis, even compared
to hemodiafiltration, can now be achieved by use of dialyzers
with vitamin E in low-flow bicarbonate hemodialysis, which
reduces inflammation associated with the activity of indolea-
mine 2,3-dioxygenase 1 and nitric oxide synthesis [68].
Despite the fact that during longer procedures, the clearance
for beta2-microglobulin and phosphates is greater, the
removal of protein-related toxin has not changed signifi-
cantly [69, 70].

Standard hemodialysis is the most commonly used renal
replacement therapy, which purifies the blood of toxins in
the diffusion mechanism, i.e., the passage of <500 Dalton
particles from the blood to the dialysis fluid according to
the concentration difference [71]. The removal of medium
and large particles is impossible during standard hemodialy-
sis, although the use of high-flux membranes during hemo-

dialysis only slightly improves the elimination of medium
particles [72].

Another solution is the use of MCO dialysis membranes
with medium cutoff values. The clearance of mean particles
for these membranes is much higher than for standard mem-
branes used in classical hemodialysis treatments, both low
flux HD and high flux HD, and comparable with membranes
used in hemodiafiltration [73–75]. Extended hemodialysis
using MCO membranes may lead to reduction in mortality
comparable to hemodiafiltration treatment, which can be
combined with similar efficacy in removing both small, such
as urea and creatinine, and medium, such as beta2-micro-
globulin, particles [73, 75].

The hemodialysis procedure can also remove protein-
bound toxins, but only from the free fraction, and the effec-
tiveness of this process is only about 30%. On the other hand,
the use of MCO filters may lead to moderate hypoalbumin-
emia, which may improve the removal of protein-bound
toxins [17, 76–80].

6.2. Hemodiafiltration. In contrast to the diffusion mecha-
nism, in which substances pass through the membrane at dif-
ferent speeds depending on the blood flow and dialysis fluid,
the type of dialysis membrane, and the size of toxins, the con-
vection mechanism, i.e., removal of toxins together with the
solvent through the highly permeable membrane, prevails
in hemofiltration and not so much in hemodiafiltration.
The implementation of such a method allows to purify the
body form substances of different sizes, even middle mole-
cules, and their removal is directly proportional to their con-
centration in plasma. Unfortunately, it requires a return
administration of ultrapure fluids, which can be adminis-
tered both before and after the filter (Figure 2).

Hemodiafiltration is more expensive than hemodialysis
because it involves better membrane biocompatibility and
the use of ultrapure dialysate. Hemodiafiltration better than
hemodialysis removes uremic toxins, both small and
medium, because diffusion and convection are responsible
for removing the toxins (Figure 2). Hemodiafiltration, com-
pared to hemodialysis, improves parathormone clearance
and proinflammatory cytokines (e.g., IL-6, IL-8, and IL-12)
and reduces the concentration of β2-microglobulin, ADMA,
SDMA, and appetite suppressants such as leptin, cholecysto-
kinin, tryptophan, and albumin [81, 82]. Patients treated
with HDF also have better clearance of homocysteine, guani-
dine, and polyamines, which reduce nitric oxide production
and promote AGE formation. Therefore, patients treated
with HDF have lower inflammation and cardiovascular risk
[83]. The removal of p-CS during hemodiafiltration may,
according to some authors, be comparable to the use of low-
flux hemodialysis and high-flux hemodialysis, which empha-
sizes the low importance of convection in the removal of these
dissolved substances [84]. The removal of medium-sized
toxins is slightly greater because convection is responsible for
the removal of medium-sized toxins during HDF. However,
Gomółka et al. [85] found that there are no major differences
in the serum clearance of IS and p-CS depending on the dial-
ysis modality (low-flux hemodialysis, high-flux hemodialysis,
and postdilution hemodiafiltration). They concluded that
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these protein-bound toxins were significantly cleared from the
serum already during the first dialysis session, but their level
tended to revert during weeks’ long dialysis sessions.

Moreover, the method of plasma fluid replenishment is
also important—postdilution is more effective than predilu-
tion [86–90], and mixed, pre-, and postdilution supplemen-
tation is the most effective in purification [91–94]. It has
been noted that in people treated with hemodiafiltration,
there is less risk of amyloidosis and carpal tunnel syndrome
episodes, and that with large exchange volumes, purification
is more efficient, which may further reduce mortality from
general and cardiovascular causes [95–100].

Studies comparing different types of renal replacement
therapy have shown that hemofiltration reduces mortality
among patients undergoing renal replacement therapy. The
clearance of small and medium molecules during online
hemofiltration is similar to that of extended hemodialysis,
but may be higher for larger medium molecules [101].
Therefore, the use of hemofiltration improves the removal
of medium molecules, including beta2-microglobulin,
compared to classical hemodialysis, but also with peritoneal
dialysis [90, 102].

7. Summary

Elimination of the waste products and toxins generated from
a variety of metabolic processes is one of the major kidney
functions [103]. Efficient elimination of these solutes is pro-
vided by normal kidney function; thus, their blood and tissue
concentrations are kept at relatively low levels. On the con-
trary, these toxin retentions appear to be a major contributor
to the development of uremia in patients with advanced
chronic kidney disease (CKD) and end-stage renal disease
(ESRD) [104]. In addition, progression of CKD contributes

to the oxidative stress produced by intracellular uremic
toxins, leading to inflammation and tissue destruction
[105]. Uremic toxins, found in high concentrations in the cir-
culation in patients with ESRD, play an important role in
endothelial dysfunction/damage, which in turn contributes
to the pathogenesis of cardiovascular diseases, such as ath-
erosclerosis and thrombotic events [106–110]. In CKD, and
in particular in dialyzed population, endothelial dysfunction
and atherosclerosis are almost universal, as well as cardiovas-
cular complications. Lindner et al. [111] were the first to
draw attention to the excessive incidence of atherosclerotic
cardiovascular mortality in hemodialyzed patients. Implica-
tions of uremic toxins and oxidative stress to atherosclerosis
were recently presented in the elegant review by Wojtaszek
et al. [112]. Hypoalbuminemia is a frequent finding in
CKD, and multiple factors may be contributory, including
inflammation, malnutrition, and dialytic losses [113]. Struc-
ture of albumin as well as uremia-induced changes in the
albumin concentration also may influence protein-bound
uremic toxins binding from both a quantitative and qualita-
tive perspective. It was demonstrated that protein-bound
compounds, including drugs and endogenous toxins, are
secreted by renal proximal tubule cells [114, 115]. Unbound
solutes (drugs, uremic toxins, etc.) are transported by specific
organic anion transporters; thus, the equilibrium established
between bound and unbound solute forms is critical. On the
one hand, dialysis increases the state of oxidative stress, and
the involved mechanisms include use of bioincompatible
membranes and fluids and contamination of dialysate with
bacterial endotoxins and occult infections [116–118]. On
the other hand, renal replacement therapy, in particular
hemodiafiltration, by lower concentration of uremic toxins
diminishes oxidative stress leading to reduced cardiovascular
and thromboembolic risk. Moreover, successful kidney
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transplantation leads not only to the at least partial restora-
tion of kidney function with amelioration of metabolic
abnormalities but also to the significant improvement in
OS-related markers. Sufficient graft function seems to be a
key factor in the restoration to near normal levels of OS
biomarkers.

At this moment, despite the increasing number of recog-
nized toxins and their mechanisms of action, it is impossible
to determine which of them are the most important and
which cause the greatest complications. According to many
authors, further studies are needed to assess the clinical
consequences of different types of renal replacement therapy
as so far large prospective trials have not addressed the effect
of various renal replacement modalities on uremic toxin
removal with respect to patient outcomes.
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