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Depression is one of the most common neuropsychiatric disorders. Although the pathogenesis of depression is still unknown,
environmental risk factors and genetics are implicated. Copper (Cu), a cofactor of multiple enzymes, is involved in regulating
depression-related processes. Depressed patients carrying the apolipoprotein ε4 allele display more severe depressive symptoms,
indicating that ApoE4 is closely associated with an increased risk of depression. The study explored the effect of low-dose Cu
exposure and ApoE4 on depression-like behavior of mice and further investigates the possible mechanisms. The ApoE4 mice
and wild-type (WT) mice were treated with 0.13 ppm CuCl2 for 4 months. After the treatment, ApoE4 mice displayed obvious
depression-like behavior compared with the WT mice, and Cu exposure further exacerbated the depression-like behavior of
ApoE4 mice. There was no significant difference in anxiety behavior and memory behavior. Proteomic analysis revealed that the
differentially expressed proteins between Cu-exposed and nonexposed ApoE4 mice were mainly involved in the Ras signaling
pathway, protein export, axon guidance, serotonergic synapse, GABAergic synapse, and dopaminergic synapse. Among these
differentially expressed proteins, immune response and synaptic function are highly correlated. Representative protein
expression changes are quantified by western blot, showing consistent results as determined by proteomic analysis.
Hippocampal astrocytes and microglia were increased in Cu-exposed ApoE4 mice, suggesting that neuroglial cells played an
important role in the pathogenesis of depression. Taken together, our study demonstrated that Cu exposure exacerbates
depression-like behavior of ApoE4 mice and the mechanisms may involve the dysregulation of synaptic function and immune
response and overactivation of neuroinflammation.

1. Introduction

Depression is a common disease worldwide, with about hun-
dreds of millions of people suffering from it [1]. With the
progress of the world, the incidence of depression has been
increasing year by year and its impact on society is huge.
Depression can affect thoughts, mood, and physical health,
and it will completely change people’s understanding of the

world and interpersonal relationships and even end their
own lives by suicide [2]. According to the WHO analysis,
depression may become the biggest burden in the world by
2030 [3, 4].

At present, it is generally believed that depression is the
consequence of the interaction between genetic and environ-
mental elements, indicating that depression is regulated by
depression-related susceptible genes and environmental risk
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factors. Trace elements have an important role in the normal
metabolism of the body and are indispensable to maintain
the normal nerve system. Micronutrients are closely related
to depression, and the damage of homeostasis will cause neu-
rological dysfunction in patients. It has been found that the
supplementation of trace elements can significantly improve
the specific cognitive ability of patients [5–7]. Studies have
found that depression is associated with trace elements, and
the disruption of its homeostasis will cause neurological dys-
function in patients [8, 9]. Copper (Cu) is one of the three
major trace elements, which exists in various tissues and is
necessary for the body to maintain its function. Cu is an
essential component of many redox enzymes in the body,
and its imbalance can impair the physiological function of
the nervous system [10]. As an important cofactor of neuro-
transmitters and signaling pathways, Cu is involved in many
physiological metabolic processes of brain. Cu deficiency and
overload have shown to be associated with the dysfunction of
the neuropsychiatric system [11, 12]. Other studies indicated
that many genes may be linked to the efficacy of depression.
Since Ramachandran et al. found that the apolipoprotein E
(ApoE) ε3/4 genotype may contribute to depressive symp-
toms, many researchers continuously carried out studies on
the correlation between depression and the ApoE gene [13].
ApoE, a glycoprotein, played a role in the transformation
and metabolism of lipoprotein and is largely expressed in
the liver and brain tissue. The higher expression of ApoE is
also found in glial cells of the central nervous system, sug-
gesting the involvement of ApoE in neuroinflammation [14,
15]. ApoE gene polymorphism is related to the occurrence
and development of depression, which is one of the potential
risk factors for depression. It is an autosomal dominant gene
with a significant genetic polymorphism, containing three
alleles (ε2, ε3, and ε4), among which the ε4 allele is associated
with increased risk of depression [16–18]. Notably, a meta-
analysis found that ApoE4 was positively correlated with
depression in people aged 23 to 83. Another community-
based study also found that ApoE4 alleles were positively cor-
related with depression [18–20]. In addition, the presence of
apolipoprotein E4 increased the risk of depression-related
phenotypes [21]. Thus, these studies raise a very important
question as to whether the coexistence of Cu exposure and
the ApoE4 gene would aggravate the symptoms of depression
and revealed its possible molecular mechanism.

In the study, we first explored the behavioral effects of
low-dose Cu exposure on ApoE4 transgenic mice. The data
showed that Cu exposure accelerated depression-like behav-
ior in ApoE4 mice but had no significant effect on cognitive
function. Furthermore, proteomics based on TMT labeling
was employed to investigate the possible underlying
mechanisms.

2. Material and Methods

2.1. Reagents. The compound copper (II) chloride (CuCl2)
used in this research was purchased from Sigma-Aldrich,
MO, USA. Urea was obtained from GE Healthcare Life Sci-
ences (Uppsala, Sweden). DL-dithiothreitol and iodoaceta-
mide were obtained from Sigma-Aldrich, MO, USA (St.

Louis, MO, USA). Protease and phosphatase inhibitor cock-
tail (100×), formic acid (FA), triethylammonium bicarbonate
(1M), TMT isobaric mass tagging kit, and Pierce™ ECL
Western Blotting Substrate were obtained from Thermo
Fisher Scientific (Rockford, IL, USA). Sequencing grade
modified trypsin was obtained from Promega, Madison
(Madison, WI, USA). The antibodies used in this research
included those from Cell Signaling Technology (Beverly,
MA, USA), Merck KGaA (Darmstadt, Germany), Abcam
(Cambridge, UK), Santa Cruz Biotechnology (Santa Cruz,
CA, USA), and Invitrogen (Carlsbad, CA, USA).

2.2. Animals and Treatments. The experimental mice (stain:
B6. Cg-ApoEtm1UncCdh18Tg (GFAP-APOE_i4)1Hol/J) were
obtained from the Jackson Laboratory (Maine, USA). All
experimental mice were housed in the Experimental Animal
Center at Shenzhen Center for Disease Control and Preven-
tion, China, and were maintained in a 12h light-dark cycle
room with stable temperature (20 ± 2°C) and humidity
(55 ± 5%). Starting at 4 months of age, the mice in the treat-
ment group were given drinking water containing 0.13 ppm
Cu for 4 months [22]. After Cu exposure, the behavioral tests
were carried out in the four groups (Cu-treated and
untreated WT and ApoE4 mice). All animal experiments
were conducted in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
(NIH Publications No. 8023, revised 1978). This study was
authorized by the ethics committee of the experimental ani-
mal center of Shenzhen Center for Disease Control and Pre-
vention, China.

2.3. Behavioral Tests

2.3.1. Forced Swimming Test. Depression-like behaviors in
mice were measured by the forced swimming test [23]. The
test was conducted on a vertical glass cylinder (28 cm in
height and 10 cm in diameter) with 20 cm of water and main-
tained at 23-25°C. The mice were gently placed into the water
and allowed to swim freely for 6min, and the immobility
time was recorded in the last 5min (only the head was above
the water, while the body was floating in the water).

2.3.2. Elevated Plus Maze Test. The elevated plus maze test is
one of the most effective neuroscientific methods for asses-
sing levels of anxious behavior in rodents [24]. The elevated
plus maze test (EPM) device consists of two open arms
(50 cm × 10 cm) and two closed arms (50 cm × 10 cm). The
intersection is the central area (10 cm × 10 cm). At the begin-
ning of the experiment, the mice were placed in the central
platform area with their heads open arms, allowing them to
explore freely. Video software was used to record the trajec-
tory for 5 minutes and analyze the time, distance, and other
indicators. After the test, wipe the maze with 75% alcohol.

2.3.3. Morris Water Maze. The Morris water maze (MWM)
tested the learning and memory ability of mice [25]. The test
is a stainless-steel drum with a white inner wall (diameter
170 cm), in which warm water (water depth is about 30 cm)
between 21°C and 22°C is injected, and an appropriate
amount of skim milk powder is added to stir evenly. The
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platform was located in the middle of the target quadrant,
2 cm from the water surface. The mice were placed into the
water from four quadrants facing the wall of the pool once,
and the time of finding the platform hidden below the water
surface within 60 s was recorded, which was to escape the
incubation period for 5 consecutive days. After one week,
the mice were tested in the pool without the platform for 2
minutes, and the escape latency and numbers of platform
crossing of each mouse were calculated as the evaluation
value.

2.4. Proteomics

2.4.1. Protein Extraction and Digestion.Hippocampus tissues
of mice in each group were taken and added with 8M urea
lysate. After ultrasonic lysis, they were left standing at 4°C
for 30 minutes and centrifuged at 12000 rpm in a high-
speed centrifuge for 30 minutes, and the supernatant was
taken for use. The BCA protein assay kit (Thermo Fisher,
NJ, USA) was used to measure the concentration of extracted
protein. In each group, five individual samples (at a ratio of
1 : 1 : 1 : 1:1) were pooled together with a total of 100μg of
proteins for enzymatic hydrolysis and labeling. Then, hippo-
campal protein samples were added to 10mM DTT solution
for reduction reaction for 1 h, followed by 25mM IAA solu-
tion for 1 h at room temperature (dark environment). Each
pooled protein sample was digested with trypsin for 1 h and
then diluted to 1.0M urea concentration with 1× PBS
(pH8.0), and the mixture was treated at 37°C for 15h. After
digestion, adjusting the pH to 1~2, the peptide was desalted
by using a reversed-phase column (Oasis HLB, Waters,
USA) and freeze-dried in a vacuum centrifuge for Tandem
Mass Tag (TMT) labeling.

2.4.2. TMT Labeling and LC-MS/MS Analysis. The peptides
were desalinated and dried, and each sample was added with
200mM TEAB for dissolution. Then, the peptides were
labeled according to the instructions of the TMT kit. After
being incubated at room temperature for 1 h, the TMT-
labeled peptides were mixed, desalted, and dried and redis-

solved in 100μL 0.1% FA. High-performance liquid chroma-
tography (HPLC) was used to separate TMT-labeled peptides
based on specific components. Briefly, labeled peptides were
loaded onto the Xbridge BEH300 C18 column (Waters,
USA) for separation of peptide samples with UltiMate 3000
UHPLC (Thermo Fisher Scientific, USA) and separated into
15 fractions. Lastly, the fractions were dried and then dis-
solved in 20μL 0.1% FA followed by liquid chromatography-
(LC-) mass spectrometry (MS)/MS analysis. The precursor
ion mass tolerance was set to 20 ppm for all mass spectra
obtained in the Orbitrap mass analyzer, and the fragment
ion mass tolerance was corrected to 20MMU for all MS2
spectra obtained. The row data were searched against the
database of UniProt mouse FASTA with Proteome Discov-
erer software. The up- and downregulation of protein expres-
sion was set at ratio ≥ 1:2 and ≤0.83. All the proteomic data
were deposited with the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier
PXD022422.

2.4.3. Bioinformatic Analysis. WebGestalt (http://www
.webgestalt.org) was used to analyze gene ontology (GO)
annotation enrichment and KEGG pathway analysis (http://
www.kegg.jp) of differentially expressed proteins. To explore
the pattern map of Cu treatment effect, we used the R soft-
ware package Mfuzz for protein cluster analysis. Heat map
analysis can show the DEP abundance in different groups.
The potential interaction between proteins was retrieved
through STRING version 10.5 (https://string-db.org/).
Lastly, Cytoscape version 3.7.2 was used for visualization of
the images.

2.4.4. Western Blotting. Equal amounts of protein samples
were separated on 10% SDS-PAGE and transferred to PVDF
membranes; then, membranes were in the blocking solution
for 2 hours. The blocked membranes were incubated with
antibody working solution including α-tubulin (1 : 3000,
Merck, MAB1637), p38 MAPK (1 : 1000, Cell Signaling
Technology, #9212), phospho-p38 MAPK (1 : 1000, Cell Sig-
naling Technology, #03F9), GFAP (1 : 1000, Sigma, mab360),
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Figure 1: The 4 months of low-dose copper exposure on depression-like behavior in mice. (a, b) The percentage of immobility time. The data
was shown as mean ± SEM. ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. n = 10-12 for each group.

3Oxidative Medicine and Cellular Longevity

http://www.webgestalt.org
http://www.webgestalt.org
http://www.kegg.jp
http://www.kegg.jp
https://string-db.org/


Iba1 (1 : 1000, Wako, 016-20001), PSD95 (1 : 1000, Abcam,
ab76115), synaptophysin (1 : 1000, Abcam, ab32127), EphB2
(1 : 1000, Cell Signaling Technology, 83029T), SYN1
(1 : 1000, Abcam, ab194778), GluR1 (1 : 1000, Cell Signaling
Technology, #13185), GluR2 (1 : 1000, Cell Signaling Tech-
nology, #13607), NMDA-2A (1 : 1000, Abcam, ab124913),
and NMDA-2B (1 : 1000, Abcam, ab183942) overnight at
4°C. After washing in TBST buffer (3 × 10 min), membranes
were in the corresponding secondary antibody and incubated

for 1 h on a shaker at room temperature. Then, the mem-
branes were exposed on phosphorimager by using an ECL
kit (Thermo Scientific, NJ, USA), and the target protein anal-
ysis was performed with Quantity One (version 4.6.2)
software.

2.4.5. Immunohistochemistry. For immunohistochemistry,
the sections were first deparaffinized in xylene and then rehy-
drated in gradient alcohol and then boiled for 10min with
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Figure 2: Low-dose Cu exposure did not induce anxiety-like behavior, spatial learning, and memory impairment in ApoE4 mice. (a) Total
distance (mm). (b) The time spent in the open arms (%). (c) The latency 5-day training period (s). (d) The representative track diagram.
(e) The distance traveled in the platform quadrant (%). (f) The time spent in the platform quadrant (%). The data was shown as mean ±
SEM. n = 10-12 for each group.
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Figure 3: Continued.
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sodium citrate (Beyotime, China) for antigen retrieval. After
washing in PBS buffer (3 × 10 min), the Abcam ABC HRP
Kit (ab64264) was used and all procedures were carried out
according to the instructions. The sections were incubated
with primary antibodies GFAP (Merck, MAB360, 1 : 250)
and Iba1 (Wako Chemicals, 019 19741, 1 : 200) at 4°C over-
night. After incubation, the sections were washed in PBS
which was performed according to the ABC-IHC Kit manu-
facturer’s protocol. Then, brain slices were stained for 2min
using diaminobenzidine (DAB). Finally, the sections were
stained with hematoxylin, dehydrated with ethanol and
xylene, and covered with coverslips. Sections were imaged
by using a Leica microscope and analyzed with Image-Pro
plus 6.2 software.

2.4.6. ELISA of IL-10, IL-6, and TNF-α. The mouse brains
were homogenized with 8M urea lysate, and the lysate was
left standing at 4°C for 30 minutes and centrifuged at
12000 rpm in a high-speed centrifuge for 30 minutes, and
the supernatant was taken for use. The BCA protein assay
kit (Thermo Fisher, NJ, USA) was used to measure the con-
centration of extracted proteins. The supernatant was ana-
lyzed by using mouse IL-10, IL-6, and TNF-α ELISA kits
according to the manufacturer’s instructions (E-EL-
M0046c, E-EL-M0044c, and E-EL-M0049c, respectively,
Elabscience). The concentrations of IL-10, IL-6, and TNF-α
were determined by comparison with the standard curve.

2.4.7. Statistical Analysis. GraphPad Prism 7.0 statistical soft-
ware (La Jolla, CA, USA) was used for all statistical analyses.
The data were expressed as the mean ± SEM, and statistical
analysis was carried out using one-way ANOVA. p < 0:05
was considered to indicate statistically significant difference.

3. Results

3.1. Cu Exposure Aggravated Depression-Like Behavior in
ApoE4 Mice. The forced swimming test showed that ApoE4
mice had more immobility time than WT mice, while Cu-

treated ApoE4 mice spent longer immobility time than the
ApoE4 mice (Figure 1(a)). Besides, the immobility time of
Cu-treated ApoE4 mice was significantly longer than that
of ApoE4 mice (Figure 1(b)), regardless of gender. The data
suggested that Cu exposure aggravated depression-like
behavior in ApoE4 mice.

3.2. Cu Exposure Did Not Cause Anxiety-Like Behavior,
Spatial Learning, and Memory Impairment in ApoE4 Mice.
As shown in Figure 2, the elevated plus maze test showed
no difference in the total distance and open arm time among
the four groups (Figures 2(a) and 2(b)), suggesting that Cu
exposure did not cause anxiety-like behavior. The Morris
water maze test showed that the time to find the platform
was basically shorter and shorter, but there was no statistical
difference (Figure 2(c)). Figure 2(d) shows the movement
trajectories of each group of mice. The travel distance and
time spent in the target quadrant (Figures 2(e) and 2(f)) have
no difference. These data suggested that low-dose Cu expo-
sure had no effect on the spatial learning and memory ability
of ApoE4 mice.

3.3. Hippocampal Proteomic Analysis. Following the flow-
chart of proteomic research, we explored the hippocampal
proteome by LC-MS/MS analysis for the WT, ApoE4, and
Cu-treated ApoE4 mice (Figure 3(a)). A total differentially
expressed proteins (DEPs) are, respectively, divided into six
categories through cluster analysis (Figure 3(b)). Cluster 1
showed a trend toward a decrease in the DEPs, while Cluster
3 trended toward an increase. Furthermore, as shown in
Figure 3(c), a total of 286 proteins were identified between
WT mice and ApoE4 mice. Compared to the WT group,
212 proteins were upregulated in ApoE4 mice and 74 pro-
teins were downregulated. A total of 157 proteins were iden-
tified between ApoE4 mice and Cu-treated ApoE4 mice.
Compared with ApoE4 mice, 97 and 60 proteins were upreg-
ulated and downregulated. Together, Cu exposure can cause
changes in the rise or fall of hippocampal proteins. The false
discovery rate (FDR) was <1%.
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Figure 3: Comprehensive analysis of DEPs in the three groups of mice: (a) approaches used to evaluate hippocampal proteins; (b) clusters
representing the typical expression profiles were colored accordingly to the DEPs; (c) numbers of the upregulation and downregulation of
DEPs.
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Figure 4: Continued.
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Downregulation: ApoE4 vs WT
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3.4. Gene Ontology Analysis for the Differentially Expressed
Proteins (DEPs). Gene ontology analysis is used to annotate
hippocampal DEPs and analyze their involvement in biolog-
ical processes (Figure 4). The upregulated proteins noted that
the obvious interactions were associated with cholesterol
metabolism, endocytosis, immune response, and synaptic
function, while the downregulated proteins were involved
in synaptic function, immune response, and apoptosis
(Figures 4(a)–4(d)). Interestingly, synaptic function and
immune response were found in both upregulated and
downregulated DEPs, indicating involvement of synaptic
impairment and immune response in aggravated
depression-like behavior in Cu-treated ApoE mice. By using
heat map analysis, we further visualized these DEPs involved
in the functional classification (Figures 4(b) and 4(d)). In
addition, these DEPs from Cu-treated WT mice compared
with WT mice were mainly enriched in spliceosome, mRNA
processing, endocytosis, and transcription (Supplement
Figure 1). These data suggested that the depression-like
behavior induced by low-dose copper exposure may be
related to synaptic function and immune response.

3.5. Enrichment Analysis of the KEGG Signaling Pathway of
the Differentially Expressed Proteins. Signaling pathways

affected by the low-dose Cu exposure were detected by KEGG
analysis, and we identified the top 10 enrichment terms
(Figure 5). Compared with WT mice, the upregulated DEPs
in ApoE4mice weremainly involved in systemic lupus erythe-
matosus, alcoholism, viral carcinogenesis, vitamin digestion
and absorption, complement and coagulation cascades, fat
digestion and absorption, platelet activation, cholesterol
metabolism, ubiquinone and other terpenoid-quinone biosyn-
thesis, and steroid biosynthesis (Figure 5(a)), while the down-
regulated DEPs in ApoE4 mice were mainly involved in
autophagy, protein export, hepatitis B, cytosolic DNA sensing
pathway, lysosome, longevity regulating pathway, amino sugar
and nucleotide sugar metabolism, phenylalanine metabolism,
synaptic vesicle cycle, glycosylphosphatidylinositol- (GPI-)
anchor biosynthesis (Figure 5(c)). Likely, compared with
ApoE4 mice, the upregulated DEPs in Cu-treated ApoE4
mice were mainly involved in axon guidance, Ras signaling
pathway, protein export, hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), renin-angiotensin
system, sphingolipid metabolism, amino sugar and nucleo-
tide sugar metabolism, thermogenesis, and apelin signaling
pathway (Figure 5(b)), while the downregulated DEPs in
Cu-treated ApoE4 mice were mainly involved in GABAer-
gic synapse, morphine addiction, nicotine addiction,
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serotonergic synapse, spliceosome, dopaminergic synapse,
ubiquitin-mediated proteolysis, retrograde endocannabinoid
signaling, long-term depression, and axon guidance
(Figure 5(d)). Obviously, axon guidance was found in both
upregulated and downregulated DEPs in Cu-treated ApoE4
mice compared with ApoE4 mice, suggesting that axon
guidance may be an important pathway in the regulation
of Cu-aggravated depression-like phenotype of ApoE4 mice.
Lastly, as shown in Figure 6, some key DEPs including
Epha7, Ephb1, Ephb2, Plxna2, Rac3, Rras, Rock1, and Slit1
were involved in the regulation of axon guidance.

3.6. Validation of Protein Expression Levels by Western Blot
Analysis and the Levels of Inflammatory Cytokines. Western
blotting analysis was used to validate the data obtained by
hippocampal proteomic analysis. Seven proteins (p38
MAPK, phospho-p38 MAPK, synaptophysin, PSD95,
EphB2, GFAP, and Iba1) were selected for validation
(Figure 7). Western blot analysis showing that synaptophysin
was downregulated in the ApoE4 mice, compared with the
WT mice. PSD95, EphB2, and synaptophysin were signifi-
cantly reduced in the hippocampus of Cu-treated ApoE4
mice vs. ApoE4 mice. Meanwhile, compared with ApoE4
mice, the changes of SYN1, GluR1, and GluR2 were signifi-
cantly downregulated in Cu-treated ApoE4 mice, while

GluR1 and GluR2 were lower in ApoE4 mice vs. WT mice
(Supplement Figure 2). According to the phospho-p38
MAPK/p38 MAPK, GFAP and Iba1 showed a significant
increase in Cu-treated ApoE4 mice compared with ApoE4
mice. In addition, the levels of proinflammatory factors IL-
6 and TNF-α in ApoE4 mice were increased after low-dose
copper exposure, and the levels of proinflammatory factors
IL-6 were increased in ApoE4 mice vs. WT mice
(Supplement Figure 3). These data suggested that an
impaired synaptic function and activation of
neuroinflammation were involved in depression-like
behavior as we observed.

3.7. The Analysis of Astrocytes and Microglia in Mice. We
used immunohistochemistry to detect the expression of
astrocyte (GFAP) andmicroglia (Iba1) in the in hippocampal
tissues (Figures 8(a) and 8(b)). Astrocyte proliferation and
microglial activation are two of the main features of neuroin-
flammation [26, 27]. The level of astrocytes was significantly
increased in ApoE4 mice vs. WTmice (Figure 8(c)). Cu treat-
ment increased the positive immunostaining of GFAP and
Iba1 in ApoE4 mice, while the number of astrocytes and
microglia was significantly increased (Figure 8(c)). All these
results suggested that low-dose Cu exposure activates the
neuroglia.
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4. Discussion

The role of Cu and ApoE4 in depression is well established.
Multiple studies have focused on the effect of Cu exposure
or ApoE4 on depression; however, the interactions of Cu
exposure and ApoE4 on depression are little reported. We
found that ApoE4 mice showed depression-like behavior,
which was further aggravated by Cu exposure. Our results
revealed changes in synaptic proteins and neuroinflamma-
tion, which can explain the factors that may lead to
depression.

Our findings indicated that low-dose Cu exposure exac-
erbates depressive actions in the ApoE4 mice, showing the
potential underlying causes of depression. ApoE is a poly-
morph protein involved in the transformation and metabo-
lism of lipoproteins, and its gene can regulate many

biological functions that have been existed as a risk factor
in mental diseases, such as depression [28]. Additionally,
the disturbance of Cu metabolism can cause neuropsychiat-
ric symptoms, such as depression [29]. Therefore, ApoE4
mice showed aggravation of depression-like behavior under
Cu exposure. However, the mice showed no cognitive
impairment on the Morris water maze test, possibly related
to age.

In our study, we successfully identified multiple differ-
entially expressed proteins in three groups of mice, in
which proteomic changes associated with synaptic function
were prominent. Synapses are the functional connections
between neurons and the key sites of information trans-
mission [30]. Many mental and neurological diseases are
associated with the destruction of the number and shape
of synapses [31]. In our findings, ApoE4 mice were
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Figure 7: Western blot analysis validation for the changed proteins. (a, d) Quantified synaptic proteins, such as synaptophysin, PSD95,
EphB2, p38 MAPK, and phospho-p38 MAPK expression, were validated. (b–d) The expression level and quantified proteins of the GFAP
and Iba1. The data was shown as mean ± SEM. ∗p < 0:05, ∗∗p < 0:01. n = 3-4 for each group.
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exposed to Cu for 4 months, which caused Cu ions to
accumulate in the brain and interfere with neuronal activ-
ity. The degeneration of nerve cells induced by oxidative
stress caused by copper will lead to the dysfunction of
synapses [6, 32]. As for the effects of ApoE on the nervous
system, it has been found that it may involve several path-
ways, such as destruction of synaptic plasticity, neuroin-
flammation, abnormal lipid, and glucose metabolism [33].
Moreover, several studies showed that depression is associ-
ated with a decrease number of synapses and synaptic dys-
function in brain regions that control emotion and
cognition. And researchers used electron microscopy to
provide direct evidence in a group of depressed subjects
[34–36]. Preclinical studies have also further reported
low alterations of the density of synapses in depression
models, especially in the prefrontal cortex and hippocam-
pus [34, 37]. This result was in agreement with our prote-
omic work analysis, indicating that synaptic dysfunction is
closely associated with depression. Notably, according to
proteomic analysis, the expression of EphB2 was signifi-
cantly downregulated in the Cu-treated ApoE4 mice. EphB
plays an important role in early synaptic formation, which
is involved in the regulation of synaptic efficacy in mature
neurons to localize synapses and regulate glutamate recep-
tor function [38, 39]. Ephrins and Eph receptors are
widely distributed throughout the nervous system, such
as EphA4, EphB1, EphB2, and EphB3. Their downregula-
tion resulted in decreased synaptic function, mood
changes, and cognitive impairments such as depression
and anxiety [40–42]. Another possible mechanism revealed
the role of p38 MAPK in neuronal plasticity and synaptic
regulation and suggested that the activation of the p38
MAPK signaling pathway damages synaptic function, for
which we have also validated the p38 MAPK pathway
[43]. Interestingly, recent studies have uncovered that the
MAPK signaling pathway is involved in the occurrence
of depression, and blocking the MAPK signaling pathway
can alleviate depression. This phenomenon may be associ-
ated with synaptic dysfunction caused by activation of
p38-MAPK-mediated signal cascade [44, 45]. By proteo-
mics and western blotting, we found that synaptic dys-
function may be a possible mechanism for the
deterioration of depression-like behavior in Cu-treated
ApoE4 mice.

The next question is to answer how the immune response
contributes to the development of depressive symptoms.
Multiple increasing evidences suggested that the dysfunction
of immune function is a main feature of neuropsychiatric dis-
orders, in particular in neurodevelopment [46]. Immune sig-
naling molecules played key roles in neurodevelopment, and
many of which are glial sources (such as microglia and astro-
cytes). Among them, microglia are innate immune cells in
the brain, while astrocytes are the key participants of central
nervous system immune responses [47, 48]. It has been
reported that the activation of microglia was obviously
increased in depression patients, and nerve damage induced
by microglia is considered to be an important mechanism
of depression [49–51]. In addition, some antidepressants,
such as minocycline, can play a protective role by inhibiting

the activation of microglia, oxidative stress, and inflamma-
tion [52, 53]. Astrocytes are involved in synapse formation,
maturation, function, and plasticity. Mounting evidence sug-
gested that astrocytes play a pivotal role in central nervous
system diseases, such as neuropsychiatric diseases [54, 55].
These findings suggested that the occurrence of depression
is associated with activation of the glia. Besides, glial cells
are not only important participants in immune response
but also the basis of neuroinflammation. It was worth noting
that neuroinflammation is the complex innate immune
response of neural tissue to inhibit infection and remove
pathogens, cell fragments, and misfolded proteins [56, 57].
Thus, we examined the expression of GFAP and Iba1 in the
hippocampus of mice by western blotting and immunohisto-
chemistry, and their expressions were confirmed to be upreg-
ulated. More interestingly, glial cells also affect major aspects
of synaptic development, plasticity, and function [58]. More-
over, in the presence of ApoE, glial cell proliferation was
increased, thereby promoting an inflammatory response,
while immune response is generated by the central nervous
system injury caused by excessive Cu. Therefore, it is clear
that the factors of depression depend on the complex process
of synapses, immune response, and neuroinflammation,
which is also a promising point for our future research on
depression.

5. Conclusion

In sum, our study demonstrated that Cu exacerbated
depression-like behavior in ApoE4 mice and provided the
hippocampal proteomic characterization. The major contri-
bution of this study is providing strong support for the
involvement of synaptic function in the development of
depression. Additionally, impaired immune response and
overactivated neuroinflammation are also important factors
in the development of depression.
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