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Patients with chronic kidney disease (CKD) are at a high risk for cardiovascular disease (CVD), and approximately half of all deaths
among patients with CKD are a direct result of CVD. The premature cardiovascular disease extends from mild to moderate CKD
stages, and the severity of CVD and the risk of death increase with a decline in kidney function. Successful kidney transplantation
significantly decreases the risk of death relative to long-term dialysis treatment; nevertheless, the prevalence of CVD remains high
and is responsible for approximately 20-35% of mortality in renal transplant recipients. The prevalence of traditional and
nontraditional risk factors for CVD is higher in patients with CKD and transplant recipients compared with the general
population; however, it can only partly explain the highly increased cardiovascular burden in CKD patients. Nontraditional risk
factors, unique to CKD patients, include proteinuria, disturbed calcium, and phosphate metabolism, anemia, fluid overload, and
accumulation of uremic toxins. This accumulation of uremic toxins is associated with systemic alterations including
inflammation and oxidative stress which are considered crucial in CKD progression and CKD-related CVD. Kidney
transplantation can mitigate the impact of some of these nontraditional factors, but they typically persist to some degree
following transplantation. Taking into consideration the scarcity of data on uremic waste products, oxidative stress, and their
relation to atherosclerosis in renal transplantation, in the review, we discussed the impact of uremic toxins on vascular
dysfunction in CKD patients and kidney transplant recipients. Special attention was paid to the role of native and transplanted
kidney function.

1. Introduction

Patients with chronic kidney disease (CKD) are at a high risk
for cardiovascular disease (CVD), and approximately half of
all deaths among patients with CKD are a direct result of
CVD. Premature cardiovascular disease extends from mild
to moderate stages of CKD, and the severity of CVD and the
risk of death increase with a decline in kidney function [1–3].

Moreover, the nature and spectrum of cardiovascular
disease in CKD are recognized to be different from that in
people without kidney disease including atherosclerosis, arte-
riosclerosis, calcific arterial and valve disease, left ventricular
remodeling and dysfunction, arrhythmia, and sudden cardiac
death.

Successful kidney transplantation significantly decreases
the risk of death relative to long-term dialysis treatment [4].
Nevertheless, the prevalence of cardiovascular disease in this
population is high and is responsible for approximately 20-
35% of mortality in renal transplant recipients [5].

The prevalence of traditional and nontraditional risk-
factors for CVD is higher in patients with CKD compared
with the general population; however, it can only partly
explain such sorely increased cardiovascular burden in CKD
patients [2, 6]. Nontraditional risk factors, unique to CKD
patients, include proteinuria, disturbed calcium and phos-
phate metabolism, anemia, fluid overload, and accumulation
of uremic toxins. This accumulation of uremic toxins is asso-
ciated with systemic alterations including inflammation and
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oxidative stress which are considered crucial in the progres-
sion of CKD-related CVD.

Kidney transplantation can mitigate the impact of some
of these nontraditional risk factors, but they typically persist
to some degree following transplantation. The restoration of
renal function favorably modifies cardiovascular risk in
transplant recipients, and each 5 ml/min/1.73m2 increase
in eGFR is associated with a 15% reduction in cardiovascular
disease and mortality [7]. However, some specific for this
population factors, such as immune activation and immuno-
suppressant agents, may be involved in the increased cardio-
vascular risk of cardiovascular disease [5].

2. Uremic Toxins

The progressive loss of kidney function is accompanied by the
retention of plenty of metabolites, due to a decrease in their
renal clearance and/or a rise in production. Many of these
solutes have been shown to exert biological activity, thereby
affecting the functioning of cells and affecting metabolic
processes, resulting in the uremic syndrome. Generally, they
may originate from endogenous metabolism, be produced by
microbial metabolism, or be ingested from an endogenous
source. According to the European Uremic ToxinWork Group
(EUtox) organic uremic toxins are classified according to their
physicochemical properties and possibilities of removal by
dialysis [8]:

(1) Small, water-soluble molecules with a maximum
molecular weight (MW) of 500Da which can be eas-
ily removed by dialysis; molecules in this group
include, i.a., guanidines (asymmetric dimethylargi-
nine (ADMA) and symmetric dimethylarginine
(SDMA)), oxalate, methylamines (trimethylamine-
N-oxide (TMAO)), polyamines, urea, carbamylated
compounds, and purines

(2) Middle molecules—small proteins or peptides with
MW ≥ 500Da, although most of them have MW>
10000Da. They are often expressed in response to
other toxins (e.g., cytokines), and their concentration
depends both from retention and on endocrine and
paracrine mechanisms. Dialytic removal of middle
molecules is possible with membranes with a large
enough pore size used in either diffusive or convective
mode. Compounds in this group include angiogenin,
atrial natriuretic peptide (ANP), β2-microglobulin,
complement factors D and Ba, cytokines (IL-6, IL-
18, IL-1β, and TNFα), endothelin, fibroblast growth
factor-23 (FGF-23), modified lipids and lipoproteins,
pentraxin-3, VEGF, and parathyroid hormone

(3) Protein-boundmolecules—the heterogeneous group of
generally low MW solutes, which due to their protein
binding are difficult to remove by dialysis; many of
these molecules are generated by the intestine microbi-
ota; the main compounds in this group are advanced
glycation end products (AGEs), cresols (p-cresyl sul-
fate, p-cresyl glucuronide), hippurates, homocysteine,

indoles (indoxyl sulfate, indole acetic acid), kynure-
nines, and phenols (phenylacetic acid) [8]

Accumulating data suggest that uremic toxins contribute
substantially to the development and severity of cardiovascu-
lar disease in CKD patients. Table 1 summarizes the mecha-
nisms of action of selected uremic toxin impact on
cardiovascular damage.

3. Atherosclerosis in Chronic Kidney Disease

Accumulating data suggest that atherosclerosis starts from
early stages of CKD and remaining high as CKD progresses
[33]. CKD-related endothelial dysfunction plays an important
role in the development of atherosclerosis [34, 35]. It is char-
acterized by increased oxidative stress, expression of proin-
flammatory and prothrombotic molecules, and decreased
capabilities of endothelial repair. Uremic toxins can contribute
to these deleterious effects on the endothelium [36–38]. There
is a correlation between inflammation, oxidative stress, endo-
thelial dysfunction, and markers of vasculopathy and kidney
function [39–41].

The vascular toxicity of uremic toxins has been demon-
strated in clinical studies among chronic kidney disease, dialy-
sis, and kidney transplant patients. Decreased kidney function
impacts the levels of these solutes and may be a relevant con-
founder when the association between uremic toxins and hard
cardiovascular outcomes is studied. The factors potentially
contributing to atherosclerosis in CKD patients are presented
in Figure 1.

4. Uremic Toxins and Kidney Function

4.1. Protein-Bound Uremic Toxins. Protein-bound uremic
toxins (pbUTs)—p-cresyl sulfate (p-CS), p-cresyl glucuro-
nide (p-CG), indoxyl sulfate (IxS), and indole-3-acetic acid
(IAA)—originate from the metabolism of the intestinal
microbiota of aromatic amino acids (tyrosine, phenylalanine,
and tryptophan) [42–44]. In the distal colon segment, trypto-
phan is converted into indole and IAA, and tyrosine and
phenylalanine into p-cresol. In the colon mucosa and liver,
p-cresol is partly detoxified into p-CS and p-CG, and indole
into IxS [42–44]. In blood, pbUTs bind on serum albumin
[45] are removed by the kidneys—free fraction by glomerular
filtration and protein-bound via tubular secretion [43, 44].

The serum levels of pbUTs are inversely related to renal
function, and the serum concentrations increase progres-
sively with the progression of CKD in adults and pediatric
CKD patients [44, 46–51]. It was demonstrated that free
and total fractions of toxins increase progressively from early
stages of CKD with significantly higher concentrations in
later stages [44, 46–48, 51]. Total and free fractions of p-CS
and IxS correlate inversely with eGFR [46–48] and are com-
parable in patients on peritoneal dialysis and hemodialysis
[48]. In dialyzed patients, residual renal function substan-
tially contributes to uremic toxin levels both in patients on
maintenance hemodialysis and peritoneal dialysis [52, 53].
Together with the loss of kidney function serum concentra-
tions, there is a rise in uremic toxin levels [52, 53].
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Few studies evaluated the levels of pbUTs in transplanted
patients [51, 54–56]. In prospective studies by Liaeuf et al.
[51, 55] and Poesen et al. [54], it was demonstrated that
serum levels of IxS, IAA, and p-CS decreased significantly
within a few days and then remained stable during 12 months
after transplantation. Moreover, the levels of pbUTs in trans-
planted subjects were even lower than in controls with compa-
rable kidney function. The cause of this phenomenon remains
unclear. The possible explanations of these findings are the
changes in gutmicrobiota after transplantation and the impact
of immunosuppressant agents and antibiotics [57].

4.2. Asymmetric Dimethylarginine (ADMA) and Symmetric
Dimethylarginine (SDMA). Serum levels of ADMA and
SDMA are elevated in patients with CKD [58, 59]. For
SDMA, renal excretion is the major pathway of elimination,
and SDMA levels are closely related to eGFR. The kidneys also
play a central role in the elimination of ADMA; however, the
removal of ADMA takes place both by excretion in the urine
and by degradation by dimethylarginine dimethylaminohy-
drolase (DDAH) and transamination by alanine glyoxylate
aminotransferase 2 (AGXT2), enzymes primarily expressed
in the kidneys. This may explain why in patients with

Table 1: The mechanisms of action of selected uremic toxin impact on cardiovascular damage.

Protein-bound uremic toxins
(para-cresyl sulfate, indoxyl sulfate)

Impairment of vascular reactivity and induction of vascular remodeling; induction of oxidative stress;
stimulation of proinflammatory responses in vascular cells and macrophages; promotion of adhesion

molecule expression; stimulation of the cross-talk between macrophages and endothelial cells
promoting vascular wall infiltration by inflammatory cells [9–15]

Phosphate

Increase in contraction and decrease in endothelium-dependent relaxation of the vessels; increased
production of ROS in VSMC and in endothelial cells via NADPH oxidase activation; induction of
EMP shedding resulting in the impairment of endothelial cells with thrombotic, inflammatory, and

antiangiogenic properties [16–19]

Klotho and FGF23
Arterial stiffness via a downregulation of SIRT1 expression in endothelial and smooth muscle cells;
induction of an increase in oxidative stress, reduced NO production, induced the expression of cell

adhesion molecules [20–23]

ADMA
Reduction of NO production; induction of oxidative stress and acceleration of the senescence of

endothelial cells [24–27]

AGEs

Osteogenic-like differentiation of SMCs and subsequent calcification; promotion of inflammation and
oxidative stress via activation of NADPH oxidase, upregulation of adhesion molecule expression;
induction of vascular contraction by modulating ET-1 expression; induction of endothelial cell

apoptosis and impairment of endothelial progenitor cell survival, differentiation, and function [28–32]
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Figure 1: Factors potentially contributing to atherosclerosis in CKD. CRP: C-reactive protein; NO: nitric oxide; ROS: reactive oxygen species;
MDA: malondialdehyde; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; FGF23: fibroblast growth factor 23; Pi:
phosphates; PTH: parathyroid hormone; 1,25(OH)2D3: 1,25-dihydroxyvitamin D3; LDL: low-density lipoprotein; Lp(a): lipoprotein a;
CKD: chronic kidney disease; CKD-MBD: chronic kidney disease-mineral bone disorder.
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autosomal dominant polycystic kidney disease or kidney dis-
eases with proteinuria, ADMA levels arise earlier and are
highly independent on eGFR [60].

The data on levels of ADMA and SDMA in renal trans-
plant patients are scarce and somewhat inconsistent. Most
often, plasma ADMA levels demonstrated a biphasic course
after successful kidney transplantation with a transient rise
in the immediate postoperative period followed by a subtle
decline in the weeks; however, the change did not correlate
with improvement of graft function. ADMA levels remained
elevated compared with CKD patients, matched for age and
comorbidities [61–64]. A potential explanation of the
increase of ADMA levels in the posttransplant period may
be the effect of methylarginine release triggered by surgery,
ischemia/reperfusion injury, and the catabolic effect of
corticosteroids [61, 64, 65]. The persistence of increased
levels may be related to activation of the immune system
[61, 66] and metabolic side effects of immunosuppressive
agents (calcineurin inhibitors and corticosteroids) [67, 68].

4.3. Advanced Glycation End Products (AGEs).Advanced gly-
cation end products (AGEs) are a heterogeneous group of
compounds derived from the nonenzymatic glycation of pro-
teins, lipids, and nuclear acids through a complex sequence
of reactions referred to as the Maillard reaction [69]. N-
Carboxymethyllysine (CML), pentosidine, and hydroimida-
zolone are among the best characterized of at least 20 differ-
ent types of AGEs and serve as markers of AGE accumulation
in tissues [70, 71]. Interactions between AGEs, their recep-
tors, and advanced glycation end product receptors (RAGE)
trigger a cascade of various events leading to endothelial
dysfunction, arterial stiffness, immune system dysregulation,
and atherosclerosis progression [72].

Accumulation of AGEs in CKD patients is a result of
oxidative stress and inflammation and comes from external
sources such as diet and cigarette smoke [72, 73]. AGEs are
metabolized and removed by the kidneys. They are filtered
through the glomerulus and reabsorbed by renal proximal
tubules, and both processes are complex and variable [74,
75]. The kidneys are also a place of accumulation and AGE-
related organ damage [76], and progressive retention of AGEs
occurring with declining renal function creates a vicious cycle
of kidney damage and accelerated decline in renal function.
Therefore, in CKD, increased levels of AGEs may be seen as
a result of impaired clearance and enhanced formation in
response to oxidative stress and/or carbonyl stress. Serum
AGE levels correlate inversely with eGFR, and they appear to
be predictive for the development of reduced glomerular filtra-
tion rate [77–79]. In Semba et al.’s [79] study, the increase in
AGE levels was evident from CKD stage 3.

Kidney transplantation is the most effective therapy to
reduce elevated levels of AGEs. Nevertheless, in renal transplant
recipients, AGEs remain higher than in normal subjects and
disproportionally higher than the GFR alone would imply [80,
81]. It suggests that other factors may influence the formation
of AGEs. Factors contributing to increased accumulation of
AGEs, and at the same time, the risk of chronic graft dysfunc-
tion, include the dialysis vintage before transplantation, donor
age, and primary graft function. Closely related to the formation

of AGEs is the state of increased oxidative stress typical of kid-
ney transplant recipients, the determinants of which may be
diabetes mellitus, ischemic/reperfusion injury, immunosup-
pressants, and renal failure [81–83]. In Shahbazian et al.’s [83]
study, the levels of AGEs were significantly increased in renal
transplant patients with measured GFR below 30ml/min, and
a significant association between the levels of AGEs and mea-
sured GFR was found.

4.4. Phosphate, Klotho, and FGF23. Abnormalities of mineral
metabolism are universal complications of CKD associated
with accelerated atherosclerosis and vascular calcification
and correlated with increased mortality across all stages of
CKD, independent of traditional risk factors [84–86]. The
levels of serum phosphate, calcium, and parathyroid
hormone are influenced by α-Klotho, FGF23, 1,25-dihydrox-
yvitamin D, diet, and medications, interacting with each
other in complicated ways.

α-Klotho not only functions as one of the regulators of
mineral homeostasis but also exerts pleiotropic biological
effects including antioxidative stress, antiapoptosis, and
antiaging [87, 88]. α-Klotho is expressed in multiple tissues;
however, the strongest expression is in the kidney [89].
Kidney injury and subsequent renal impairment will result
in the decrease of α-Klotho production. It has been shown
that serum α-Klotho starts to decline in stage 2 CKD, and
urinary α-Klotho even earlier, in stage 1 CKD [90], and
for each 1ml/min/1.73m2 eGFR decrease, an adjusted mean
decrease of 3.2 pg/ml of serum α-Klotho was revealed [91].
Furthermore, pbUTs inhibit α-Klotho expression [92].
Clinical and experimental studies have shown that the
decrease of α-Klotho is positively associated with eGFR
[87, 93, 94].

Fibroblast growth factor 23 (FGF23) is a bone-derived
phosphatonin, which acts in the kidney to induce urinary
phosphate excretion and suppress 1,25-dihydroxyvitamin D
synthesis, in the presence of FGF receptor 1 (FGFR1) and
its coreceptor α-Klotho [95, 96]. It has been also shown that
FGF23 has a deleterious effect on vascular function—en-
dothelial dysfunction, atherosclerosis, left ventricular hyper-
trophy, and increased risk of major cardiovascular events
[97–99].

The increase in FGF23 is a compensatory reaction in
response to decreased expression of transmembrane α-Klotho
to maintain mineral homeostasis, so in early stages of CKD,
serum phosphates are not elevated. In turn, increased levels
of FGF23 decrease α-Klotho expression, and finally, dietary
phosphorus overload cannot be compensated and contributes
to overt hyperphosphatemia in advanced stages of CKD [96].
FGF23 levels increase progressively in early stages of CKD. It
is suggested that renal injury itself may be an initial stimulus
for FGF23 secretion [100]. In Isakova et al.’s [101] study,
33% of participants with eGFR ≥ 70ml/min and 85% with
eGFR 30-60ml/min had elevated levels of FGF23, and in a
dialyzed patient, serum levels of FGF23 are extremely high
reaching levels that can be 1000-fold above the normal range
[101]. Moreover, a strong correlation between eGFR and
FGF23 was revealed [91, 101].
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Close to 90% of patients with 3-4 CKD stage have normal
phosphate levels, and with the progressive loss of functional
nephrons, the compensatory mechanism is overwhelmed,
and most patients with ESRD have overt hyperphosphatemia.
Hyperphosphatemia is considered to be a risk factor for car-
diovascular and all-cause mortality, and for each 1mg/dl
increase in serum phosphate, the risk of death is increased
by 18-20% [102, 103].

The data on levels of α-Klotho and FGF23 in transplant
recipients are scarce, and sometimes inconsistent. During the
first week after kidney transplantation, the decrease in serum
levels of α-Klotho was noted [104, 105]. This initial decline is
probably multifactorial and may be a response to trauma and
tissue injury, transient kidney tubular dysfunction, and the
impact of immunosuppression therapy [104, 106]. In the con-
secutive weeks, the gradual increase of α-Klotho was observed
with the highest levels exhibited at 52 weeks posttransplanta-
tion and compared with pretransplant levels [104]. However,
no association between serum α-Klotho levels and kidney func-
tion has not been demonstrated in Tan et al.’s study, as well as
in three other cross-sectional studies [107–109].

FGF23 levels decline in the postrenal transplantation
period; however, they remain higher than in CKD patients
matched for eGFR [104, 110–113]. Further reductions in
FGF23 levels are observed over longer follow-up, approxi-
mating normal levels 1–3 years after transplantation [110].

In up to 90% of transplant recipients, mild to moderate
hypophosphatemia is present. Phosphate levels remain low
for longer than in patients with CKD matched for the eGFR
[114]. Kidney function does not play a crucial role in post-
transplant hypophosphatemia but persistently high levels of
FGF23 and PTH [113, 115].

4.5. Oxidative Stress: The Impact of Kidney Function. Oxida-
tive stress (OS) is defined as a state of imbalance between
excessive prooxidant activities relative to antioxidant defense
mechanisms. Oxidative stress leads to metabolic dysregula-
tion and oxidation of lipids, proteins, and nucleic acids and
oxidative damage in cells, tissues, and organs caused by
ROS and reactive nitrogen species (RNS) [116, 117]. OS is
frequently observed in CKD patients; contributes to inflam-
mation, endothelial dysfunction, risk of atherosclerosis, and
progression of CKD [118]; and is considered one of the non-
traditional risk factors for cardiovascular and all-cause mor-
tality [119, 120]. OS through generation of uremic toxins
enhanced intestinal permeability to endotoxins and alter-
ation in nitrogen handling [121–123]:

(i) Accumulation of AGEs activating transcription
factors (NF-κB, AP1, and SP1) executed via RAGE,
and activation of NADPH oxidases (NOXs) which
directly generate free radicals [124, 125]

(ii) Inflammation, which is spliced with OS—inflamma-
tory cells stimulate the release of reactive species,
and oxidized end products stimulate phagocytic cells
to release inflammatory cytokines and ROS creating
a positive feedback loop; the leading feature is the

two-way interplay between NOX, NF-κB, inflamma-
somes, and phagocytic cells [126, 127]

(iii) Dialysis increases the state of oxidative stress, and
the involved mechanisms include the use of bioin-
compatible membranes and fluids, contamination
of dialysate with bacterial endotoxins, and occult
infections [128–130]

The imbalance in oxidant-antioxidant status begins early
in the course of CKD. It was shown that increased levels of
NADPH-generated ROS and lower levels of the antioxidant
enzymes can be revealed in patients with 1 and 2 CKD stage
[124, 131–133]. Progressive loss of renal function results in
increased oxidative stress and inflammation, and a positive
correlation between advancing stage of CKD and increasing
oxidative stress has been demonstrated [134–137]. The
inverse relationship between eGFR and markers of oxidative
stress was revealed in several studies [136–138], but in some,
the correlation was at least weak [139]. It is possible that this
difference may be a result of biomarkers used and studied
populations.

Successful kidney transplantation leads to a reduction in
metabolic abnormalities and significant improvement in OS-
related markers. Normalization of graft function seems to be
a key factor in the restoration to near-normal levels of OS bio-
markers. Despite the fact that surgical procedure of kidney
transplantation and ischemic injury during the procurement
and organ transfer cause an oxidative burst, the improvement
of OS can start immediately after transplantation [140]. Sudden
cessation of blood flow during organ donation cause ischemi-
c/hypoxic injury [141, 142]. Cold storage promotes ROS pro-
duction via mitochondrial dysfunction. ROS react with other
molecules, leading to oxidative damage of proteins, nucleic
acids, and lipid peroxidation and contribute to cell apoptosis
[143–145]. The reperfusion stage, during which blood flow is
restored, leads to a burst of ROS and is regarded as the final
stage of ischemic injury [141–146]. OS in kidney transplant
recipients may be, at least in part, caused by the immunosup-
pressive therapy. Most of the currently used immunosuppres-
sive medications, such as corticosteroids and calcineurin
inhibitors (cyclosporine A and tacrolimus), may contribute to
the increased OS. The prooxidant activities of tacrolimus and
cyclosporine A, the indispensable parts of immunosuppressive,
have been studied. Some studies reported that increased levels
of malondialdehyde are a consequence of immunosuppressive
therapy and that OS is induced mostly by cyclosporine A
[147, 148]. Other studies, however, have not confirmed these
findings [140, 149, 150]. Other factors, such as opportunistic
infection or immune response to allograft, may also trigger
OS in kidney transplant recipients [151].

CKD-associated OS in pretransplant phase, reperfusion
injury, and increased immunosuppression are considered the
key factors of continual OS during the early phase of transplan-
tation [151–153]. Over the next days, the improvement of anti-
oxidant status is observed along with the restoration of kidney
function, reduction in metabolic abnormalities, and decrease in
OS [152, 154–157]. Some controversies regarding changes in
enzymatic and nonenzymatic antioxidants as well as OS
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biomarkers may probably arise from the study design and
different observation periods. In some studies, the increase in
antioxidant systems and decrease in OS were observed already
in the early posttransplant period [154–157]. In other studies,
during the first 2 weeks, a significant increase in lipid peroxida-
tion [140, 151, 158] and decrease in erythrocyte glutathione or
superoxide dismutase activities were observed [159, 160]; how-
ever, in longer observation (28-day posttransplantation), the
decrease in lipid peroxidation along with antioxidant system
activities was revealed [140, 151, 158]. The levels of advanced
oxidation protein products (AOPPs) decrease immediately
after transplantation. As long as reduction in the first day
may be explained by blood loss during surgery, the decrease
in subsequent days confirms that successful kidney transplan-
tation provides efficient elimination of generated ROS [154–
157, 161, 162].

Most studies have shown that reestablishment of kidney
function improves the OS over few weeks after transplanta-
tion [140, 154–162]. Time-dependent changes in OS bio-
markers are associated with improvement in kidney
function, and the levels of AOPPs and low molecular AGEs
correlate inversely with creatinine clearance [140, 151, 154,
155, 157]. Normalization of graft function may restore to
near-normal levels of OS biomarkers, regardless of immuno-
suppression used; however, achieving any level of kidney
function will decrease OS level [150, 163, 164]. The reduction
in OS after transplantation may be also a prognostic factor of
short- and long-term graft function and CVD in this patient
population [163, 165].

4.6. Implications of Uremic Toxins and Oxidative Stress to
Atherosclerosis. In CKD, endothelial dysfunction and athero-
sclerosis are almost universal, as well as cardiovascular com-
plications as first reported by Lindner et al. [166], who drew
attention to the excessive incidence of atherosclerotic cardio-
vascular mortality in dialyzed patients. Various CKD-specific
factors and processes are involved in endothelial dysfunction
in CKD as presented in Figure 1. It is characterized by proin-
flammatory and prothrombotic endothelial phenotype,
structural damage, impaired capabilities of protective and
repair mechanisms, and increased oxidative stress. Uremic
toxins, when in high concentrations in the bloodstream, play
an important role in endothelial dysfunction, which in turn
contributes to the pathogenesis of cardiovascular diseases,
such as atherosclerosis and thrombotic events [35–39]. Each
toxin can play its own role in vascular dysfunction, as pre-
sented in Table 1; however, its accumulation and coexistence
potentiate the deleterious effects.

Inflammation is considered one of the main mechanisms
of atherosclerosis, and CKD is a state of systemic inflamma-
tion [34, 167, 168]. It depends both on the increased synthe-
sis and decreased elimination of mediators of inflammation,
and multiple cytokines are involved in the genesis of this
proinflammatory milieu in CKD [169]. Uremic toxins induce
inflammation in endothelial cells (ECs) and stimulate the
cross-talk between ECs and macrophages [14, 35–37]. In
the response to the injury, the concentration of cytokines is
increased leading to the activation of endothelial, resident
vascular cells, and circulating monocytes [8, 11, 36–38].

Uremic toxins (pbUTs, phosphates, and FGF23) increase
the expression of adhesion molecules (E-selectin, P-selectin,
ICAM-1, and VCAM-1) promoting the infiltration of mono-
cytes and macrophages in the activated endothelium [11, 13,
15, 16, 20, 35, 37].

Uremic toxins promote the production of ROS and
decrease antioxidant defenses, resulting in oxidative stress
[10, 21, 27, 118, 119, 127]. ROS activate transcription factors
leading to the expression of inflammatory cytokines, as well
as causing mitochondrial dysfunction, inducing cell death
[117, 126, 170]. At the same time, uremic toxins inhibit
late-stage autophagy, making cells more sensitive to oxidative
stress and contributing to endothelial dysfunction. It may
lead to atherosclerosis and arterial aging [171, 172].

Uremic toxins contribute to structural damage of ECs
resulting in increased endothelial permeability. In vitro
studies demonstrated that uremic toxins (pbUTs and phos-
phate) induce cytoskeletal remodeling, resulting in the
changes in EC morphology, and lead to the rupture of cell-
cell junctions damaging endothelial barrier and contributing
to increased permeability [173–175]. Endothelial damage
results in a release of microparticles and specific miRNAs
that may further promote vascular damage. Endothelial
microparticles (EMPs) are important in intracellular com-
munication. Uremic toxins (pbUTs and phosphate) induce
the formation of EMPs from endothelial cells [19, 176–
178]. Uremic toxins induced EMPs show different activities:
they have an antiangiogenic effect on endothelial progenitor
cells impairing endothelium repair process [179], have
procoagulant activity due to the production of factor Xa
and tissue factor (TF) [179], enhance the proliferation of
VSMC contributing to neointimal hyperplasia [180], and
finally increase osteocalcin expression in ECs, VSMC, and
fibroblast, which indicates vascular calcification [181].
MicroRNAs participate in the regulation of EC function
modulating angiogenesis and immune response [182]. Ure-
mic toxins upregulate miRNAs causing suppression of
expression of genes responsible for endothelial homeostasis
and thus contributing to EC dysfunction and apoptosis
[182, 183].

Uremic toxins also cause a reduction in the number and
function of endothelial progenitor cells. Protein-bound UTs
and AGEs suppress the expression of transcription factors,
SIRT1 and KLF2, responsible for the maintenance of
endothelial homeostasis, inhibiting oxidative stress and cell
senescence [182, 184, 185].

Uremic toxins contribute to the prothrombotic state of
endothelium leading to an increased risk of thrombotic
events, such as thromboembolism and ischemia. Further-
more, in CKD, the processes of coagulation and fibrinolysis
are impaired with increased levels of tissue factor (TF), von
Willebrand factor (vWF), thrombomodulin, factor VIII,
and D-dimer [186]. In vitro studies demonstrated that ure-
mic toxins (IxS and IAA) increase the expression of TF and
production of factor Xa indicating endothelial activation
and procoagulant activity [179]. Uremic toxins (phosphate,
IxS, and ADMA) also decrease the production and/or
bioavailability of NO which acts as an inhibitor of platelet
adhesion and aggregation [187–189].
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Endothelial cell integrity and function are critical to the
prevention of atherosclerosis; therefore, dysfunction of endo-
thelium is critical in the development of vascular dysfunction
and progression of CVD. Nevertheless, uremic toxins partic-
ipate in atherosclerosis development in many steps. They
influence proliferation, migration, calcification, and senes-
cence of VSMC [9–11, 16, 20, 23, 26, 34, 35]. They also
induce chronic activation of leukocytes (monocytes and
neutrophils), stimulate the leukocyte-endothelial interac-
tions, and promote vascular wall infiltration by inflammatory
cells [12–15, 34, 37, 167–169]. And finally, uremic toxins
participate in the formation of atherosclerotic plaque and
its rupture [1, 33–35].

5. Final Considerations

It would be worth to mention that AKI contributes to the
initiation and progression of CKD, and vice versa CKD predis-
poses to AKI [190–192]. AKI and CKD are interconnected
syndromes. The accumulating data from basic and clinical
research indicates that renal hypoxia is associated with CKD,
AKI to CKD continuum, and AKI on top of CKD. Tubuloin-
terstitial hypoxia is a key player in the pathophysiology of
CKD andAKI to CKD transition [193–198]. Capillary rarefac-
tion after AKI episode results in tubulointerstitial fibrosis, and
damaged tubular epithelial cells that fail to redifferentiate may
contribute to capillary rarefaction and thus aggravating
hypoxia [193, 194, 199]. Moreover, hypoxia induces diverse
epigenetic changes such as chromosome conformation, DNA
methylation, or histone modification [199]. The mechanisms
involved in the susceptibility of AKI and impairment of recov-
ery from AKI in CKD patients remain largely unexplained.
Multiple mechanisms at epigenetic, signaling, cellular, and
tissue levels may be involved [200–202]. Briefly, oxidative
stress is a key mechanism in the pathogenesis and progression
of CKD and impaired renal regeneration after AKI episodes.
Therapeutic strategies targeting hypoxia have been shown to
be effective in blocking the progression to CKD and possibly
AKI protection [192, 193, 199].

In CKD, the retention of a variety of metabolites, due to a
decrease in their renal clearance and/or a rise in their synthesis,
is found. These compounds could be small and water soluble,
lipophilic and/or protein bound, or larger and in the middle-
molecule range. Several solutes have been shown to exert
biological activity, on cells and metabolic processes, leading to
uremic syndrome. Moreover, dietary protein breakdown, alter-
native sources such as environmental contact, food additives,
natural stimulants (coffee and tea), herbal medicines, or addic-
tion to psychedelic drugs, may also play a role in uremic toxic-
ity. Slowing of the progression of CKD thereby preservation of
kidney function is crucial in the removal of uremic toxins.
Successful kidney transplantation with good graft function
offers the best possibility to lower the levels of uremic toxins.
In addition, uptake of uremic toxins in the intestine could be
decreased by influencing dietary uptake, oral administration
of sorbents, or administration of prebiotics or probiotics
influencing intestinal flora. Moreover, changing the source of
protein intake from animal-based to plant-based diet may also
reduce intestinal production of uremic toxins. Other therapeu-

tic intervention includes administration of drugs countering
the biological impact of uremic solutes such as angiotensin-
converting enzyme inhibitors (ACEi) which neutralize Ca
influx due to SDMA [203]. Moreover, the IxS level can be
decreased by rising sulfotransferase activity, responsible for
indole sulfation [204].

In addition, the development of therapeutic strategies to
raise α-Klotho and lower phosphate, FGF23, and other
uremic toxins is of great importance as they may contribute
to the decline in cardiovascular morbidity and mortality in
CKD and after kidney transplantation.
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