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Hydrogen: Potential Applications in Solid Organ Transplantation
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Ischemia reperfusion injury (IRI) in organ transplantation has always been an important hotspot in organ protection. Hydrogen,
as an antioxidant, has been shown to have anti-inflammatory, antioxidant, and antiapoptotic effects. In this paper, the protective
effect of hydrogen against IRI in organ transplantation has been reviewed to provide clues for future clinical studies.

1. Introduction

Ischemia reperfusion injury (IRI) is one of the most common
clinical complications of organ transplantation [1]. The dam-
age mechanism involves cell ion changes [2], mitochondrial
metabolism [3], reactive oxygen species (ROS) system activa-
tion [4, 5], various inflammatory reactions [6, 7], and other
pathophysiological changes. In severe cases, it may even
cause primary graft dysfunction, prolong total hospital stay,
and greatly increase mortality risk in solid organ transplant
recipients [8–13]. Although various isolated organ protection
platforms, such as ex vivo lung perfusion (EVLP) and Life-
Port Liver Transporter (LIFESPORT), have been developed
clinically and extensive research and improvement have been
achieved for organ preservation fluid [14–20], IRI cannot be
completely prevented.

Graft ischemia leads to the harmful production of ROS;
however, the reoxygenation process during reperfusion is
the reason for the production of most ROS, activation of
the complement system, and initiation of inflammatory
responses [21]. Occlusion of vascular supply during trans-
plantation leads to severe hypoxia of endothelial cells,
which become an important source and target of ROS.
Mitochondrial dysfunction, neutrophil initiation, xanthine
oxidase, and NADPH oxidase play key roles in this process
[22] In turn, excessive oxidizing agents lead to tissue dam-

age and cell death by inducing the peroxidation of DNA,
proteins, and lipids. Therefore, use of anti-ROS agents has
been an important strategy for reducing IRI during organ
transplantation.

Hydrogen is widely distributed in nature, with a concen-
tration of 0.00006% in the air [23]. Under physiological
states, human intestinal flora can produce a large amount
of hydrogen, which participates in human physiological pro-
cesses and is eventually discharged or metabolized from the
lungs to produce nontoxic water [24]. Selective antioxidant
function of hydrogen has been demonstrated in previous
studies [25]; with the intensification of studies, hydrogen
has been proved to exert several effects, such as anti-
inflammatory [26–28], antioxidant [29, 30], and antiapopto-
sis effects [31, 32]. In recent years, the use of hydrogen has
become an important part of the use of gases in medical
treatments. Hydrogen has been used in various disease
models and treatment studies, including IRI in solid organ
transplantation. However, the specific mechanism of hydro-
gen in treating IRI in solid organ transplantation is not
completely clear at present. Currently available experiments
and studies have found that the mechanism may be related
to its selective antioxidant effect and its ability to reduce
inflammatory responses and inhibit cell apoptosis. The
research progress of its application in solid organ transplan-
tation is summarized below (Table 1).
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1.1. Application of Hydrogen in Lung Transplantation. Pri-
mary reflective graft dysfunction caused by IRI is one of
the common clinical complications of lung transplant recip-
ients [33], with an incidence of up to 30%, which greatly
increases the risk of death of lung transplant recipients [8].
Therefore, maintenance of lung function is crucial for these
recipients [34]. Several studies have been conducted to
determine the protective effect of hydrogen on lung trans-
plantation, which is mainly reflected during the preexporta-
tion process of the donor lung, the cold ischemia period, and
the transplantation process.

1.1.1. Application of Hydrogen in the Donor Lung before
Separation. Protection of the donor lung has always been
imperative, and effective measures can expand the source
of donors. Previous studies have found that inhalation of
hydrogen by the donor can improve the compliance and
oxygen index of the transplanted lung [35–37]. The possible
mechanism occurs mainly through the following ways:

(1) Antioxidant Effect. In a lung transplantation brain
death rat model, 2% hydrogen for donor and
recipient ventilation restrained malondialdehyde-
and myeloperoxidase-mediated inhibition of heme
oxygenase-1 and increased the activity of superoxide
dismutase (sod) and other antioxidants [36, 37], to
protect lung function.

(2) Antiapoptotic Effect. In a cardiac and brain death
animal model, 2–3% hydrogen inhalation could
effectively regulate the expression of the antiapopto-
tic protein Bcl-2 and the proapoptotic protein Bax,
thereby inhibiting the apoptotic process caused by
Caspase-3 positive cells [35–37].

(3) Anti-inflammatory Effect. In both the cardiac death
model and brain death model, hydrogen inhalation

could effectively reduce the expression level of proin-
flammatory factors such as IL-8, IL-6, and TNF-α,
thus alleviating the lung injury of the donor before
extracting the lung [35–37]. In addition, Tanaka
et al. [38] sequenced hydrogen-pretreated trans-
plant donors and found that hydrogen treatment
induced the expression of proteins (including Clara
cells) with anti-inflammatory and antioxidant
effects and increased intracellular tissue adenosine
triphosphate (ATP) and heat shock protein 70
(HSP70) expression levels. Hydrogen treatment also
induced surfactants to regulate the expression of C/
EBPA and C/EBPB transcription factors. The above
gene changes provided effective clues for our later
exploration of energy metabolism and surfactant-
related pathways.

1.1.2. Application of Hydrogen in the Cold Ischemia Period.
The treatment of the lung in the cold ischemia period
includes storage of organ protective fluid and the repair of
the EVLP platform.

(1) Application of Hydrogen in In Vitro Lung Organ Preser-
vation Solution. As an important part of donor protection
for lung transplantation, the continuous optimization of
organ preservation solution has always been a clinical hot-
spot. Hydrogen-rich organs preserved in liquid can also pro-
tect lungs in isolation. Masao et al. preserved donor lungs
provided by canine or rat lung transplantation models in
hydrogen-rich perfusion fluid. Compared with the control
group, donor lungs maintained a higher oxygen partial pres-
sure and had less perivascular edema in the transplanted
lung [38]. Hydrogen-rich preservation solutions on the one
hand can reduce the expression of proinflammatory cyto-
kine (TNF-α and IL-1β) mRNA and on the other hand
can inhibit the expression of 8-OHdG, which is an indicator

Table 1: Application of hydrogen in different organs.

Organ Use-pattern Time Reference

Lung 2–3% hydrogen Donor [35–38, 41]

Lung Hydrogen-rich solution Cold ischemia phase [39, 40, 48]

Lung 2% hydrogen EVLP [43, 45, 46]

Lung 3% hydrogen PMVECs [42]

Lung 3% hydrogen & CO Cold ischemia phase [46]

Lung 2% hydrogen During lung transplantation [47]

Liver Hydrogen-rich solution Cold ischemia phase [48, 50]

Liver Hydrogen flush after cold storage Cold ischemia phase [49]

Liver Hydrogen-rich perfusion fluid Cold ischemia phase [51]

Kidney Hydrogen-rich solution Cold ischemia phase [52, 53]

Small intestine Hydrogen-rich solution Cold ischemia phase [54, 55]

Small intestine Hydrogen-bubbled preservation solution Cold ischemia phase [56]

Small intestine 2% hydrogen Perioperative period [57]

Heart 1–3% hydrogen 1 h before and after reperfusion [58]

Heart Hydrogen-rich water bath Cold ischemia phase [59]

Heart Hydrogen-rich solution Cold ischemia phase [60]
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of oxidative stress [39, 40]. This effect was demonstrated to
be achieved through the Nrf2-HO-1 pathway. In addition,
hydrogen can also improve the static P-V curve and histo-
logical score of the transplanted lung by expanding the
donor lung infiltrated in the organ preservation solution
[41]. Zhang et al. used pulmonary microvascular endothelial
cells to simulate IRI in a lung transplantation model. This
effect may be achieved by inhibition of the p38 mitogen-
activated protein kinase (MAPK) and nuclear factor-
kappaB (NF-κB) pathways to achieve the objective of
inflammatory injury of pulmonary microvascular endothe-
lial cells (PMVECs) [42].

(2) Application of Hydrogen in EVLP Platform. In isolated
lungs, currently, EVLP, as an important weapon for lung
repair, has been applied more and more widely in clinical
practice. As early as 2014, Entaro et al. found that a 2%
hydrogen group significantly upregulated mitochondrial-
related genes contributing to the lung during EVLP repair,
such as heme oxygenase-1 (HO-1), peroxisome
proliferator-activated receptor-gamma coactivator (pgC-
1α), and nuclear respiratory factor-1 (Nrf-1). At the same
time, the enzyme activities of mitochondrial complexes I
and II and the activity of mitochondrial complex IV were
significantly increased, suggesting that the protective effect
of hydrogen on donor lung function may be due to the inter-
vention of mitochondrial oxidative stress to achieve lung
protection [43]. Subsequently, Haam’s team demonstrated
that the use of hydrogen as an intervention during EVLP
resulted in a decreased pulmonary vascular resistance index,
decreased expression of inflammatory factors such as IL-1β,
IL-6, IL-8, and TNF-α, and significantly reduced apoptosis.
At the same time, the phosphorylation of all MAPK-
related enzymes in the hydrogen intervention group was
low, suggesting that the changes of hydrogen during EVLP
may be realized through the MAPK pathway [44]. Subse-
quent studies confirmed that the protective effect of hydro-
gen on the transplanted lung not only exists during EVLP,
but also after donor transplantation [45].

(3) Application of Hydrogen in Lung Transplantation Sur-
gery. Meng et al. [46] and Kawamura et al. [47] also applied
hydrogen to lung transplantation in animal models and
found that hydrogen could reduce lipid peroxidation of the
graft, reduce the production of inflammatory factors such
as IL-6, and significantly reduce the infiltration of macro-
phages in lung tissue. In the study of Kawamura et al., the
mRNA of Bcl-2 and Bcl-XL related to apoptosis was signifi-
cantly upregulated in the hydrogen group 2h after ischemic
reperfusion, and the proteins of Bcl-2 and Bcl-XL were
increased 6 h after reperfusion, suggesting that the antiapop-
totic effect of hydrogen plays an important protective role in
the process of lung transplantation.

1.1.3. Application of Hydrogen in Liver Transplantation. At
present, the studies on the effect of hydrogen on ischemia/
reperfusion injury in liver transplantation mainly focus on
the organ preservation solution of the donor liver and dur-
ing liver transplantation. In the animal model of IRI after

liver transplantation, hydrogen-rich preservation solution
on the one hand can improve the redox state of the donor
liver [48, 49] and upregulate HO-1 expression by inhibiting
the cytoplasmic MKK4-JNK-mediated cell death pathway
[48], thus providing better function and morphological pro-
tection for the donor liver [50]. On the other hand, Shimada
et al. found that reperfusion of the donor liver with
hydrogen-rich preservation solution can protect mitochon-
drial function in the early stages and inhibit subsequent oxi-
dative stress and the inflammatory cascade, thereby reducing
liver reperfusion injury [51]. Continuous inhalation of 2%
hydrogen for 1 h at the beginning of liver transplantation
in animal models can regulate the protection of rat liver
from ischemia/reperfusion injury by activating the NF-κB
signaling pathway [28].

1.1.4. Application of Hydrogen in Kidney Transplantation.
There are relatively few studies on hydrogen in kidney trans-
plantation, most of which focus on the improvement of
organ preservation fluid. Abe et al. suggested that
hydrogen-rich UW solution reduced oxidative stress in renal
grafts at the early stage and reduced renal tubular apoptosis
and mesenchymal macrophage infiltration. Histopathologic-
ally, the treatment with hydrogen-rich UW fluid reduced
renal tubular damage and inhibited the progression of inter-
stitial fibrosis [52]. Kobayashi and Sano [53] facilitated kid-
ney preservation in a dissolved hydrogen fluid infusion after
transplantation. Renal blood flow could be detected in the
experimental group six days after transplantation, and urine
was detected in the bladder. These studies suggest the poten-
tial of hydrogen in kidney IRI, but this remains to be con-
firmed by more research.

1.1.5. Application of Hydrogen in Small Intestinal
Transplantation. Hydrogen also has antioxidant and anti-
inflammatory effects in studies of small intestinal
transplants. Shigema et al. and Yamamoto et al. used a noc-
tilucent, hydrogen-rich solution for enteric perfusion of the
transplanted intestine, which significantly inhibited the
levels of oxidative indices, malondialdehyde, and 8-
hydroxydeoxyguanosine [54, 55]. The levels of mRNA and
protein of proinflammatory cytokines, such as inducible
nitric oxide synthase and interleukin-6, were significantly
inhibited in the hydrogen-rich solution group (HRGS). In
the HRGS group, crypt cell apoptosis was significantly inhib-
ited, and the villi in the small intestine were more complete
[54, 55]. Buchholz et al. also demonstrated that hydrogen
treatment alleviated intestinal IRI and improved survival
by regulating the increased antioxidant capacity and myo-
globin oxygenase-1 [56]. Heme oxygenase-1 is largely regu-
lated by the redox sensitive transcription factor, the
nuclear factor RBC-2-related factor 2 (Nrf2). Therefore,
OH-1 may be explored as a target for future hydrogen stud-
ies on intestinal transplantation. The study also found that
the hydrogen pretreatment increased gastrointestinal activ-
ity, improved the contractability of jejunal smooth muscle
of intestinal grafts, inhibited mucosal erosion and exfoliation
of a large number of epithelial cells, and maintained basic
permeability [57]. These findings further support the idea
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that hydrogen treatment during small intestinal transplanta-
tion can maintain the integrity of the intestinal mucosa
while maintaining gastrointestinal activity and reducing
postoperative complications.

1.1.6. Application of Hydrogen in Heart Transplantation.
The main applications of hydrogen in IRI in heart transplan-
tations are hydrogen inhalation treatment and hydrogen-
rich water treatment. Current studies suggest that
hydrogen-rich organ protective fluid or hydrogen inhalation
pretreatment can regulate oxidative stress markers of the
ischemic myocardium on the one hand, such as Box1 pro-
tein and 8-hydroxy-2′-deoxyguanosine (8-OHDG) in the
serum high mobility group, and enhance the antioxidant
capacity of myocardium tissue. On the other hand, hydrogen
treatment can regulate the mRNA and protein expression
levels of apoptosis-related molecules, such as proapoptotic
molecules, Bax and Bcl-2, which can reduce apoptosis
[58–60]. In the process of ischemia reperfusion in myocar-
dial tissue, a large amount of ROS production will affect
mitochondrial homeostasis. Mitochondria are the main sites
of intracellular ROS production and also the target of ROS
but produce energy for normal heart function and ATP for
most cells. The use of hydrogen-rich organ protectors in
heart transplants protects mitochondria and stimulates
mitochondrial proliferation in heart transplants.
Hydrogen-rich organ protective fluid activates ATP synthase
and mitochondrial biogenetic genes and maintains ATP
levels in transplanted tissues [59]. At the same time,
mitochondria-related genes such as PGC-1α, NRF-1, and
PPAR-G were significantly upregulated in the hydrogen-
rich protective solution intervention group, and even the
gene and protein expressions of HO-1 were upregulated.
PPAR-G regulates HO-1 expression, and HO-1 activates
mitochondria by promoting the expression of the NRF-1
gene through nuclear factor erythroid 2-associated factor
(NRF), suggesting that the protective effect of hydrogen-
rich protective fluid may be achieved through the PPAR-α/
HO-1 signaling pathway to protect the donor heart.

2. Conclusions

The graft protection effect of hydrogen has been gradually
confirmed in basic research; however, the exact mecha-
nism leading to these effects is still not fully understood.
Nevertheless, these basic findings may provide clues for
the use of hydrogen in the treatment of graft IRI. In the
past, hydrogen was only given in the gaseous state, which
obviously limited its clinical application. Currently, hydro-
gen delivery has developed into various forms, including
liquid, gas, and solid, and has entered other clinical fields,
so it is a strong prospect for clinical application. There are
currently few studies on hydrogen and nonsolid organ
transplantation, which may present a research direction
for the future. Further animal studies and preliminary
human clinical trials are needed to lay the groundwork
for the clinical use of hydrogen as a drug in the near
future.
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