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Cervical cancer is a common female malignant tumor that seriously threatens human health. This study explored the anticervical
cancer effects and potential mechanisms of Rotundifuran (RTF), a natural product isolated from Vitex trifolia L. In this study, we
found that RTF can suppress the proliferation of cervical cancer cell lines, including HeLa and SiHa cells (with the ICy, less than
10 uM), via induction of apoptosis in vitro, and the antitumor effect of RTF is further confirmed on the HeLa cell-inoculated
xenograft model. In addition, our results proved that the antitumor effects of RTF might be related with the reactive oxygen
species- (ROS-) induced mitochondrial-dependent apoptosis through MAPK and PI3K/Akt signal pathways. Using proteomics
analysis and the drug affinity responsive target stability- (DARTS-) combined mass spectrometry (DARTS-MS), Cyr61 was
indicated as a potential target for RTF in cervical cancer cells. Our present study would be beneficial for the development of

RTF as a candidate for treatment of cervical cancer in the future.

1. Introduction

Cervical cancer is one of the most common malignancies in
women and remains the leading cause of cancer deaths
among women worldwide, posing a serious threat to
women’s health. Epidemiological investigation in 2018 esti-
mated that more than 550,000 cases of cervical cancer were
definitely diagnosed every year. Unfortunately, more than
60% of these patients are diagnosed at a locally advanced
stage with disappointing survival rates. In addition, it is also
reported that most of the cervical cancer deaths occurred in
the low- and middle-income countries [1, 2]. Besides surgery
and radiotherapy, pharmacotherapy remains the commonly
available used treatment strategy for cervical cancer. Accord-
ing to the NCCN clinical practice guidelines in oncology

(https://nycancer.com/ncen/), the first-line drugs for cervical
cancer include cisplatin, taxol, and topotecan. However,
these mentioned drugs would bring lots of serious toxicities
or side-effects [3, 4]. Although some new drugs such as bio-
chemicals have been tried in recent years, it is still hard to
treat some advanced or recurrent cervical cancer [5, 6]. Con-
sequently, searching for more novel and alternative reliable
remedies with less toxicity for treating cervical cancer is of
importance and necessary.

Natural bioactive molecules derived from plants or herbs
play the dominant roles in finding lead compounds for the
development of new drugs against various diseases. Owing
to multidisciplinary drug discovery strategies, more and
more bioactive molecules have been found from natural
plants [7-9]. The fruit of Vitex trifolia L., also called Viticis
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Fructus in the Chinese pharmacopoeia, is a commonly used
herbal medicine in Chinese folk medicine for treating head-
ache, swelling and aching of gums, malignant tumors, etc.
[10, 11]. Rotundifuran (RTF) is an active small molecule
extracted from the fruits of V. trifolia, which possesses prom-
ising anticancer potentials against human myeloid leukaemia
cells and breast cancer cells via induction of apoptosis or cell
cycle arrest [12, 13]. Based on a systemic review on previous
literatures, we found that monomers/extracts from plants are
ideal resources for screening useful agents for treatment of
cervical cancer [14]. In our previous investigation, we have
reported some natural agents with significant antitumor
activities against cervical cancer [15-17]. As part of our con-
tinuing research, we further found that Rotundifuran (RTF)
has a potential anticancer effect against cervical cancer cells
in the preliminary screening experiments in vitro. Therefore,
in this study, we have isolated and identified the RTF from
the fruits of V. trifolia and further systemically investigated
the antitumor effects of RTF as well as its molecular mecha-
nisms against cervical cancer, which helps to provide scien-
tific basis for the development of this compound as a new
drug for clinical treatment of cervical cancer.

2. Materials and Methods

2.1. Plant Materials. The fruits of V. trifolia were purchased
from the Chengdu Hehuachi market of traditional Chinese
medicine (Chengdu, China) in August 2017 and identified
by Prof. Hong Zhang (School of Pharmacy, Shanghai Univer-
sity of Traditional Chinese Medicine). A voucher specimen
(520180826-M]JZ#) of the fruits of V. trifolia was deposited
in our laboratory.

2.2. Animals and Ethics Statement. Male BALB/C nude mice
were purchased from the Shanghai Laboratory Animal Cen-
ter (Shanghai, China) and raised under specific pathogen-
free conditions. All animal experiments were strictly in
accordance with international ethical guidelines and the
National Institutes of Health Guide concerning the Care
and Use of Laboratory Animals, which were approved by
the Animal Experimentation Ethics Committee of the Shang-
hai University of Traditional Chinese Medicine (SHUTCM).

2.3. Cell Culture. HeLa and SiHa cells, obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA), were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
and antibiotics (100 U/mL penicillin and 100 gg/mL strepto-
mycin). All cell lines used in this article were cultured in a
humidified incubator (Thermo Fisher, USA) containing 5%
CO,/95% air at 37°C.

2.4. Chemicals and Reagents. The DMEM medium and anti-
biotics (penicillin and streptomycin) were purchased from
the HyClone Co. (Shanghai, China); PBS and CCK-8 Kkits
were acquired from the Meilun Biotech (Dalian, China); 4'
,6-diamidino-2-phenylindole (DAPI), Triton X-100, BCA
protein assay reagent, PVDF membrane, and JC-1 kit were
obtained from Beyotime (Haimen, China); Annexin V-
FITC/PI kit was purchased from BD Biosciences (San Diego,
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CA, USA); FBS was purchased from the Tianhang Biotech
(Hangzhou, China); cOmplete protease inhibitors, phospha-
tase inhibitors, and pronase were purchased from the Roche
Co. (Shanghai, China); primary antibodies for Bcl-xL, Bim,
Apaf-1, cleaved PARP, cleaved caspase-3, cleaved caspase-8,
cleaved caspase-9, Akt, phosphorylation- (p-) Akt, PI3K, p-
PI3K, JNK, p-JUK, ERK, p-ERK, p38, p-p38, CCARI, Cyr61,
B-actin, cytochrome ¢, and goat-anti-rabbit/rat horseradish-
peroxidase- (HRP-) conjugated secondary antibodies were
purchased from the Cell Signaling Technology Co. (Danvers,
MA, USA); primary antibody for GAPDH was purchased
from the Servicebio Co. (Wuhan, China); RED-NHS protein
labeling kit was purchased from the NanoTemper Technolo-
gies (Munich, Germany); Cyr61 protein (Mammalian, C-Fc)
was acquired from the Novoprotein Co. (Beijing, China);
and sodium dodecyl sulfate (SDS) and loading buffer were
acquired from Sangon Biotech (Shanghai, China).

2.5. Preparation of RTF. The dried and powdered fruits of V.
trifolia (35kg) were extracted three times with 95% aqueous
ethanol by reflux (each extraction period lasted 1.5h). The
extracts were filtered, and the clear supernatant was then
concentrated under reduced pressure at 50°C with a vacuum
rotary evaporator. Then, the residue was suspended in water
and extracted with EtOAc to afford an EtOAc fraction
(ACE). The ACE fraction was subjected to repeated column
chromatography over silica gel (100-200 mesh) column chro-
matography and eluted with petroleum ether-EtOAc (10:1-
3:1). Combination of similar fractions on the basis of TLC
analysis afforded 3 subfractions (A, B, and C). Then, the sub-
fraction B was subjected to NM-200 reverse polymer gel
(Nano-Micro Biotech, Suzhou, China) column chromatogra-
phy eluting with 85% methanol and afforded 3 fractions (A,
B,, and C,) based on the TLC analysis. Thereafter, the B,
fraction was separated by a LC6000 prepared HPLC (Waters
Corporation, Milford, MA, USA) with the mobile phase of
acetonitrile: water (85:15) and afforded the monomer of
RTF (0.41g). Then, purity of the isolated compound was
determined by thin-layer chromatography (TLC) and HPLC
assays, and the chemical structure was identified by HR-ESI-
MS "H-NMR and ">C-NMR and compared with the previous
reference [9, 10]. In addition, the RTF was isolated from the
fruits of V. trifolia with the purity over 98% (Figure S1-S5).

2.6. Determination of Cell Viability. A CCK-8 assay was used
to determine the cell viabilities of HeLa and SiHa. Briefly,
cells with density of 1 x 10° cells/200 uL were plated and cul-
tured to adhere in 96-well plates overnight. After treating
with RTF with different concentrations (0, 4, 8, 12, and
16 uM) for 24h or 48h, the cells were incubated with a
CCK-8 kit to determine the cell proliferation inhibition (%)
(n=4). The optical density (OD) values at the wavelength
of 450nm were detected by a microplate reader (Tecan
Spark, Méannedorf, Switzerland) for further IC,, analysis.
The inhibition rate was calculated according to the following
formula: (OD OD /OD 1101 X 100%.

control treatment)

2.7. Nuclear Staining with DAPI. DAPI staining assay was
carried out to determine the proapoptotic effect of RTF on
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cervical cancer cell lines of HeLa and SiHa. Briefly, when cells
were exposed to RTF for 24 h and subsequently stained with
DAPI, the changes in the cells’ nuclear morphology were
analyzed and photographed by a fluorescence microscope
(Olympus, TH4-200, Tokyo, Japan).

2.8. Flow Cytometer Analysis. Flow cytometer analysis was
further used to detect the apoptotic cervical cancer cells.
Briefly, the cells were exposed to RTF for 24 h and subsequently
stained with FITC conjugated Annexin V/PI, and the fluores-
cence signals were analyzed by a flow cytometer (B75442,
Beckman, Pasadena, CA, USA). The percentage of cells in
early apoptosis was calculated by Annexin V-positivity and
PI-negativity, while the percentage of late apoptotic cells
was calculated by Annexin V-positivity and PI-positivity.

In addition, flow cytometry was also performed to ana-
lyze the cell cycle arrest of cervical cancer cells induced by
RTF treatment for 24 h and subsequently stained with propi-
dium iodide (PI).

2.9. Determination of Mitochondrial Membrane Potential.
The mitochondrial membrane potential (MMP, AY¥, ) was
measured by JC-1 staining. Briefly, cells were exposed to
RTF for 24h and subsequently stained with JC-1 following
the instruction of commercial JC-1 kits, and the fluorescence
signals of JC-1 monomers and aggregates were analyzed and
photographed by a fluorescence microscope (Olympus, TH4-
200, Tokyo, Japan).

2.10. Immunofluorescence Colocalization of Cytochrome ¢
(Cyt ¢) Release. Hela cells plated on 20 mm glass plates and
treated with RTF for 24 hours were incubated with Mito-
Tracker Red CMXRos (50nm) for 20 min. After washing
with PBS, the cells were incubated with Cyt ¢ antibody
(1:100) overnight and followed by incubating with the
fluorescent-labeled secondary antibody (1:1000). After
DAPI staining for 10 min, the fluorescence images were cap-
tured by using GE DeltaVision OMX SR (GE, USA). Cells
without RTF treatment were used as the control.

2.11. Determination of ROS. The DCFH-DA fluorescent
probe was used to determine the intracellular ROS level of
cervical cancer cells. Briefly, cells were exposed to RTF for
24 h and subsequently stained with a DCFH-DA fluorescent
probe following the instruction of commercial kits, and then,
the fluorescence was analyzed and photographed with a fluo-
rescence microscope (Olympus, TH4-200, Tokyo, Japan).

2.12. Xenograft Model in Nude Mice. Furthermore, we also
determined the antitumor effects of RTF against cervical can-
cer in vivo. In brief, there were 4 animal groups designed in
our study, including control, positive (cis-platinum, 3 mg/kg/
3days), and RTF groups (10mg/kg/day, 40mg/kg/day)
(n=10). Nude mice were subcutaneously injected with HeLa
cells (4 x 10° per mouse) in the right flank. When the tumors
grew to approximate 2-3mm in diameter, the mice were
treated with a positive agent and RTF (intraperitoneal injec-
tion, i.p.) as well as an equal volume of solvent control (0.5%
DMSO, i.p.). DMSO or drug was administered for 12 days.
The tumor sizes and body weight were monitored every two

days. Tumor volumes determined by using a vernier caliper
were calculated according to the following formula: volume =
(width?® x length)/2 [15]. At the end of the study, the mice
were sacrificed and tumors were separated for TUNEL assays
to determine the apoptosis-positive cells.

2.13. Western Blotting. Cells were exposed to RTF for 24h
and then lysed using an NP-40 lysis buffer containing phos-
phatase and cOmplete protease inhibitors. The protein con-
centration was measured by a BCA protein assay reagent,
and the total protein samples were degenerated by boiling
water for 10 min. Then, equal amounts of proteins (35 ug)
were separated by SDS-polyacrylamide gel electrophoresis
(SDS/PAGE); then, the target protein bands were blotted on
a PVDF membrane and probed with various primary antibod-
ies, followed by incubation with secondary antibodies. Finally,
the chemiluminescence method with ECL kits was used to
visualize the target protein bands. To normalize for protein
loading, antibodies directed against GAPDH or f3-actin were
used as internal reference, and the protein expression levels
were expressed as relative values to internal reference.

2.14. Drug Affinity Responsive Target Stability (DARTS)
Analysis. Cells were exposed to RTF (100 uM) and 0.5%
DMSO for 3h and then lysed using an NP-40 lysis buffer
containing phosphatase and cOmplete protease inhibitors.
The protein concentration was measured by BCA protein
assay reagent. Then, the pronase was added with the ratio
of 1:300, 1:500, and 1:1000 (pronase/total protein), and
then, the mixtures were incubated at room temperature for
30 min. Subsequently, the reaction products were analyzed
using western blotting assays.

2.15. Cellular Thermal Shift Assay (CETSA) Analysis. Cells
were exposed to RTF (100 uM) and 0.5% DMSO for 3h
and then lysed using an NP-40 lysis buffer containing phos-
phatase and cOmplete protease inhibitors. The protein con-
centration was measured by a BCA protein assay reagent.
Then, cell soluble proteins were subsequently divided into 7
equal aliquots and transferred into PCR plates, followed by
heating for 3 min at 42°C, 47°C, 52°C, 57°C, 62°C, and 67°C
in a PCR instrument (LightCycler 96, Roche, Basel, Switzer-
land). Subsequently, the reaction products were analyzed
using western blotting assays.

2.16. Microscale Thermophoresis Analysis. Microscale ther-
mophoresis (MST) analysis was carried out using a Nano-
Temper Monolith NT.115 (NanoTemper Tech, Munich,
Germany). Cyr61 protein (Mammalian, C-Fc) was dissolved
in distilled water with a concentration of 20 uM. Subse-
quently, the solvent was changed into the buffer solution
(50mM HEPES (pH7.5), 10mM CaCl,, 50mM NaCl,
5mM DTT), and the concentration of Cyr61 was diluted as
5 uM. Then, the Cyr61 was mixed with isovolumetric fluoro-
chrome (25 uM) and incubated in dark for 30 min at room
temperature. Thereafter, the mixture solution was divided
into 12 equal aliquots to obtain the labeled proteins (100 L
of each aliquot). The protein solutions were loaded into
standard capillaries and scanned by an MST instrument,
and subsequently, the protein samples with the maximum



fluorescence absorption were selected and mixed as the
labeled protein sample. Then, the labeled protein samples
were mixed with serial dilutions of RTF samples, and the
mixture was loaded into standard capillaries and scanned
by MST instrument. Finally, the K value was determined
using the NanoTemper Analysis 2.3 software (NanoTemper
Tech, Munich, Germany).

2.17. Molecular Docking. Molecular docking was performed
using the Schrédinger software (LLC, New York, NY,
USA). Briefly, the molecular structure of RTF was prepared
by the “Ligprep 3.6” module, and the protein structure was
downloaded from the RCSB PBD (http://www.rcsb.org/).
Subsequently, the molecular docking was carried out using
the Glide 6.9 module of the Schrédinger software.

2.18. Statistical Analysis. Significant differences between dif-
ferent groups were determined with Student’s t-test. The
results were presented as mean+ SD from at least three-
independent experiments, and p<0.05 were considered
significant.

3. Results

3.1. RTF Suppressed the Proliferation of Cervical Cancer Cells
via Induction of Apoptosis. After preparation of adequate
monomer of RTF, we further evaluated the cytotoxic effects
of this compound on cervical cancer cell lines of HeLa and
SiHa cells using CCK-8 assays. The results shown in
Figure 1(a) represented that RTF exhibited significantly anti-
proliferative activities against HeLa and SiHa cells, and the
IC,, values were less than 10 uM both in 24- (8.67 and
7.29 uM) and 48-hour (6.15 and 5.49 yuM) treatments.
DAPI, a DNA-specific fluorescent dye, is commonly used
to observe the cells’ nuclear morphology. As represented in
Figure 1(b), in normal cancer cell lines of HeLa and SiHa,
the cell nucleus was round and intact with faint fluorescence,
while RTF treatment can induce characteristic apoptotic fea-
tures in the cervical cancer cell, such as nuclear condensation,
increased brightness, and decreased cell number. Further
flow cytometry analysis indicated that RTF induced cell cycle
arrest in the G2/M phase (Figure 1(c)). Interestingly, previ-
ous literatures have confirmed that the G2/M cycle arrest
could induce cell apoptosis [18]. To further confirm whether
RTF can induce apoptosis or not, FITC-conjugated Annexin
V/PI staining was also carried out by flow cytometry analysis,
which is a comprehensively recognized way for cell apoptosis
detection, and the results also suggested that RTF could
induce apoptosis in HeLa and SiHa cells (Figure 1(d)).

3.2. RTF Increased ROS Level and Reduced MMP in Cervical
Cancer Cells. ROS is a key regulator for the mitochondrial-
dependent cell apoptosis [17]. As shown in Figures 2(a) and
2(c), RTF treatments could remarkably increase the intracel-
lular ROS level in HeLa and SiHa cells measured by a DCFH-
DA fluorescent probe under a fluorescence microscope and
flow cytometry. Furthermore, from our present results repre-
sented in Figure 2(b), similar to the positive control of the
H,0, (20uM), RTF could dramatically reduce the MMP
(AY.,) of HeLa and SiHa cells. All these results mentioned
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above indicated that RTF could induce cell apoptosis of cer-
vical cancer cell lines via regulation of mitochondrial
function.

3.3. RTF Suppressed Tumor Growth In Vivo. All the results
mentioned above suggested that RTF had antitumor effects
against cervical cancer cells. To confirm the antitumor effects
of RTF in vivo, the xenograft model in nude mice was carried
out subsequently. As shown in Figures 3(a) and 3(c), similar
to the positive control group (cis-platinum, 3 mg/kg/3days),
RTF (40mg/kg) had obvious antitumor effects against the
HeLa xenograft tumor in vivo when compared to the control
group. However, there was no toxicity for the RTF treatment
of mice (Figure 3(b) and Table S1). In addition, the further
TUNEL results (Figure 3(d)) also suggested that RTF could
notably induce cell apoptosis in tumor tissues.

3.4. RTF Induced Mitochondrial-Dependent Apoptosis in
Cervical Cancer Cells. The mitochondrial-dependent apopto-
sis is one of the most important pathways for cell death, and
proteins in caspase and Bcl-2 families are the dominant reg-
ulators in this apoptotic pathway [19, 20]. The results of our
present study (Figure 4(a)) revealed that RTF treatment (8
and 16 uM) could statistically upregulate the cleaved caspase
family proteins (cleaved caspase-3, cleaved caspase-8, and
cleaved caspase-9) and proapoptotic Bcl-2 family proteins
(Bax and Bim), while statistically downregulating the antia-
poptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL) compared
to the control cells. In addition, Apaf-1 and PARP are also
two important proteins for the induction of apoptosis, and
the results showed that RTF treatment (8 and 16 yuM) could
increase these two proteins in HeLa cells, compared to con-
trol cells. The mitogen-activated protein kinase (MAPK)
and PI3K/Akt signaling are two important upstream signal-
ing pathways for cell apoptosis. Our present results shown
in Figures 4(b) and 4(c) indicated that RTF treatment (8
and 16 uM) could statistically downregulate the phosphory-
lation of PI3K, Akt, and ERK in Hela cells, while upregulat-
ing the phosphorylation of JNK. In addition, the activation of
caspase-3 depends on the release of cytochrome c, so next,
the laser confocal microscope had been used to double-
check the release of cytochrome c¢ during the process of
mitochondrial-dependent apoptosis. MitoTracker was used
to locate the presence of cytochrome c in this process. As
shown in Figure 4(d), RTF treatment can cause the activation
of caspase-3 as well as the release of cytochrome c.

3.5. The Cyr61 Was a Potential Target for RTF to Trigger
Apoptosis in Cervical Cancer Cells. RTF could trigger cell apo-
ptosis in cervical cancer cells by inducing mitochondrial-
dependent apoptosis; however, the specific potential drug
target of RTF still remained unclear. Consequently, the unla-
beled quantitative proteomics analysis and the drug affinity
responsive target stability-combined mass spectrometry
(DARTS-MS) were carried out to explore the potential drug
targets. Interestingly, the related results (data were not
shown) indicated that CCARI and Cyr61 are two potential
drug targets for RTF with the relative expression of 0.525
and 2.963, compared to the control. In addition, we further
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FiGurek 1: RTF suppressed the proliferation of cervical cancer cell lines of HeLa and SiHa via induction of apoptosis. (a) Cytotoxic activities of
RTF on cervical cancer cell lines of HeLa and SiHa. Cell were treated with RTF for 24 or 48 h, and then, the CCK-8 assay was used to detect the
cell proliferation inhibition (%), and IC, values of RTF against HeLa and SiHa cells were calculated. (b) Apoptotic assay by DAPI staining.
Cells were treated with RTF for 24 hours, and then, the apoptotic cells were detected by DAPI staining and visualized under a fluorescent
microscope (x200). (c, d) Cell cycle arrest and apoptosis detection by flow cytometry. Cells were treated with RTF for 24h, and the
apoptotic cells were detected by staining with PI and Annexin V-FITC/PI followed by flow cytometry analysis, respectively. Data are
expressed as mean + SD, and the asterisks indicate significant difference, ***p < 0.001, vs. Control.
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screened these two proteins in The Cancer Genome Atlas
(TCGA) database and found that the TCGA analysis
results (Figure 5(a)) were consistent with our results of
DARTS-MS and proteomics. Furthermore, we determined
the expressions of these two proteins in HeLa cells; the

results showed that RTF treatment could statistically
upregulate the expressions of Cyr6l significantly, while
there was no obvious difference of CCAR1 among the
control and RTF treatment groups in HeLa cells
(Figure 5(b)).
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FiGUre 3: RTF suppressed tumor growth in vivo. (a) Tumor growth curve of xenograft mice; (b) body weight changes in mice; (c) tumor
weights of xenograft mice; (d) TUNEL assay of tumor tissues. Data are represented as mean +SD (n=5), and the asterisks indicate

significant difference, *p < 0.05 and **p < 0.01, vs. Control.

To further confirm whether the Cyr61 was the solid drug
target of RTF or not, DARTS and CETSA analyses were car-
ried out. As shown in Figures 6(a) and 6(b), the results sug-
gested that after treatment with RTF, the Cyr61 showed
more stable property under pronase and heat treatments,
compared to the control. Furthermore, we determined the
binding affinity of RTF and Cyr61 by using MST analysis,
and the results in Figure 6(c) showed that the dissociation
constant (K) value of the binding affinity is 3.8 + 4.5 uM,
suggesting that Cyr61 had a strong binding affinity with
RTF. Besides, we also analyzed the possible binding sites for
RTF in Cyr61, as shown in Figure 7(d); RTF showed interac-
tions with 2 amino acid residues of the Cyr61 (HID 474 and
ASP 458).

4. Discussion

To the best of our knowledge, this is the first systematic
report about the antitumor effect of RTF on human cervical
cancer cell lines in vivo and in vitro and its possible molecular
mechanisms and drug target. In this study, we identified that

RTF showed significant antitumor effects against cervical
cancer cell lines via inducing mitochondrial-mediated intrin-
sic apoptosis. Using biophysical proteomics approaches, we
identified that Cyr61 was a potential target for RTF to trigger
apoptosis.

Nowadays, it is generally recognized that uncontrolled
cell proliferation and inadequate apoptosis, resulting in accu-
mulation of damaged cells, is one of the leading causes of var-
ious forms of cancer [20]. Cell apoptosis is a known
programmed cell death way for physiological cell suicide as
well as an ideal strategy for cancer therapy [21, 22]. Cur-
rently, increasing natural monomers with promising antitu-
mor properties have been discovered from plants or herbs
based on modern drug discovery techniques, such as
bioactivity-guided extraction, high throughput screening,
high content screening, and computer aided screening [23-
25]. In our present study, we reported the antitumor effects
of RTF, a natural labdane-type diterpene from V. trifolia,
against cervical cancer. We have evaluated the antitumor
activities of RTF on two known cervical cancer cell lines of
Hela and SiHa and found that RTF showed good
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FiGUre 4: RTF-induced mitochondrial-dependent apoptosis in cervical cancer cells. (a) Effects of RTF on caspase and Bcl-2 family proteins; (b)
effects of RTF on PI3K/Akt signaling proteins; (c) effects of RTF on MAPK signaling proteins. Cell were treated with RTF for 24 h, and the total
proteins were extracted and subjected to western blot analysis using respective antibodies, and GAPDH was used as an internal control. (d)
Immunofluorescence colocalization of Cyt ¢ release. MitoTracker was used to locate the presence of cytochrome c. Cells without RTF treatment
were used as control. Data are expressed as mean + SD (n = 3), and asterisks indicated significant difference, *p < 0.05 and **p < 0.01, vs. Control.
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Expression of Cyr61 in CESC based on
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F1GURE 5: RTF upregulated the expression of Cyr61 in HeLa cells. (a) TCGA analysis of CCARI and Cyr61 in cervical cancer; (b) effects of
RTF on CCARI and Cyr61 expressions in HeLa cells. Data are expressed as mean + SD, and asterisks indicate significant difference, *p < 0.05,

**p <0.01, and ***p < 0.001, vs. Control.

antiproliferative properties on both of the two cell lines with
the IC;, less than 10 uM. Interestingly, our further experi-
ments also found that RTF induced antitumor effects on cer-
vical cancer cells due to induction of apoptosis.
Consequently, we further explored the possible apoptotic
pathway induced by RTF. Importantly, we found that RTF
treatment could also induce the reduced MMP and increased
ROS accumulation, which proved that RTF might trigger
mitochondrial-dependent apoptosis. Next, we determined
some key protein expressions related to the mitochondrial-
dependent apoptosis pathway, including the caspase family
and the Bcl-2 family. As we expected, RTF treatment could
upregulate the proapoptotic proteins including cleaved cas-
pase-3, cleaved caspase-8, cleaved caspase-9, Bax, Bim,
Apaf-1, and cleaved PARP, while downregulating the antia-
poptotic proteins (Bcl-2 and Bcl-xL). Furthermore, the unla-
beled quantitative proteomics analysis was carried out to
explore the deep possible mechanisms of antitumor effects
of RTF, and the related KEGG analysis based on differential

proteins revealed that PI3K/Akt and MAPK signaling path-
ways might be related to the antitumor effects of RTF (data
not shown). Previous scientific reports demonstrated that
PI3K/Akt and MAPK signaling pathways are also closely
involved in the ROS-induced mitochondrial-dependent apo-
ptosis [19, 26, 27]. Consequently, we examined the related
proteins in the two signal pathways and found that RTF
treatment could downregulate the phosphorylation of PI3K,
Akt, and ERK, while upregulating the phosphorylation of
JNK in HeLa cells. Collectively, our results showed that the
antitumor effects of RTF might be related to the ROS-
induced mitochondrial-dependent apoptosis via regulation
of MAPK and PI3K/Akt signal pathways.

However, the direct molecular target of RTF remains
unclear. Molecular target identification is a vital and hard
work for further optimizing of the molecular structure and
druggability of lead compounds. Consequently, we expected
to unclose the potential molecular target of RTF via some
new technologies such as DARTS-MS, DARTS, CETSA,
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F1GURE 6: Cyr61 was the drug target of RTF for treating cervical cancers. DARTS (a) and CETSA (b) analyses. Cells were exposed to RTF and
0.5% DMSO for 3 h, and total proteins were extracted and treated with pronase and heat; finally, the reaction products were analyzed using
western blotting assays. (c) MST assay. The labeled protein samples were mixed with serial dilutions of RTF samples, and the mixture was
loaded into standard capillaries and scanned by an MST instrument. Finally, the K value was determined using NanoTemper Analysis
2.3 software. (d) Molecular docking assay. Molecular docking was performed using the Glide 6.9 module of Schrédinger software.
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F1GURE 7: Molecular mechanism of the antitumor effects of RTF against cervical cancer. The Cyr61 was a potential target for RTF to trigger
apoptosis of cervical cancer cells.
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MST, and molecular docking. Based on the proteomics anal-
ysis, DARTS-MS, and The Cancer Genome Atlas (TCGA)
database analysis, the Cyr61 was screened as the possible
molecular target for RTF. Furthermore, the DARTS and
CETSA analyses, two recently emerged effective strategies
for monitoring drug target engagement in cells or tissues,
were carried out to confirm whether the Cyr61 was the solid
drug target of RTF or not. Interestingly, our results suggested
that Cyr61 showed a more stable property under pronase and
heat treatments by combination of RTF. Additionally, the
MST results showed that the Cyr61 had a strong binding
affinity with RTF with a K4 value of 3.8 +4.5uM, and the
molecular docking indicated that RTF showed interactions
with 2 amino acid residues of the Cyr61 (HID 474 and ASP
458). All these results suggested that Cyr61 was a possible
target for RTF to trigger apoptosis of cervical cancer cells.
Cyr61 (belonging to CCN family, also called CCN1), a
secreted matricellular protein with versatile functions, can
regulate various important cellular activities and sometimes
opposing functions [28, 29]. Increasing evidences have sug-
gested that Cyr61 could not only promote the proliferation
and survival of cells but also trigger apoptosis, cell cycle
arrest, and death of cells [30-32]. In addition, Cyr61 is closely
related to the development of various cancers, including
breast cancer, prostatic cancer, lung cancer, and cervical can-
cer [28, 33-35]. It is reported that upregulation of Cyr6l
could aggravate the development and metastasis of breast
cancer [33]; however, interestingly, it is also noted that
Cyr61 has low expressions in metrocarcinoma [32], cervical
cancer [35, 36], and lung cancer [34, 37]. Thus, Cyr61 might
be an antitumor regulator for endometrial cancer, cervical
cancer, and lung cancer. Importantly, ROS accumulation
plays a crucial role in the proapoptosis induced by Cyr61,
then the ROS can further regulate the MAPK and PI3K/Akt
signaling pathways, followed by the mitochondrial-
dependent apoptosis and DNA damage response [28, 38,
39]. The related potential molecular mechanism pathway
for antitumor effects of RTF was summarized in Figure 7.

5. Conclusion

In conclusion, our study suggested that Rotundifuran (RTF)
possessed notable inhibitory potentials against cervical can-
cer, and the Cyr61 was a possible molecular target for this
natural monomer to induce apoptosis in cervical cancer.
Our present study would be beneficial for the development
of RTF as a candidate drug for the treatment of cervical can-
cer in the future and also supply an available reference for
future molecular target identification of other natural active
compounds.
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