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The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several
neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia.
Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse
outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the
production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe
some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress,
including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss
future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the
goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.

1. Introduction

The high prevalence of neurodevelopmental disorders such as
attention-deficit hyperactive disorder (5.3%), autism spectrum
disorder (1%), and schizophrenia (1%) is a source of increas-
ing concern worldwide [1–3]. Many factors can be involved
in the etiology of neurodevelopmental disorders, including
genetic traits and in utero exposure to environmental contam-
inants and recreational drugs. Because the developing brain is
generally more sensitive than the adult brain to toxicants,
exposure to neurotoxic chemicals during development is
considered to be a key factor in the prevalence of neurodeve-
lopmental disorders [4–13]. Developmental neurotoxicity
(DNT) can result in dysregulation of a range of processes
in the brain, including neurogenesis, neuronal differentiation,
synaptogenesis, and establishment of functional connectivity

networks [7–9, 12]. Several molecular and cellular events
leading to DNT, the so-called “adverse outcome pathways,”
have been identified [14, 15]. These adverse outcome path-
ways cover a wide range of molecular initiating events,
including inhibition of receptors and enzymes such as N-
methyl-D-aspartate receptor and acetylcholinesterase and
interruption of biosynthesis and bioavailability of thyroid
hormone, which results in adverse outcomes such as impair-
ment of cognitive functions, alteration of sensory functions,
and impairment of motor functions [15]. Notably, many of
these pathways share oxidative stress (OS) as a key common
event associated with neurodevelopmental disorders [7, 8, 16,
17]. In this review, we describe how OS pathways are
involved in DNT, describe representative examples of devel-
opmental neurotoxins (DTXs) and the mechanisms by which
they affect cellular antioxidant and oxidant systems in rodent
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models, and discuss future directions to increase our under-
standing of adverse outcome pathways as they relate to
DNT induced by OS.

2. The Role of Oxidative Stress in
Developmental Neurotoxicity

OS occurs when reactive oxygen species (ROS) accumulate
as a result of an imbalance between the production of ROS
and the activity of the cellular antioxidant system [18, 19].
Superoxide anion (O2·−), one of the major cellular ROS, is
generated as a byproduct of oxidative phosphorylation
(OXPHOS) in mitochondria as well as through the activity
of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) located at the plasma membrane [20, 21].
O2·− is converted to hydrogen peroxide (H2O2) and then to
oxygen (O2) and water (H2O) by enzymatic antioxidants,
including superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPX), and by nonenzymatic antiox-
idants such as glutathione (GSH). The correct spatiotempo-
ral control of ROS production and activity is crucial to
many physiological functions, including neuronal fate and
development [22, 23]. However, excessive ROS levels result
in damage to DNA, RNA, proteins, and lipids [18]. When
this occurs in brain cells, the damage can adversely affect
neuronal functions such as memory, learning, and cognition
[14]. Various chemicals, both naturally occurring and man-
made, can cause DNT through OS [7, 8]. In the following
sections, we describe representative examples of DTXs that
cause OS by targeting antioxidant enzymes (Table 1), mito-
chondria (Table 2), and/or NOX (Table 3).

2.1. DTXs Targeting Antioxidant Enzymes. O2·− and H2O2
can create hydroxyl radicals that damage DNA, proteins,
and lipids when present at aberrantly high levels [24]. O2·−
is produced by mitochondrial pathways and/or NOX and is
converted to H2O2 by SOD. In turn, H2O2 is converted to
O2 and H2O by CAT in peroxisomes or to H2O via the activ-
ity of GPX and oxidation of GSH to its disulfide form in the
cytosol. Impairment of these antioxidant enzymes thus
results in supraphysiological ROS levels that can cause DNT.

Perinatal or postnatal exposure of rodents to lead (Pb)
has been shown to reduce the activities of antioxidant
enzymes in different brain regions and causes behavioral
impairments in the pups [25–28]. The mean blood Pb con-
centration of rat pups (5μg/dL) that showed decreased activ-
ity of antioxidant enzymes in the brain was equivalent to that
of pregnant women who have a significantly high risk of pre-
term birth (≥5 μg/dL, odds ratio 2) [29]. The divalent cation
Pb2+ enters the cytosol and mitochondria via calcium ion
(Ca2+) transporters and replaces other divalent cations such
as Ca2+, zinc ion (Zn2+), selenium ion (Se2+), and iron ion
(Fe2+), which are essential for the correct structure and activ-
ity of many antioxidant enzymes [24, 30–33]. Pb2+ also binds
with high affinity to sulfhydryl (SH) groups and can inhibit
key functional SH groups in antioxidant enzymes such as
SOD, GPX, and CAT [30].

Exposure to methylmercury (MeHg) during early devel-
opment also causes OS and impairs various neuronal func-

tions, especially cerebellar control of movement, as shown
in rodents [34]. MeHg binds with high affinity to both SH
and selenol groups [34] and thus impairs the activities of
antioxidant enzymes that require Se for their proper func-
tion, including GPX and thioredoxin reductase (TrxR) [24,
34, 35]. Perinatal exposure of mice to MeHg (5ppm in
drinking water) was shown to decrease TxrR activity in
the cerebrum and cerebellum and GPX1 activity in the
cerebrum of male, but not female, pups [36]. This sex dif-
ference in GSH and Trx metabolism may be related to the
higher prevalence of neurodevelopmental disorders among
males compared with females in humans [37, 38]. The
median blood Hg concentration of rat pups at birth from
dams exposed to MeHg (0.5 ppm in drinking water) during
pregnancy was 3.5 and 4.0mg/L for males and females,
respectively [39]. The decline of differential reinforcement
of high rates of behavior occurred sooner in the offspring of
rat dams exposed to MeHg (0.5 ppm in drinking water)
throughout gestation compared to the offspring of dams
without MeHg exposure [40]. The total range of Hg concen-
trations in umbilical cord blood in a World Trade Center
cohort, a Faroese birth cohort, and a cohort study of congen-
ital Minamata disease was 0.1-63, 0.9-351, and 20-699μg/L,
respectively [41–43]. Higher cord blood Hg concentration
was associated with the decline of the developmental score
at 3 and 4 years old [41].

Arsenic (As) is another element that inhibits antioxidant
enzyme activity through modification of functional SH
groups [44]. This has been demonstrated in rats, where
perinatal exposure of dams to 2–100mg/kg/day As from
gestational day (GD) 6 to postnatal day (PND) 21 resulted
in impaired SOD, CAT, GPX, and glutathione reductase
activities in various brain regions of the pups [45, 46]. The
50% lethal dose of As in rats ranges from 15 to 293mg/kg
[47]. Children with water As levels > 50 μg/L showed signifi-
cantly low intellectual abilities than children with As levels
< 5:5 μg/L in Bangladesh [48]. Mouse pups from dams
exposed to As (55μg/L in drinking water) during the perina-
tal period showed learning and memory impairment [49].
The effects of As exposure at these concentrations on the
OS in the development of the central nervous system remain
to be studied.

The effects of chemicals such as cypermethrin [50],
opioids [51], and silver nanoparticles [52] at sublethal
doses have been examined in rodents to elucidate the toxico-
logical mechanisms related to OS. Although such concentra-
tions may not be relevant to environmental exposure, the
results of these studies suggest that attention should be paid
to the consequences of OS after exposure to these chemicals
at relatively low doses.

2.2. DTXs Targeting the Mitochondria.OXPHOS is the major
cellular pathway of energy production and occurs via the
coordinated transfer of electrons through five multisubunit
complexes (I–V) located in the inner mitochondrial mem-
brane [24]. Complexes I and II generate electrons through
the conversion of nicotinamide adenine dinucleotide from
its reduced form (NADH) to its oxidized form (NAD+)
and of flavin adenine dinucleotide from its reduced form
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(FADH2) to its oxidized form (FAD+). Complex III passes
these electrons through coenzyme Q to cytochrome c.
Cytochrome c oxidase (complex IV), which contains two
heme groups and two copper atoms, then transfers four
electrons to one O2 molecule, resulting in the generation of
two H2O molecules. Complexes I, III, and IV also pump
protons from the mitochondrial matrix into the cristae.
Complex V utilizes these protons to generate adenosine tri-
phosphate (ATP) from adenosine diphosphate (ADP) and
inorganic phosphate [24]. O2·− is generated as a byproduct
during the transport of electrons to O2. Thus, impairment
of the functions of these complexes can thus result in abnor-
mal O2·− production, leading to OS.

Perinatal exposure of rats to As at concentrations that
decreased the activities of antioxidant enzymes also
resulted in inhibition of complex I, II, III, and IV activities
in the frontal cortex, hippocampus, and corpus striatum of
the pups [46]. This mechanism is known to be involved in
the neurotoxicity of As [53–55]. Another possible mecha-
nism of DNT is that exposure to As may decrease the

expression of genes encoding the components of com-
plexes I–V in the brain [56, 57].

Similar to the effects of As, perinatal exposure of rats to
manganese (Mn) also inhibits complex II activity in the
pup striatum, although, unlike the effects of As, complex I
activity is increased by Mn [58]. In this study, the rap pups
were intraperitoneally injected with Mn (5, 10, or 20mg/kg)
for five consecutive days [58]. In humans, oral ingestion of
Mn (about 1.8mg/kg) for 4 weeks caused muscle weaknesses
and psychological alterations [59]. The inhibitory effect of
Mn on complex II has been demonstrated to selectively occur
in mitochondria in the brain, but not the heart or liver, of rats
exposed to Mn [60]. However, the mechanism by which Mn
affects complex II remains to be elucidated.

The structure of mitochondria is dynamically regulated
by fission and fusion [61]. Dynamin-related protein 1
(Drp1) and mitofusin 1 and 2 (Mfn1 and Mfn2) play impor-
tant roles in mitochondrial fission and fusion, respectively.
Drp1 is recruited to the mitochondrial outer membrane,
where it oligomerizes and assembles a scission machinery

Table 1: Developmental neurotoxins targeting antioxidant enzymes.

Chemical Exposure, species
Toxicities on antioxidant enzymes in

the developing brain
Other findings in pups References

Pb

Pregnant rats were allowed access to
0.1% PbAc in drinking water ad

libitum from GD1 to PND21. Blood
and brain Pb concentrations in the
pups at PND28 were 5μg/dL and
7μg/g dry mass, respectively

Both SOD2 and GPx activities were
decreased in FC, HC, and CB on
PND28. Both SOD1 and CAT

activities were decreased in HC on
PND28

The concentrations of Se, Zn, Cu, and
Mn were decreased in FC, HC, and

CB on PND28
[25]

Pb

Pregnant rats were given access to
drinking water containing 0.2% PbAc

from GD5 to PND21. Brain Pb
concentrations at PND21 were

~20μg/g

Both SOD and GPx activities were
decreased in CB shortly after

exposure

Locomotor activities were impaired
on PD31-33. Purkinje cell densities

were decreased in PD33.
Coadministration of melatonin

alleviated the DNT of Pb

[26]

Pb
Pregnant rats were given access to

drinking water containing 0.2% PbAc
from GD6 to PND21

The activities of SOD1, CAT, GPX,
and XO were decreased in both HC
and CB on PND21, 28, 35, and 60

Calcium supplementation
ameliorated the DNT of Pb

[27]

Pb
Male rats, aged 4-5 weeks, were

injected IP with PbAc at 10–60mg/kg
once daily for 5 days

SOD activity was decreased in both
FC and HC shortly after exposure

Bax expression and neuronal
apoptosis were increased in FC and

HC shortly after exposure.
Coadministration of t-BHQ

(activator of Nrf2) suppressed the
DNT of Pb

[28]

MeHg

Pregnant mice were given access to
drinking water containing 5 ppm
MeHg (~400μg/kg/day) from

postmating to PND21

TrxR activity was decreased in both
the cerebrum and CB in male on

PND21. GPx activity was decreased
in the cerebrum in male on PND21

TrxR and GPx activities in the
cytoplasmic extract of CB were
increased in female on PND21

[36]

As
Pregnant rats were given access to
drinking water containing As
100 ppm from GD6 to PND21

The activities of SOD1, SOD2, CAT,
GPX, and GR were decreased in CC,
HC, and CB on PND21, PND28, and

3 months old

Lipid peroxidation and the
expression of caspase-3/9 mRNA

were increased in CC, HC, and CB on
PND21, PND28, and 3 months old

[45]

As
Pregnant rats were injected IP with
2–4mg/kg As once daily from GD6

to PND21

CAT activity was decreased in FC,
HC, and CS on PND22 and 45. SOD
activity was decreased in FC, HC, and

CS on PND22

Expression of Bax and caspase-3
proteins was increased in FC, HC,

and CS on PND22 and 45
[46]

GD: gestational day; PND: postnatal day; TrxR: thioredoxin reductase; GPX: glutathione peroxidase; SOD: superoxide dismutase; GR: glutathione reductase;
FC: frontal cortex; CC: cerebral cortex; HC: hippocampus; CB: cerebellum; CS: corpus striatum; IP: intraperitoneal.
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that enables organelle constriction and cleavage. Mfn1 and
Mfn2 are located at the mitochondrial outer membrane
and, together with optic atrophy 1 (Opa1) located in the
inner mitochondrial membrane, mediate the stepwise events
that result in mitochondrial fusion. Mitochondrial fission can

be triggered by various stimuli, including 1-methyl-4-phe-
nylpyridinium and isoniazid, which affect the mitochondrial
membrane potential [62, 63]. Aberrant stimulation of mito-
chondrial fission and fusion creates a deleterious cycle result-
ing in excessive ROS production [64].

Table 2: Developmental neurotoxins targeting mitochondria.

Chemical Exposure, species
Toxicities on mitochondria in the

developing brain
Other findings in pups References

As
Pregnant rats were injected IP with
2–4mg/kg As once daily from GD6

to PND21

Complex II and III activities were
decreased in FC, HC, and CS on
PND22 and 45. Complex I and IV
activities were decreased in FC, HC,

and CS on PND22

ROS and MMP were increased
and decreased, respectively, in
FC, HC, and CS on PND22 and

45

[46]

Mn
Pups were injected IP with MnCl2
(5–20mg/kg) once daily from

PND8 to PND12

Complex I and II activities were
increased and decreased,

respectively, in the striatum of the
pups on PND14

ROS and caspase activity were
increased in the striatum of the
pups on PND14. Abnormalities
in motor coordination were
observed at 3-5 weeks of age

[58]

Sevoflurane
Rats at PND7 were anesthetized

with 3% sevoflurane in 40% oxygen
for 4 h

The protein expression of Drp1 and
Mfn2 was increased and decreased,
respectively, in HC shortly after

exposure

Cleaved caspase-3, cytochrome c,
and apoptosis were increased in

HC shortly after exposure.
Abnormalities in spatial learning
and memory were observed at

PND30

[65]

General
anesthesia
(midazolam,
isoflurane, and
nitrous oxide)

Rats at PND7 were injected IP with
midazolam (9mg/kg) and then
exposed for 6 h to nitrous oxide
(75%), isoflurane (0.75%), and
oxygen (approximately 24%)

Expression and oligomerization of
Drp1 protein in mitochondria were
increased in subicular and thalamic

regions shortly after exposure

ROS and fission of mitochondria
in the subicular region were

increased shortly after exposure
[69]

GD: gestational day; PND: postnatal day; FC: frontal cortex; HC: hippocampus; CS: corpus striatum; MMP: mitochondrial membrane potential; IP:
intraperitoneal.

Table 3: Developmental neurotoxins targeting NADPH oxidase.

Chemical Exposure, species
Toxicities on NOX in the

developing brain
Other findings in pups References

Sevoflurane

Mouse pups at PND6 were
anesthetized with 3%

sevoflurane in 40% oxygen for
6 h

p22phox protein expression was
increased in the brain shortly after

exposure

ROS, cytochrome c, and cleaved caspase-
3 were increased in the brain shortly after
exposure. Abnormal freezing behavior
was observed at 11-13 weeks of age.
These toxicities were suppressed by
cotreatment with the NOX inhibitor

[78]

Sevoflurane

Mouse pups were
anesthetized with 3%

sevoflurane in 40% oxygen for
2 h daily from PND6 to PND8

NOX2 protein expression was
increased in FC and HC shortly after

exposure

Apoptosis was increased in the brain
shortly after exposure. Abnormal

freezing behavior and the impairments of
spatial learning and memory were
observed at 9-11 weeks of age

[77]

Ethanol
Pregnant mice at GD8 were
injected IP with ethanol

(12 g/kg)

The mRNA expressions of Duox2,
Noxa1, and Noxo1 were increased in

the brains on GD18

The mRNA expressions of Noxa1 and
p67phox were increased in the placenta

and liver, respectively, on GD18
[81]

Ethanol
Pregnant mice at GD9 were
injected IP with ethanol

(2.9 g/kg)

The mRNA expressions of Duox1,
Noxa1, Noxo1, p22phox, p67phox,

and Rac1 were increased in the brains
shortly after exposure

NOX activity, ROS generation, oxidative
DNA damage, and apoptosis were
increased in the brains shortly after
exposure. These toxicities were

suppressed by cotreatment with the NOX
inhibitor

[82]

GD: gestational day; PND: postnatal day; FC: frontal cortex; HC: hippocampus; IP: intraperitoneal.

4 Oxidative Medicine and Cellular Longevity



A number of exogenous chemicals have been shown to
modulate mitochondrial dynamics in the developing
rodent brain. Postnatal exposure of rodent pups to the
inhalation anesthetic sevoflurane increases and decreases
the expression of Drp1 and Mfn2, respectively, in the hip-
pocampus [65] and additionally increases the expression of
cyclophilin D, a factor that modulates the mitochondrial
permeability transition pore [66]. The concentration of
sevoflurane used in these rodent studies (3%), which did
not induce significant disturbances in ventilation, blood
oxygenation, or cerebrospinal fluid content in mice [67],
is similar to the minimum alveolar concentration of sevoflur-
ane used for anesthesia in children (2.0-3.3%) [68]. Postnatal
exposure of rat pups to general anesthesia, composed of mid-
azolam, isoflurane, and nitrous oxide, increases the expres-
sion and oligomerization of Drp1 at the mitochondria to
promote fission in the subicular region of the pup brain
[69] and additionally increases mitochondrial membrane
permeability [70]. The concentration of isoflurane used in
the rat study (0.75%) is similar to those that caused
isoflurane-induced neuroapoptosis in the neonatal rhesus
macaque brain (0.7-1.5%) [71]. These results suggest that
changes in mitochondrial membrane permeability may be
involved in the mechanism for the anesthesia-induced
enhancement of mitochondrial fission in the developing
brain. In addition to the in vivo studies, Mfn has been
reported to mediate neural differentiation from human
induced pluripotent stem cells, which are commonly used
for DNT evaluation in vitro [72, 73]. Several DTXs, including
tributyltin and 5-fluorouracil, have been reported to induce
degradation of Mfn protein and subsequently inhibit neural
differentiation [72, 74]. Thus, it would be useful to include
examination of mitochondrial dynamics in the evaluation
of DTXs in vivo and in vitro.

2.3. DTXs Targeting NOX. The NOX family of enzymes is
located on the plasma membrane and is an important source
of ROS, especially O2·− [75, 76]. The human NOX protein
family consists of seven homologs: NOX1, NOX2, NOX3,
NOX4, NOX5, DUOX1, and DUOX2. NOX1, NOX2, and
NOX3 interact with p22phox, a transmembrane protein,
and act as a scaffold and binding platform for the cytosolic
activators Noxo1, Noxa1, p47phox, p67phox, and Rac [75].
DUOX1 and DUOX2 require binding to Duoxa1 and
Duoxa2, respectively, to exert their activities.

Postnatal exposure of mouse pups to sevoflurane
increases the expression of NOX2 [77] and p22phox [78],
resulting in OS and apoptosis in the brains. Notably, these
experiments were performed with sevoflurane concentra-
tions (3%) comparable to those used for anesthesia in
children (2.0-3.3%) [68]. In the mouse experiments, the
effects were ameliorated by coadministration of the NOX
inhibitor apocynin [78] or curcumin [77], suggesting that
sevoflurane-induced OS in the developing brain is caused
by activation of NOX, at least in part [79]. Further work will
be needed to fully understand the mechanisms by which
sevoflurane activates NOX.

Exposure of the fetus to ethanol has a profound effect on
the developing brain; indeed, OS resulting from prenatal

exposure to ethanol is a key pathogenic factor in fetal alcohol
syndrome [80]. Prenatal exposure of mice to ethanol
increases brain expression of various NOX subunits, includ-
ing p22phox, Noxa1, Noxo1, p67phox, and Rac1 [81, 82].
In these studies, the pregnant mice were intraperitoneally
injected with ethanol at GD8 (12 g/kg) [81] or GD9
(2.9 g/kg) [82]. In primates, the majority of studies on fetal
alcohol syndrome utilize oral intubation of ethanol (0.3-
5.0 g/kg) once-weekly [83]. In vitro studies with the human
neuroblastoma cell line SH-SY5Y showed that ethanol
increases ROS production by inducing p47phox [84]. Of
note, dominant negative inhibition of Cdc42 suppressed the
induction of p47phox in SH-SY5Y cells, suggesting a poten-
tial role for Cdc42 in the effects of ethanol on NOX activity
in the brain [84]. Nevertheless, the exact mechanisms by
which ethanol exposure increases OS in the developing brain
remain to be fully elucidated.

3. Future Directions

Supraphysiological intracellular levels of ROS can be gener-
ated through a number of mechanisms, including alterations
in the balance between antioxidant and oxidant systems,
perturbation of mitochondrial dynamics, and activation of
NOX activity at the plasma membrane. As described here,
excessive ROS levels negatively affect crucial neuronal func-
tions in the developing brain that impact both neurodevelop-
mental and neurobehavioral pathways.

In this review, we mainly focused on studies that
employed rodent models to examine DNT related to OS. In
extrapolating the results to humans, however, it should be
noted that several relevant species differences exist, including
the structures and functions of the placenta [85, 86] and
brain [87, 88]. For example, human placenta is hemomono-
chorial and includes a single syncytiotrophoblast zone,
whereas mouse placenta is hemotrichorial and consists of a
trophoblast giant cell layer, spongiotrophoblast layer, and
labyrinthine layer [85]. Additionally, human placenta, but
not mouse placenta, contains an aromatase enabling the syn-
thesis of estrogen [86]. The major growth spurt of the brain
occurs at different stages in humans and rats, namely, at the
prenatal and postnatal stages, respectively [88]. Various
human testing platforms, such as placenta-on-a-chip and
the ex vivo placenta perfusion model, as well as brain micro-
physiological systems, have been developed to more precisely
assess DNT of chemicals in humans [15, 85, 89, 90]. The
difference of DNT between prenatal and postnatal exposure
in human should also be carefully examined [91].

The upstream and downstream events resulting in and
from abnormal ROS levels can be investigated in vitro using
neuronal cells that differentiated from embryonic stem cells
or induced pluripotent stem cells [72, 74, 92, 93]. Studies
using human neural stem cells, for example, have revealed
that rotenone, an inhibitor of mitochondrial complex I, acti-
vates the Nrf2 pathway in response to OS and that activation
of this pathway could be used as a readout to assess neurotox-
icity [94]. These experimental systems enable testing of the
major neurodevelopmental endpoints included in a DNT
testing battery [73].
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Alternative in vivo testing methods that employ fish,
which are commonly used to examine morphological and
behavioral effects, can be employed to assess DNT mediated
by OS [95–98]. In one example, developmental exposure of
zebrafish to endosulfan, a fat-soluble organochlorine pesti-
cide, caused morphological defects and abnormal behavior
that was suppressed by coexposure to vitamin E, a fat-
soluble antioxidant, suggesting that OS was a key event in
endosulfan neurotoxicity [99]. Several zebrafish behaviors
have also been used as alternative phenotypes of neurodeve-
lopmental disorders in humans [95, 100].

Neuroinflammation is closely related to OS and associ-
ated with neurodevelopmental disorders [101–104]. Supra-
physiological intracellular levels of ROS induce the
production of proinflammatory cytokines from astrocytes
and microglia [101, 104]. These cytokines activate NOX of
astrocytes and microglia, resulting in a vicious cycle of OS
and neuroinflammation [103, 105]. The neuroinflammation
may lead to neuronal apoptosis and alterations of homeo-
static levels of neurotransmitters [102, 104]. Neuroinflamma-
tion can be assessed in rodents [106], zebrafish [107], and
pluripotent stem cells [108].

Various omics technologies are powerful strategies to
identify adverse outcome pathways [109–114]. For exam-
ple, integration of cell-based high-throughput screening,
cell lysate microarray immunostaining, and transcriptome
analysis successfully identified OS as a key common
adverse outcome pathway in nanomaterial-induced fibrosis
and cancer [115]. In silico analysis also provides useful
information about the pharmacokinetics of chemicals that
cause OS [116] as well as their ability to induce ROS
[117, 118] and their quantitative structure-activity relation-
ships [119]. Integration of in silico, in vitro, and/or in vivo
studies will also facilitate prediction of the toxicities of OS-
related chemicals [120–123].

Integration of these approaches will not only enhance our
understanding of OS-related DNT and the relationship
between dysregulated OS and the pathogenesis of neurodeve-
lopmental disorders but also expand our ability to quickly
and accurately screen chemicals for their potential DNT
properties.
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