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Ample clinical case reports suggest a high incidence of cardiomyopathy in diabetes mellitus (DM). Recent evidence supports an
essential role of trehalose (TLS) in cardiomyocyte survival signaling. Our previous study found that prokineticin2 (PK2) was
involved in the process of diabetic cardiomyopathy (DCM). The present study examined the protective effects and mechanisms
of TLS on DM-induced cardiomyocyte injury in mice and H9c2 cardiomyocytes. C57BL/6J mice were intraperitoneally injected
with 50mg·kg-1·d-1 streptozotocin for five consecutive days to establish an experimental diabetic model and then administered
TLS (1mg·g-1·d-1, i.p.) for two days every 4 weeks and given 2% TLS in drinking water for 24 weeks. Echocardiography,
myocardial structure, apoptosis, pyroptosis, autophagy, and the PK2/PKR pathway were assessed. Cardiomyocytes exposed to
high glucose (HG) were treated with TLS in the absence or presence of the PK2 antagonist PKRA7, and proteins involved in
apoptosis, autophagy, and pyroptosis and the PK2/PKR pathways were evaluated using Western blot analysis. Diabetic mice
demonstrated metabolic disorder, abnormal myocardial zymograms, and aberrant myocardial systolic and diastolic function,
which were accompanied by pronounced apoptosis, pyroptosis, and dampened autophagy. TLS treatment relieved these effects.
PK2 and receptor expressions were downregulated in diabetic mice, and TLS nullified this effect. PKRA7 eliminated the impact
of TLS on cardiomyocytes. This evidence suggests that TLS rescues DM-induced myocardial function, pyroptosis, and apoptosis,
likely via the PK2/PKR pathway.

1. Introduction

The prevalence of diabetes mellitus (DM) in adults exceeds
10% in China, and European and American countries have
rates that are three times higher than that in China; DM
has become a major disease threatening human health [1,
2]. Diabetic cardiomyopathy (DCM) occurs due to persis-
tent abnormal blood glucose and lipid metabolism associ-
ated with DM and leads to myocardial fibrosis, ventricular
remodeling, and cardiac systolic and diastolic dysfunction,
which is one of the main causes of death in diabetic patients
[3]. The pathogenesis of DCM is relatively complicated, and
diabetic dyslipidemia [3], mitochondrial damage [4], oxida-
tive stress [5], myocardial fibrosis [6], apoptosis [7], pyrop-
tosis [8], and autophagy abnormalities [9] are involved in

the occurrence and development of DCM. Although existing
antihyperglycemic treatments alleviate the development of
DCM, the results did not meet expectations. The high prev-
alence rate and poor prognosis of DCM remain problems for
clinical medical staff [10, 11]. Therefore, studying the patho-
genesis of DCM and finding a prevention and treatment
strategy are extremely urgent needs.

Trehalose (TLS) is a nonreducing disaccharide com-
posed of two D-glucose units connected by glycosidic
bonds, and it is widely found in animal and plant microor-
ganisms. TLS is a metabolite of cells that resists adverse
environmental stress. TLS is extensively used in biomedi-
cine, food, cosmetics, agriculture, and other fields [12]. TLS
has antidrying, anticold, and antihigh temperature and
nonspecific protective effects in organisms [13]. TLS has
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attracted much recent attention because of their diverse array
of biological and pharmacological activities, including
enhancing autophagy, regulating glucose homeostasis, and
exerting anti-inflammatory and antiapoptotic effects [14].
Insulin resistance is a pathogenic factor of DCM, and TLS
may rescue insulin resistance-induced abnormal cardiac con-
tractions [15]. However, the effect of TLS on DCM remains
unknown.

Prokineticin2 (PK2), also known as human Bv8, is stati-
cally expressed in a variety of tissues, including the brain,
heart, and testicles. PK2 participates in biological processes
such as angiogenesis, hematopoiesis, immune response,
and circadian rhythm regulation via binding to two highly
homologous G protein-coupled receptors, prokineticin
receptor 1 (PKR1), and prokineticin receptor 2 (PKR2)
[16, 17]. PK2 and PKR play critical roles in cardiac homeo-
stasis under physiological and pathological conditions [18].
The expression of PK2 was inhibited in patients with heart
failure, and the levels of PKR1 may be suppressed, which
eventually damages the cardiac structure [19, 20]. PK2/
PKR1 signal transduction promotes the formation of cross-
capillary insulin channels and increases insulin sensitivity
[21]. The results from our study revealed that metformin
inhibited cardiomyocyte apoptosis by regulating PK2/PKR
pathway and ultimately restored the cardiac homeostasis of
DM [22]. Therefore, this research evaluated the effects and
possible mechanisms of TLS on DM-induced cardiomyocyte
apoptosis, pyroptosis, and changes in autophagy.

2. Methods

2.1. Experimental Animals. The Committee of Experimental
Animals of the Hubei University of Science and Technology
approved the experimental procedures, which followed the
National Institutes of Health (NIH) Guide for the Care
and Use of Laboratory Animals. Eighty SPF male C57BL/6J
mice (22± 2 g, 5-6 weeks old) were obtained from Pengyue
Experimental Animal Breeding Co., Ltd. and used in this
study. The mice were housed at a temperature of 22± 2°C
and a moisture content of 40% under a 12h light/dark cycle
with free access to food and water.

2.2. Induction of Experimental DM Mice. The mice were
adapted for one week before glucose challenge. Mice in the
DM and DM-TLS groups were given intraperitoneal injec-
tions of a streptozotocin (STZ, Sigma, Germany) solution
(50mg·kg-1·d-1) in sodium citrate buffer (pH4.5) for 5 con-
secutive days after a 12h of fasting, and mice in the control
and control-TLS groups were injected with the same volume
of sodium citrate buffer. After 7 days of intraperitoneal
injection, random blood glucose was determined via tail vein
blood sampling, and blood glucose levels ≥ 16.7mmol ·L−1
were considered a diabetic mouse model. Unmodeled mice
were discarded. Sixty mice were randomly divided into a
normal control group (control group, n = 15), DM model
group (DM group, n = 15), TLS control group (control-
TLS group, n = 15), and TLS treatment group (DM-TLS
group, n = 15). The control-TLS and DM-TLS groups
received intraperitoneal injections of a TLS solution

(1mg·g-1·d-1) for two consecutive days every 4 weeks and
2% TLS in drinking water for 24 weeks. The control and
DM groups were treated with an equal volume of saline.

2.3. Cell Culture and Treatment. Rat H9c2 cardiomyocytes
(purchased from the China Center for Type Culture Collec-
tion) were cultured in DMEM low-sugar medium supple-
mented with 10% FBS and a 1% penicillin-streptomycin
solution at 37°C and 5% CO2 in a humidified environment.
Cells were incubated with 33mM high glucose (HG) for
72 h with or without different concentrations of TLS (50,
100, and 150mmol·L-1). PKRA7 was added to petri dishes
to observe the effect of the PK2/PKR pathway.

2.4. MTT Assay. Succinate dehydrogenase in the mitochon-
dria of living cells reduces MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) to blue purple crystal
formazan, and the quantity of methylpyrazine produced is
directly proportional to the quantity of living cells. H9c2 car-
diomyocytes were exposed to HG medium in the absence or
presence of TLS for 72 h prior to assessments of cell viability.
The MTT assay was performed according to the manufac-
turer’s instructions.

2.5. Ad-GFP-LC3B Transfection. An adenovirus containing a
GFP-LC3B construct was provided by Beyotime Biotechnol-
ogy (Shanghai, China). Cells were transfected with GFP-
LC3B adenovirus for 24 h and then refreshed with new
medium. After 72h, cells were visualized for autophagy
using fluorescence microscopy and treated with normal or
HG in the absence or presence of TLS or the autophagy ago-
nist rapamycin.

2.6. General State Measurement. Blood glucose was mea-
sured at the end of 0, 4, 8, 12, 16, 20, and 24 weeks after
TLS intervention. Glucose tolerance was assessed before
the end of the experiment as previously described, with
minor modifications. Briefly, mice were fasted for at least
12 h and intraperitoneally injected with a 2 g·kg-1 glucose
solution [23]. Blood glucose was measured 0, 15, 30, 60,
and 120min after injection using a glucometer.

2.7. Echocardiographic Assessment. The cardiac structure
and function of mice under anesthesia (1% isoflurane) were
evaluated using M-mode echocardiography (Vevo®1100,
VisualSonics, Toronto, Canada). Hemodynamic parameters
were recorded from three consecutive cycles, such as the
heart rate (HR), left ventricular ejection fraction (LVEF), left
ventricular fractional shortening (LVFS), and the ratio of
early to late left ventricular diastolic filling (E/A ratio).

2.8. Morphological Assessment. Hearts were removed and
placed in 4% paraformaldehyde for 24 h before embedding
in paraffin and being sectioned. The myocardial sections
were stained with hematoxylin and eosin (HE) and Masson’s
trichrome and photographed under light microscopy at
×400 magnification. Approximately 1mm3 of left ventricular
tissue was fixed in 2.5% glutaraldehyde fixative for more
than 2h and postfixed with 1% osmium tetraoxide. These
tissues were embedded in an acetone-812 embedding agent,
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double-stained with uranyl acetate and lead citrate, and cut
into 60nm thick sections. The specimens were imaged using
transmission electron microscopy (HT7700, Hitachi, Tokyo,
Japan).

2.9. Measurement of the Biochemical Index. Aspartate trans-
aminase (AST), lactate dehydrogenase (LDH), creatine
kinase (CK), and creatine kinase-MB (CK-MB) and the
levels of total cholesterol (TC) and triglyceride (TG) in the

serum were measured using an automatic biochemical ana-
lyzer (Olympus, Tokyo, Japan).

2.10. Terminal Deoxynucleotidyl Transferase-Mediated
dUTP Nick End-Labelling (TUNEL) Assay. The apoptosis
assay was performed using a TUNEL kit (Roche Applied Sci-
ence, Indianapolis, USA) according to the manufacturer’s
instructions. After antigen repair, myocardial sections were
incubated with TdT and dUTP, and images were captured
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Figure 1: TLS effects blood glucose and body weight in diabetic mice. (a, b) Changes in blood glucose and weight in diabetic mice at
different time points. n = 10 per group. (c, d) Effect of TLS on glucose tolerance in the abdominal cavity of diabetic mice. n = 6 per
group. Means ± SD. ∗P < 0:05 compared to the control group, #P < 0:05 compared to the DM group.

Table 1: Effect of TLS on the organ weight coefficient of diabetic mice (�x ± SD, n = 10).

Parameter Control DM Control-TLS DM-TLS

BW(g) 30.48±1.24 17.68±1.88∗ 30.68±1.82 20.35±3.25∗#

HW(mg) 150.34±11.38 91.03±7.93∗ 148.81±10.30 86.16±17.62∗

HW/BW(mg/g) 4.94±0.36 5.20±0.70 4.85±0.20 4.23±0.45∗#

LW(mg) 167.93±12.15 139.84±11.52∗ 182.73±33.74 148.46±24.05∗

LW/BW (mg/g) 5.51±0.33 7.95±0.67∗ 5.96±1.07 7.41±1.49∗

Compared to the control group, ∗P < 0:05; compared to the DM group, #P < 0:05.
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Figure 2: Continued.
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Figure 2: Continued.
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using microscopy at ×400 magnification. The proportion of
TUNEL-positive cells was estimated using the following for-
mula: TUNEL positive cardiomyocytes/total number of car-
diomyocytes ×100%.

2.11. Western Blot Analysis. Fifty milligrams of myocardial
tissue was collected, and total protein was extracted from tis-
sue lysates. The protein concentration was determined using
the BCA method. Appropriate protein samples were sepa-
rated using SDS-PAGE electrophoresis, and the proteins
were transferred to PVDF membranes via electrical imprint-
ing transfer. Antibodies against cleaved caspase-3, Bax, Bcl-
2, light chain 3B (LC3B), Beclin-1 (1 : 1000, Cell Signaling
Technology, USA), PK2 (1 : 1000, Abcam, USA), PKR1,
PKR2 (1 : 2000, Santa Cruz Biotechnology, USA), GAPDH
(1 : 10000, Proteintech, USA), ubiquitin-binding protein
(p62) (1 : 500, Wanleibio, China), autophagy-related pro-
teins (Atg5), NALP3, caspase-1, IL-18, and IL-1β (1 : 1000,
Bioss, China) were incubated overnight at 4°C. Secondary
antibodies were added and incubated at room temperature
for 1 h. After ECL color development, Image Lab software
was used to determine the band absorbance value. GAPDH
expression was used as the loading control.

2.12. Statistical Analysis. The data are presented as the
means ± SD of replicated experiments. Analysis was per-
formed using t-test or one-way analysis of variance. Differ-
ences with P values < 0.05 were considered statistically
significant.

3. Results

3.1. TLS Improved the General Features. The body weight
(BW) and glucose levels of mice were observed after glucose
challenge. The levels of mice in each group were the same in
the initial stage, but STZ caused sustained hyperglycemia
and BW loss, which were significantly different than those
in normal mice. At the end of 24 weeks, TLS improved these

changes in diabetic mice, but it did not restore these changes
to normal levels (Figures 1(a) and 1(b)).

Heart weight (HW) and lung weight (LW) intuitively
reflect the level of cardiopulmonary function in mice and
have an indicative effect on heart failure. Compared to the
control group, the results showed that HW and LW were
much lower, and the ratio of heart-to-body weight (HW/
BW) and lung-to-body weight (LW/BW) was increased in
the DMgroup. TLS partially reversed these changes (Table 1).

Abnormal glucose tolerance is a marker of insulin resis-
tance and may be used as a flag to predict cardiovascular
complications in DM [24]. Impaired glucose tolerance was
observed in DM mice during intraperitoneal glucose
tolerance tests (Figure 1(c)). Plasma glucose concentrations
were increased at different times for 120min after glucose
injection in DM mice compared to control mice. Glucose
tolerance was slightly improved in the DM-TLS group
(Figure 1(c)). Taking the total area under the curve (AUC)
for blood glucose as the quantitative result of the intraperito-
neal glucose tolerance test, the AUC in the DM group had
obvious increment compared with that in the control group,
and TLS administration slightly reduced the AUC in DM
mice (Figure 1(d)).

3.2. TLS Inhibits DM-Induced Cardiac Function and
Structural Changes In Vivo. Echocardiographic assessment
revealed that DM caused a decrease in HR, LVEF, LVFS,
and the E/A ratio. Although TLS failed to alter cardiac
geometry and function in the control group, it partially elim-
inated DM-induced changes in echocardiographic indices
(Figures 2(a) and 2(b)).

HE staining showed disordered myocardial arrange-
ment, such as nuclear vacuolization, and a large myocardial
space was observed in the DM group. TLS ameliorated these
morphology changes in cardiac tissue (Figure 2(c)). To
further verify the effect of TLS on cardiac fibrosis in mice,
Masson trichromatic staining was performed. The results
showed that perivascular collagen was meaningfully increased
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Figure 2: TLS changes the cardiac function and structure in diabetic mice. (a) Representative echocardiography image. (b) Quantification of
echocardiography (n = 6 per group). (c) Representative image of HE staining (n = 5 per group). (d) Representative image of Masson
trichromatic staining (n = 5 per group). (e) Quantification of serum myocardial zymograms. (f) Quantification of blood lipid. n = 8-10
per group. The black arrows indicate myocardial rupture, white arrows indicate myocardial vacuole, and yellow arrows indicate
myocardial collagen deposition. Means ± SD. ∗P < 0:05 compared to the control group, #P < 0:05 compared to the DM group.
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Figure 3: Continued.
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in the DM group, and the collagen content of TLS-treated
mice was obviously lower than that of the DM group
(Figure 2(d)).

Myocardial enzymes, including LDH, AST, CK, and CK-
MB, are recognized markers of myocardial damage and
necrosis and were significantly elevated in the DM group
compared to the control group. TLS mitigated these alter-
ations. TG and TC levels were remarkably increased in
DM mice, and TLS treatment marginally reduced these
effects (Figures 2(e) and 2(f)).

3.3. TLS Inhibits DM-Induced Apoptosis and Pyroptosis In
Vivo. To measure whether STZ-induced cardiac dysfunction
occurred because of heart remodeling, we assessed cardiac
apoptosis and pyroptosis as well as their biomarkers. DM
group mice showed a higher number of apoptotic bodies
compared to the control group, and the number of apoptotic
cells decreased after TLS treatment (Figure 3(a)). The
pathological apoptosis marker cleaved caspase-3 and the
Bax-to-Bcl-2 ratio were increased in the DM group, and
TLS administration markedly normalized these changes
(Figures 3(b) and 3(c)). To demonstrate whether TLS influ-
enced NALP3-mediated pyroptosis in STZ-induced mice,
the expression of pyroptosis-related proteins was measured

using Western blot. STZ-induced pyroptosis presented as
an upregulation of NALP3, caspase-1, IL-18, and IL-1β,
which were notably reversed by TLS. TLS itself exerted little
effect on these pyroptosis markers (Figures 3(b) and 3(e)).

3.4. TLS Protects against DM-Induced Autophagy Reduction
In Vivo. Autophagy plays a key role in cardiomyocyte sur-
vival. As shown in Figure 4, broken dissolved myocardial
fibers, swollen mitochondria, and a decrease in autophago-
somes were observed in DM mice using transmission elec-
tron microscopy, and TLS effectively rescued these changes
induced by DM. Western blot analysis revealed that the
levels of autophagy protein markers, including Beclin-1
and Atg5 expression, and the LC3II/I ratio were notably
decreased, and p62 protein expression increased in the DM
group. TLS treatment marginally negated these effects. TLS
itself produced little effect.

3.5. TLS Improves the Expression of the PK2/PKR Signaling
Pathway in DM Mice. The protein expression levels of
PK2, PKR1, and PKR2 in the myocardium of the DM group
were markedly reduced compared with those of the control
group (Figure 5(a)). After TLS treatment, the protein expres-
sion levels of PK2, PKR1, and PKR2 were increased to the
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Figure 3: TLS reduces cardiac apoptosis and pyroptosis in diabetic mice. (a) Representative image of TUNEL staining and analysis of
positive cells. n = 3 per group. (b) Representative protein expression of Bax, Bcl-2, and cleaved caspase-3. (c) Quantification of Bax, Bcl-
2, and cleaved caspase-3 protein expression. (d) Representative protein expression of NALP3, caspase-1, IL-1β, and IL-18. (e)
Quantification of NALP3, caspase-1, IL-1β, and IL-18 protein expression. n = 4-6 per group. The values are presented as the means ± SD.
∗P < 0:05 compared to the control group, #P < 0:05 compared to the DM group.
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Figure 4: TLS activates autophagy in diabetic mice. (a) Representative transmission electron microscopy image. Red arrows mark
autophagosomes. (b) Representative protein expression of Beclin-1, LC3B, p62, and Atg5. (c) Quantification of Beclin-1, LC3B, p62, and
Atg5 protein expression. n = 4-6 per group. Means ± SD. ∗P < 0:05 compared to the control group, #P < 0:05 compared to the DM group.
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level of the control group (Figure 5(b)). These data suggest
that TLS had a beneficial effect on DM-evoked myocardial
injury via amelioration of the PK2/PKR pathway.

3.6. TLS Suppresses HG-Triggered H9c2 Cardiomyocyte
Injury. To demonstrate the protective effects of TLS in
HG-treated cardiomyocytes, H9c2 cardiomyocytes were
incubated with or without different concentrations of
TLS, and cell viability and markers of apoptosis and
pyroptosis were determined. The MTT assay indicated that
HG markedly decreased cell viability, and TLS rescued it
(Figure 6(a)). Consistent with the observations in vivo,
apoptosis-related proteins, such as the Bax/Bcl-2 ratio,
cleaved caspase-3, and pyroptosis-related proteins, includ-
ing NALP3, caspase-1, IL-18, and IL-1, were overtly
increased in H9c2 cardiomyocytes exposed to HG, and
TLS treatment alleviated these effects (Figures 6(b)–6(e)).

3.7. TLS Activates Autophagy in HG-Treated Cardiomyocytes.
Because TLS is an autophagy activator and autophagy par-
ticipates in the process of DM, autophagic vesicles and
autophagy-related proteins were monitored using GFP
fluorescence and Western blot, respectively. As shown in
Figures 7(a)–7(c), H9c2 cells exhibited a decrease in the
number of punctate GFP-LC3 structures after exposure
to HG. Beclin-1 and Atg5 expression and the LC3II/LC3I
ratio were remarkably downregulated, and p62 was
increased in HG-treated cardiomyocytes, the effects of
which were attenuated by TLS.

3.8. TLS Upregulates the PK2/PKR Signaling Pathway in HG-
Treated Cardiomyocytes. To verify the role of the PK2/PKR
pathway in TLS-induced cardiomyocytemechanical responses
to HG in vitro, Western blot was used to estimate the PK2/

PKR signaling pathway. PK2 and PKR were downregulated
in H9c2 cardiomyocytes after HG incubation, and TLS treat-
ment abrogated these effects (Figure 8).

3.9. A PK2 Antagonist Counteracts the Effects of TLS on
Cardiomyocyte Apoptosis and Pyroptosis. To further clarify
whether TLS played a positive role in hyperglycemia-
induced cardiomyocytes by activating the PK2/PKR sig-
naling pathway, cardiomyocytes were exposed to HG
with or without TLS and the PK2 inhibitor PKRA7.
PKRA7 markedly reversed the TLS-induced upregulation
of PK2/PKR expression (Figure 9(a)). PKRA7 partially or
completely abolished the impacts of TLS on apoptosis-
and pyroptosis-related protein expression (Figures 9(c) and
9(e)). PKRA7 failed to exert any effect on the changes in
TLS-induced autophagy (Figure 9(g)).

4. Discussion

The remarkable discovery from our present study was that
TLS administration alleviated DM-induced cardiac dys-
function, cardiomyocyte apoptosis, and pyroptosis by stim-
ulating the PK2/PKR pathway and increasing autophagy
(Figure 10). Although the clinical prevention of DCM
remains challenging, our research demonstrated that the
PK2/PKR pathway may be the target of TLS in the treat-
ment of DCM.

Glucose is the major impetus for the deterioration of
DCM. The present experiment established a diabetic mouse
model via the intraperitoneal injection of STZ (50mg·kg-1)
for 5 consecutive days. After STZ administration, the blood
glucose levels of DM mice were stable and high, which
revealed that the diabetic model was established and led
to long-term glucose metabolism disorder. TLS slightly
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Figure 5: TLS activates the cardiac PK2/PKR pathway in diabetic mice. (a) Representative protein expression of PK2, PKR1, and PKR2. (b)
Quantification of PK2, PKR1, and PKR2 protein expression. n = 4 per group. Means ± SD. ∗P < 0:05 compared to the control group,
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Figure 6: TLS suppresses HG-induced H9c2 cardiomyocyte injury. (a) Cell proliferation. (b) Representative protein expression of Bax, Bcl-
2, and cleaved caspase-3. (c) Representative protein expression of NALP3, caspase-1, IL-1β, and IL-18. (d) Quantification of Bax, Bcl-2, and
cleaved caspase-3 protein expression. (e) Quantification of NALP3, caspase-1, IL-1β, and IL-18 protein expression. GAPDH served as the
loading control. Means ± SD, n = 3 cultures per group. ∗P < 0:05 compared to the NG group, #P < 0:05 compared to the HG group.
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improved glucose metabolism, but it did not restore it to
normal values, which indicates that the mechanism of
TLS is different from conventional anti-diabetic drugs.

Therefore, the mechanism of action needs further clarifica-
tion. Continuous hyperglycemic challenge accelerated the
accumulation of TG and TC and impaired cardiac function,
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Figure 7: TLS activates autophagy in HG-treated cardiomyocytes. (a) Representative images of GFP-LC3B. (b) Representative protein
expression of Beclin-1, LC3B, p62, and Atg5. (c) Quantification of Beclin-1, LC3B, p62, and Atg5 protein expression. GAPDH served as
the loading control. Means ± SD, n = 3-4 cultures per group. ∗P < 0:05 compared to the NG group, #P < 0:05 compared to the HG group.
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which is a consistent pattern with our earlier reports [22].
Echocardiographic assessment quantifies the changes in
myocardial function and the process of myocardial remod-
eling, which has diagnostic and disease progression evalua-
tion significance for the occurrence of DCM [25]. Our
study noted pronounced cardiac dysfunction in mice with
long-lasting DM, which was partially or overtly reversed
by TLS intervention. HE, Masson trichromatic staining,
and the myocardial enzyme spectrum supported cardiac
injury during DM, and TLS attenuated these effects. Our
observations verified the protective effect of TLS on the
structure and function of DM mice.

Autophagy is the process of cell self-renewal and
removal of damaged organelles [26]. It widely exists in
organisms to protect cells from adverse external stimuli
and plays an irreplaceable role in the homeostasis of the
intracellular environment [27]. Abnormal autophagy (exces-
sive or insufficient) aggravates heart damage, and it is a key
step in the pathogenesis of DCM [28]. Atg5, Beclin-1, LC3B,
and p62 are markers of autophagy activation in biological
tissues. Atg5 and Atg12 form the Atg12-Atg5 conjugate
and exert a pivotal role in autophagy [29]. Beclin-1 contrib-
utes to invoking autophagy-related proteins to the isolation
membrane in the autophagy process [30], and LC3 converts
LC3I to autophagosome-bound LC3II, which is involved in
the formation and extension of autophagosomes. As a scaf-
fold protein, p62 combines with ubiquitinated substrates to

assist in the autophagy process [31]. As an autophagy
inducer, TLS induces autophagy via the promotion of LC3
entry into the autophagosome membrane through a
mTOR-independent pathway [32, 33]. Our research
observed suppressed autophagy in DM-challenged cardio-
myocytes, and TLS abolished this inhibition. This result is
supported by some experimental findings. (1) Electron
microscopy revealed pronouncedly lower levels of autopha-
gic lysosomes in DM mice, and TLS rescued this effect. (2)
HG incubation dramatically reduced autophagosome forma-
tion (GFP-LC3 puncta) in H9c2 cardiomyocytes, and TLS
significantly negated this effect. (3) Western blot analysis
indicated downregulation of Atg5, Beclin-1, and the LC3II/
LC3I ratio and upregulation of p62 in DM mice and H9c2
cardiomyocytes exposed to HG, and TLS restored these
changes.

Downregulation of autophagy triggers the accumulation
of broken organelles, which is followed by proapoptotic fac-
tors and ROS, and these changes accelerate cardiac dysfunc-
tion and the development of DCM [34]. Apoptosis is an
orderly gene-regulated process for spontaneous cell death,
and various apoptotic stimuli lead to high levels of cardio-
myocyte loss and fibrosis, which suggests that suppression
of cardiomyocyte apoptosis would restore cardiac function
[35]. The proapoptotic protein Bax and the antiapoptotic
protein Bcl-2 belong to the B-cell lymphoma/leukemia-2
protein family. A stable Bax/Bcl-2 heterologous dimer exerts
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Figure 8: TLS upregulates the PK2/PKR signaling pathway in HG-treated cardiomyocytes. (a) Representative protein expression of PK2,
PKR1, and PKR2. (b) Quantification of PK2, PKR1, and PKR2 protein expression. GAPDH served as the loading control. Means ± SD,
n = 3 cultures per group. ∗P < 0:05 compared to the NG group, #P < 0:05 compared to the HG group.
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an antiapoptotic effect and promotes cell survival and
growth [36]. Caspase-3 is a member of the cysteine protease
family, and it is the most critical apoptotic execution prote-
ase. Activated caspase-3 (cleaved caspase-3) cuts specific
substrates that affect DNA replication, transcription, and
repair [37]. Consistent with earlier reports [22, 38], long-
term HG triggered cardiomyocyte apoptosis in DM mice
and increased Bax/Bcl-2 ratio, and cleaved caspase-3 was

found in H9c2 cardiomyocytes or mice exposed to HG.
TLS inhibited these effects. Therefore, the protective effect
of TLS on cardiac injury may be related to the inhibition
of cardiomyocyte apoptosis.

New evidence suggests that autophagy regulates a new
type of inflammatory cell programmed death, pyroptosis,
by rectifying apoptosis [39]. The NALP3 inflammasome is
activated under endogenous or exogenous stimulation. The
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Figure 9: Inhibition of PK2/PKR suppresses the effect of TLS in vitro. (a, b) Representative protein expression and quantification of PK2/
PKR. (c, d) Representative protein expression and quantification of apoptosis. (e, f) Representative protein expression and quantification of
pyroptosis. (g, h) Representative protein expression and quantification of autophagy. GAPDH served as the loading control. Means ± SD,
n = 3 cultures per group. ∗P < 0:05 compared to the NG group, #P < 0:05 compared to the HG group, and &P < 0:05 compared to the
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NALP3 inflammasome triggers caspase-1, which mediates
cell swelling and the rupture of cell membranes, destruction
of cell membrane integrity, and the release of proinflamma-
tory contents in the cytoplasm. NALP3 also mediates stimu-
lation of the inflammatory amplification promoter IL-1β,
induces the synthesis of the chemokine cytokine IL-18, and
leads to the occurrence of intense inflammation. Therefore,
the inflammatory factors NALP3, caspase-1, IL-1β, and IL-
18 are key markers of the pyroptosis process [40]. Data from
our study showed that TLS effectively reversed the pyropto-
sis alterations of NALP3, caspase-1, IL-1β, and IL-18 in DM
mice and H9c2 cardiomyocytes exposed to HG. These
results indicated that restriction of pyroptosis by TLS con-
tributed to the inhibition of programmed cell death.

Recent studies showed that PK2/PKR played an impor-
tant role in the occurrence and development of cardiovascu-
lar diseases [21]. PKR1 gene-knockout mice showed
pathological changes, such as cardiac lipid deposition and
myocardial systolic and diastolic function damage, which
led to ventricular hypoplasia, ventricular septal defects, and
embryonic necrosis [41]. The overexpression of PKR1 inhib-
ited apoptosis to protect cardiomyocytes from hypoxia dam-
age [42] and promoted the proliferation of cardiac
progenitor cells [20]. PK2 reduced hypoxia/reoxygenation,
which induced damage to H9c2 cardiomyocytes via activa-
tion of downstream pathways [43]. Previous studies by our
research group found that PK2 ameliorated the myocardial

cell injury induced by HG and high palmitic acid [44]. Our
study showed that activation of the PK2/PKR pathway may
be a key mechanism for the cardioprotective role of TLS.
This hypothesis was supported by the results. (1) PK2,
PKR1, and PKR2 expression was remarkably decreased in
diabetic mice hearts and H9c2 cardiomyocytes exposed to
HG, and TLS reversed these effects. (2) The PK2 antagonist
PKRA7 effectively nullified TLS-induced beneficial responses,
such as changes in apoptosis and pyroptosis in the face of HG.
These findings support a likely role for the PK2/PKR signaling
cascade in the regulation of the TLS response to apoptosis and
pyroptosis when faced with glucose toxicity.

In summary, our study confirmed the therapeutic effects
of TLS rescue against glucose toxicity-induced myocardial
remodeling, fibrosis, cardiac dysfunction, apoptosis, and
pyroptosis. The mechanism may be related to the upregula-
tion of autophagy and activation of the PK2/PKR signaling
pathway. These results elucidate the role of TLS in DM-
induced cardiac abnormalities and lay the foundation for
the clinical application of TLS. The results provide a new
strategy for the prevention and treatment of DCM.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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