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Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative
damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative
diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More
recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses
the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant
regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities
targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas
plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of
cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional
clues on targeting therapy resistance of this most deadly form of skin cancer.

1. Introduction

Reactive oxygen species (ROS) are a consequence of imper-
fect aerobic metabolism. ROS are formed as a byproduct of
electron transfer reactions from enzymatic and nonenzy-
matic sources [1]. This review also uses the term ROS to
cover reactive nitrogen species (RNS) as many contain (reac-
tive) oxygen. Oxidative stress is caused by the increased ROS
or decrease in the activity of antioxidant systems in the cell.
Slightly or detrimentally higher ROS levels have been coined
oxidative eustress and oxidative distress, respectively [2].
The former relates to lower concentrations of ROS that
amplify physiological processes such as proliferation and
wound healing [3]. The latter covers exceedingly high levels
of oxidative stress-provoking damage and cell death. Oxida-
tive stress has been involved in several pathophysiological
conditions, including cancer, by damaging lipids, proteins,
and DNA [4–8]. ROS interaction with proteins impacts sev-
eral signaling pathways by oxidizing redox-reactive cysteine
and tyrosine residues within or nearby active sites [9, 10].
The effects of ROS vary from reversible to irreversible

depending on the ROS levels and antioxidant machinery
efficiency in the cells. Milder effects of protein modifications
are reversible and promote cellular signaling through a
change in protein activity [7]. For example, while irreversible
modification of cysteine residues in proteins can lead to per-
manent loss of protein function, reversible modification can
be protective from excessive ROS [5]. Adaption to ROS ele-
vation through protein modifications plays a prominent role
in ROS metabolism either by activating antioxidant path-
ways (e.g., Kelch-like ECH-associated protein 1 (KEAP1))
through cysteine residue modification or metabolic path-
ways (e.g., pyruvate kinase isoenzyme type M2 (PMK2))
[9]. Other reversible modifications, including glutathionyla-
tion, S-sulfonation, CoAlation, nitrosylation, and disulfides,
can modify proteins by protecting them from terminal oxi-
dation and alter their functions to adapt to oxidative stress
[5]. Subsequently, ROS-dependent signaling modulates the
activation of transcription factors such as NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B-cells) and
AP-1 (activator protein 1) [11–13]. Numerous mechanisms
through which melanoma cells limit ROS exposure have
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been described. For instance, NRF2 (nuclear factor erythroid
2–related factor 2) is the most ubiquitous transcription fac-
tor that regulates genes involved in antioxidant defense
[14]. Hypoxia and activation of oncogenes can induce
NRF2, with evidence that this response is mandatory for
melanoma development [15, 16]. Thus, the influence of
ROS on cellular process is complex and they have dual role
of pro- and antitumorigenic effects depending on their
regulation.

Based on the work done by several groups, melanoma is
a ROS-operated tumor [17]. The contribution of ROS to
melanoma therapy is multifaceted. In melanoma prevention
studies, antioxidants failed to show any beneficial effects. In
some instances, an increase in cancer development was even
observed under antioxidant supplementation [18, 19]. Many
studies have shown that increased oxidative stress results in
increased sensitivity of cells to therapy-induced cell death
[20]. Survival of cells under the burden of oxidative stress
depends on activating ROS scavenging pathways that are
not needed in normal cells, deducing that interference with
these antioxidant pathways or additional ROS burden may
selectively kill melanoma cells [20, 21]. Impressively, several
commonly used chemotherapeutic agents and physical
modalities effectively induce ROS as part of their mechanism
of action [21–23]. Conversely, ROS may also affect the out-
come of immunotherapy [24]. For instance, chimeric anti-
gen receptor (CAR) T cells are prone to hostile
inflammatory conditions [25]. Hence, appropriate combina-
torial approaches are essential to overcome therapy resis-
tance and achieve better efficacy in melanoma therapy.
This review discusses the origin and types of ROS. Further,
their signaling and damaging effects in melanoma initiation
and progression are described. Moreover, several physical
treatment modalities are summarized that contribute to local
ROS production and subsequent antimelanoma efficacy

2. ROS: Types, Sources, and Regulation

ROS are molecules and free radicals involved in the transfer
of electrons from reactive oxygen. There are various tools for
indirectly measuring ROS in cells and tissues while measur-
ing ROS directly is still deficient. A selection of ROS is
described hereafter, which are relevant in both physiology
and pathology, including cancer.

2.1. ROS Types. The primary production site of superoxide is
mitochondria (Figure 1). During the leakage of electrons at
several respiratory chain respiratory complexes, especially
complex I and III, molecular oxygen is reduced by one elec-
tron to produce superoxide anion (O2

-). O2
- is a moderately

reactive short-lived species that dismutates spontaneously or
by superoxide dismutases (SOD) (Figure 2) to H2O2 [26].
This type of ROS is generated by the autoxidation of various
small molecules such as dopamine, flavins, and hydroqui-
nones (Figure 3). It is produced nonenzymatically when
prosthetic groups or reduced coenzymes directly transfer a
single electron to oxygen. Enzymatically, NADPH oxidases
(NOXs) reside on the cell membrane of many cell types to
produce extracellular superoxide [27]. Superoxide releases

iron by targeting iron-sulfur (Fe-S) clusters or react with
nitric oxide (NO·) to form peroxynitrite (ONOO-) [26].
ONOO- is a strong oxidant that indiscriminately reacts with
DNA to generate double-stand breaks, oxidation of amino
acids in proteins and induces lipid peroxidation by reacting
with lipids.

Hydrogen peroxide (H2O2) plays a role as a second mes-
senger in several pathways [28] by oxidizing the thiol group
(-SH) on cysteine residues, resulting in the transduction of
extracellular and intracellular signals and control of the gene
expression [29]. Cysteine residues exist as thiolate anion
(Cys-S-) at physiological pH and are more susceptible to
oxidation compared with the protonated cysteine thiol
(Cys-SH) [9]. Reversible modifications like sulfenic species
are generated after enzyme-mediated oxidation of cysteine
residues by H2O2 and can be returned to reduced states by
the action of thioredoxin (TRX) and glutaredoxin reductases
(GRX) [30]. However, advanced oxidation to sulfinic acid
and irreversible oxidation to sulfonic acid results in perma-
nent damage of protein function [30]. Cells have profes-
sional enzymes directed to prevent the buildup of
intracellular H2O2, primarily peroxiredoxins (PRDXs) and
glutathione peroxidases (GPXs) [30]. To decrease O2

--medi-
ated ONOO- formation (Figure 2), SOD1 (located in the
cytoplasm and mitochondria) and SOD2 (located in the
mitochondrial matrix) convert O2

- generated by mitochon-
dria and NOXs into H2O2 [30]. H2O2 diffuses freely to other
sites in or outside the cell. When present in peroxisomes,
catalase (CAT) can react with H2O2 to form water and oxy-
gen. The endoplasmic reticulum is another primary source
of H2O2 that is generated by the combined action of protein
disulfide isomerase (PDI) and ER oxidoreductin 1 (Ero 1)
during the formation of disulfide bonds [31]. It is noticeable
that the concentration of H2O2 defines its role as a signaling
molecule (1-10 nM) regulating kinases and phosphatase-
driven pathways or causes oxidative stress (>100nM) [28].

Hydroxyl radicals (OH·) are the most reactive type of
ROS. It is generated in the Fenton reaction with H2O2
[32], instigating lipid peroxidation and commencing lipid
radicals and lipid peroxyl radicals [33]. These short-lived
radicals initiate lipid peroxidation by reacting with hydrogen
atoms of polyunsaturated fatty acids, which are highly reac-
tive because of the double bonds between carbon atoms in
those fatty acids. Lipid peroxidation and GPX4 regulate an
iron-dependent cell death known as ferroptosis, relevant to
normal and pathological processes [34]. Several other transi-
tion metal ions can also react with H2O2 to produce peroxyl
and alkoxyl radicals [32]. The reduction of Fe3+ to Fe2+ by
superoxide ion also leads to OH· under specific condi-
tions [35].

2.2. ROS Sources. There exist several sites inside a cell that
generates ROS. A large share of intracellular ROS is pro-
duced in the electron transport chain (ETC) [9]. ROS gener-
ated by the ETC into the mitochondria can be delivered into
the cytoplasm through the permeability transition pore
(PTP) [29]. The opening of PTP leads to a decrease in the
concentrations of ATP and Ca2+ to release cytochrome c
[36–38]. This fuels the collapse of the membrane potential
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of mitochondria and a sudden increase in ROS generation
by ETC [39]. It has been affirmed that this results in autoph-
agy and apoptosis or necrosis, depending upon the extent of
organelle damage. Hence, mitochondria are a major site for

ROS production, especially complexes I and III [40, 41]. In
addition to mitochondria, peroxisomes and the endoplasmic
reticulum produce ROS. Peroxisomes contain several H2O2
generating enzymes, and catalase (CAT) in this organelle
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Figure 1: ROS types and generation. H2O2 and O2
- are released by mitochondria into the cytosol. SODs convert O2

- in the cytosol to H2O2.
NADPH oxidases (NOXs) also generate O2

- in the cytosol. H2O2 is converted to H2O by GPXs and PRDXs. The reaction of ferrous or
cuprous ions with H2O2 forms OH· radicals, subsequently damaging lipids, proteins, and DNA. H2O2 affects signaling through
oxidations of protein thiols. Abbreviations: GPXs: glutathione peroxidases; PRDXs: peroxiredoxins; SODs: superoxide dismutases.
Created with http://biorender.com.
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Figure 2: ROS detoxification. The cell is equipped with defense mechanisms to scavenge ROS. Detoxification enzymes like CAT react with
H2O2 to catalyze the formation of H2O and O2. GPX and PRDX reduce H2O2. Abbreviations: CAT: catalase; GPX: glutathione peroxide;
PRDX: peroxiredoxins; GSSG: glutathione disulfide, oxidized; GSH: glutathione, reduced. Created with http://biorender.com.
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detoxifies several substrates and toxic molecules (Figure 2).
Other ROS-generating enzymes include xanthine oxidase,
α-ketoglutarate dehydrogenase complex, and NOXs [42].
Apart from phagocytes, NOXs are also found in nonphago-
cytic cells that regulate cellular growth responses [42]. It has
been noticed that ROS produced by NOXs enhances mela-
noma cell proliferation through activation of NF-κB [43].
The oxidase components are expressed by both melanoma
cells and melanocytes [43]. In primary and metastatic mela-
noma cells, higher levels of NOX and oxidative have been
found compared to normal human melanocytes [44].
ONOO-, a species generated by the interaction of NO· with
NOX-generated O2

-, is highly reactive toward redox-
sensitive amino acid residues, including cysteine and tyro-
sine [42]. Enzymes like NO· synthases (NOS), xanthine oxi-
doreductase, and cytochrome c oxidase can be involved in
NO· production [45].

2.3. ROS Regulation. To prevent ROS overload in the cytosol
and ER, cells have antioxidant defense mechanisms in place
tightly regulating ROS levels and maintaining the reduced
state of critical biomolecules (Figure 4). Reduced glutathione
(GSH) is the prolific reducing agent in the cytosol and ER,
though the ratio of reduced to oxidized (GSSG) glutathione
(GSH: GSSG) varies in these two compartments [46]. GSH
diffuses from the production site to distant sites by passing

through the membranes and plays a prominent role in the
ROS detoxification in cancer cells [47]. GSH is a glutamate,
glycine, and cysteine tripeptide, synthesized by two enzy-
matic steps catalyzed by glutamate-cysteine ligase (GCLC)
and GSH synthetase (GSS) to from the tripeptide. GSH is
used by GSH peroxidases (GPXs) and GSH S-transferases
(GSTs) for the elimination of ROS [48]. In addition to
GSH-dependent antioxidant systems, there is another less
abundant small protein antioxidant system consisting of
PRDXs, having a high catalytic activity toward H2O2 and
being rejuvenated by thioredoxin (TXN) and sulfaredoxin
(SRX) networks [49]. The oxidized forms of TXN and
GSH are rejuvenated by TNX reductases [50] and GSH
reductases (GR), respectively, using NADPH as an electron
donor [51]. Oxidative stress develops when the production
of ROS outpaces the scavenging ability of the cellular defense
system made up of redox enzymes and several other antiox-
idant molecules [52]. Oxidative stress promotes the expres-
sion of enzymes involved in TXN and GSH systems,
implying that they work in accord to buffer the stress
induced by ROS molecules [53]. TXN is less significant as
an antioxidant due to its lower concentration in cells (μM
compared to mM range of GSH), controlling the redox state
of specific factors by performing rapid oxidation-reduction
reactions kinases and transcription factors [53]. In addition,
GSH can reverse modifications such as sulfenylation
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Figure 3: Sources of cellular ROS production. Prominently, melanosomes, mitochondria, and NOXs and NOS uncoupling generate ROS.
Primarily, NOXs are localized in the plasma membrane, although they can be found on other membranes as well, including the
endoplasmic reticulum and mitochondria. Cytosolic enzymes such as XO, XDH, and soluble components like flavin contribute to
intracellular ROS production. Oxidative protein folding by ERO1 and enzymes like CYP in the endoplasmic reticulum and lipoxygenase
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too. Abbreviations: XO: xanthine oxidase; XDH: xanthine dehydrogenase; ERO1: endoplasmic reticulum oxidoreductin; CYP:
cytochrome P450-dependent monooxygenases; DAO: D-amino oxidase; ACOX: acyl-CoA oxidase. Created with http://biorender.com.

4 Oxidative Medicine and Cellular Longevity

http://biorender.com


mediated by ROS. In summary, several ROS sources affect
redox targets and are additionally controlled by ROS sinks,
while melanoma cells showed altered expression among all
those steps (Figure 5).

3. Pleiotropic Roles of ROS in
Melanoma Biology

Melanocytes are sensitive to oxidative stress induced by an
imbalance of ROS. In normal melanocytes, melanin acts as
an antioxidant and suppresses H2O2, O2

-, and singlet oxygen
[54]. However, melanogenesis in melanoma cells itself is a
source of ROS and oxidative stress [55]. O2

- and diffusible
H2O2 produced by the mitochondria and NOXs play an

important role in melanocyte malignant transformation
[27]. Such Oxidative stress can cause an imbalance of
homeostasis in melanocytes, jeopardizing their survival or
leading to malignant transformation. In melanoma, NOX4
is highly expressed as compared to the low levels in melano-
cytes [56]. Overexpression of NOX1, uncoupled eNOS, and
NOX4 produced ROS in melanoma, linked to the
epithelial-mesenchymal transition [56, 57]. Uncoupled
eNOS contributes to superoxide production during malig-
nant transformation [57]. NOS-dependent superoxide for-
mation has a prominent role in melanoma genesis [57].
Furthermore, these data show that superoxide production
by eNOS plays a prominent role in melanoma cells’ survival
and melanocyte malignant transformation. In addition to

Endogenous generation Exogenous generation

O2
-, OH ; H2O2 and other reactive species

ROS levels

Physiological level Non -Physiological levelModerate level

Reversible oxidative
modifications
Redox regulation

Reversible signallimg

Disruption of redox 
equilibrium
Oxidative damage to 
biomoleculesHormesis

Stress resistance andad
adaptive responce

Figure 4: Cellular responses to endogenous and exogenous ROS. The response gradient will vary with the cell type, the location of ROS
source inside the cells, and the activity of detoxifying enzymes. Blue and red colors represent predominantly beneficial or deleterious
responses to ROS levels. Created with http://biorender.com.
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transcription factors regulate stress adaptation (including antioxidant response), inflammatory response, hypoxic response, metabolic
adaptation, and cell death. Abbreviations: SODs: superoxide dismutases.
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that, melanoma cells require NADPH generating enzymes to
promote distant metastasis. H2O2, O2

-, and singlet oxygen are
involved in various stages of melanomagenesis and tumor
microenvironment (TME) quality, including hypoxia, meta-
bolic profiles, immune responses, biosynthesis of melanin,
metastasis, and oxidative profiles. ROS increases the toxicity
of RNS dramatically begins melanomagenesis that attributes
to the leakage of melanosome contents. Several findings sug-
gested that worsen oxidative stress leads to the mutation in
several melanoma-associated genes. For example, the somatic
BRAF V600E mutation in melanoma can be induced by oxi-
dative stress [58] and loss of p16 results in elevated ROS and
mitochondrial biogenesis of humanmelanocytes [59]. In addi-
tion, melanoma progression is associated with depletion of
PTEN and the resulting increase in O2

- [60]. Hence, oxidative
stress is a driver of melanomagenesis.

3.1. Antioxidant Network. The role of antioxidant systems is
dual in melanoma initiation, progression, and metastasis.
The misbalanced activation of the antioxidant transcription
factor NRF2 leads to the promotion of melanoma [61]. This
transcription factor is entangled in transcribing several GSH
and TXN antioxidant pathways genes under various physio-
logical and pathophysiological conditions [62]. In basal con-
ditions, the level of NRF2 is under control by its association
with KEAP1, which promotes its degradation via the
ubiquitin-proteasome pathway. Increased ROS levels lead
to oxidative stress modifications of cysteine residues of
KEAP1, leading to flawed NRF2 ubiquitination and NRF2
accumulation [61]. Several mechanisms exist for NRF2 accu-
mulation, such as mutations in the KEAP1 and NRF2 genes,
carcinogen-induced DNA damage, and inactivation of
KEAP1 due to methylation of its promoter [63]. The role
of NRF2 is convoluted and tissue dependent. Loss of NRF2
bolsters epithelial-mesenchymal transition through ROS to
promote migration and invasion to support invasion and
diapedesis of cancer cells [64, 65]. In contrast, NRF2 can
uphold migration and invasion through the BACH1 (BTB
domain and CNC homolog 1) transcription factor [66].
Therefore, the role of ROS and NRF2 is complex at different
tumor stages. Other agents involved in antioxidant defense
and H2O2 removal include GPXs, PRDXs, and CAT [12].
The antioxidant capacity of melanoma differs from normal
melanocytes and that of other skin cancers. The expression
and activity of the antioxidant enzymes catalases, Mn-
SOD2, and Cu/Zn-SOD1 are higher in melanoma than in
basal cell carcinoma and squamous cell carcinoma [67]. This
explains that increased oxidative stress is an important
marker in melanoma development. Furthermore, the GSH:
GSSG ratio is also higher in melanoma compared with the
other skin tumors. This suggests that in melanoma, the
increased levels of GSH can readily scavenge ROS and that
the subsequently formed GSSH is efficiently reduced to
GSH. Collectively, these data imply that melanoma has a
better antioxidant status than other skin tumors. The
increased resistance of melanoma cells to oxidative stress is
not observed in melanocytes [68], suggesting that acquiring
an elevated antioxidant network is critical for melanoma
development. In primary melanoma, Mn-SOD2, Cu/Zn-

SOD1, and CAT expression are elevated compared with nor-
mal skin and melanocytic nevi [67]. In addition, melanoma
metastases show improved resistance to oxidative stress
and display high levels of ferritin expression compared with
their corresponding primary melanomas [69]. Ferritin binds
to and prevents iron from being reduced in the Fenton reac-
tion, thereby averting OH·-induced lipid peroxidation and
apoptosis [69]. Summative, these findings indicate that pri-
mary and metastatic melanomas are highly resistant to oxi-
dative stress through the increased activity of several
antioxidative mechanisms. In other words, inhibition of
ROS by antioxidants does not have a predictable outcome
on cell function since the role of ROS changes under differ-
ing environmental conditions. For future aspects, it will be
essential to identify specific molecular targets of ROS under
different conditions to modulate pathways downstream of
ROS that increase adaptation to stress to increase therapeu-
tic efficacy.

3.2. Apoptosis. In response to ROS, melanoma cells can, in
principal, succumb to regulated cell death. However, in
approximately half of the sporadic melanomas, Protein
kinase B, also known as AKT, is hyperactivated because of
gene amplification and decreased PTEN (phosphatase and
tensin homolog) activity [70]. Activated AKT can subse-
quently phosphorylate and thereby inhibit the activity of
the proapoptotic factors BAD (Bcl-xL/Bcl-2-associated
death promoter), caspase (cysteinyl-aspartate specific prote-
ase) 9, forkhead transcription factor, GSK3 (glycogen syn-
thase kinase-3), and IKK (inhibitor of NF-κB). AKT
stabilizes cells with extensive mitochondrial damage, which
can generate surplus ROS [60]. Furthermore, AKT induces
the expression of the ROS-generating enzyme NOX4 in mel-
anoma cells and growth melanoma cells in mice [60]. In
addition, the RAS/BRAF/MEK/ERK mitogen-activated pro-
tein kinase pathway is constitutively activated in melanoma
via an activating mutation in BRAF or autocrine growth fac-
tor stimulation [71] and is a crucial modulator of melanoma
initiation and progression [72]. Mitogen-activated protein
kinases regulate ROS production by melanoma cells and
cooperate with antiapoptotic proteins to maintain mela-
noma cell viability [73]. ROS constitutively activate NF-κB
[74], a transcription factor critically involved in cell survival
[75]. The activation of NF-κB has been proposed as an event
that promotes melanoma tumor progression [76]. Tran-
scription activation of NF-κB-regulated chemokines
enhances melanoma progression through autocrine and
paracrine loops, resulting in autonomous growth and inva-
sion of melanoma cells [77]. Furthermore, ROS can activate
AP-1 [78], a transcription factor critically involved in RAS-
induced oncogenic transformation [79]. Furthermore, ROS
regulate the expression of matrix metalloproteinase
(MMP)1, MMP2, and urokinase plasminogen activator
(uPA) [80, 81]. These proteinases are highly expressed in
melanoma [82] and contribute to their migratory capacity.
Recently, ROS-induced apoptosis of melanoma cells was
shown to contribute to vasculogenic mimicry [83]. This pro-
cess mimics the activity of endothelial cells and results in the
formation of a fluid-conducting, matrix-rich meshwork [84]
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that contributes to melanoma progression [85, 86]. As such,
the proapoptotic activity of ROS contributes to melanoma
progression. ROS’ proapoptotic and antiapoptotic effects in
melanoma cells appear to be a driving force of melanoma
development.

3.3. Hypoxia. The role of mitochondrial ROS in apoptosis
and hypoxia-induced gene transcription has been elucidated
recently [15]. The well-established role of mitochondrial
ROS for the stabilization of hypoxia-inducible transcription
factors (HIFs) under hypoxia leads to angiogenesis through
the upregulation of vascular endothelial growth factor
(VEGF) expression [87]. The epidermal component of nor-
mal skin in which melanocytes reside is a mildly hypoxic
environment, predicted due to the distance between the skin
and superficial blood vessels [88]. To counteract the adverse
effects of low oxygen levels, HIFs activate gene expression
regulating multiple biological processes, including metabo-
lism, proliferation, apoptosis, and migration [89]. HIF-1 reg-
ulates most of the hypoxia-responsive genes [90]. The
transcription factor consists of a constitutively expressed β-
subunit and an oxygen-monitored α-subunit. Hence, HIF-1
is the master activator for dozens of target genes transcribed
by cells in response to low oxygen concentrations [91]. HIF-
1 activation is also required for the AKT-mediated transfor-
mation of melanocytes, hence regulating apoptosis [88].

Studies have identified increased HIF-1 expression and
activity in melanoma under normoxia mediated by ROS
and NF-κB [92, 93]. Under normoxic conditions in nonma-
lignant cells, HIF-1 is rapidly degraded by the ubiquitin-
proteasome system, and it is upregulated in a hypoxic micro-
environment [94]. However, it has been recently reported
that HIF-1 can be upregulated under normoxia in response
to growth factors, hormones, cytokines, UV irradiation,
and metal ions [95–97]. In addition, several HIF target genes
are strongly expressed in melanoma already under normoxic
conditions, and elevated HIF-1 activity was found in mela-
noma cell lines under normoxic conditions in contrast to
other types of tumors. Immunohistochemistry of malignant
melanoma showed focal expression of HIF-1 in cancer tissue
independent of regional hypoxia [15, 89]. Furthermore, sev-
eral studies have demonstrated that part of the normoxic
expression of VEGF and AngPTL4 depended on HIF-1
[98]. Interestingly, incubation of melanoma cells under
reduced oxygen tension did not lead to a more substantial
upregulation otherwise found in nonmelanoma cells, sup-
porting the high basal expression of HIF-1 under normoxia
[98, 99].

Melanocytes are more prone to oncogenic transforma-
tion when grown in a hypoxic environment. The cells’ pri-
mary function is delivering melanin in melanosomes to
keratinocytes resulting in protection against the harmful
effects of UV radiation [88]. Within the melanocytes, the
synthesis of melanin results in the generation of H2O2 and,
if inappropriately processed, OH· and other ROS [73]. In
particular, melanosomes within melanoma cells are charac-
teristically abnormal, with fragmented melanin and dis-
rupted membranes. The disruption of melanosomal
melanin is an early event in the etiology and progression of

melanoma, leading to increased oxidative stress, ROS pro-
duction, and DNA mutation [4, 6, 83]. Several studies
revealed that such ROS are responsible for the increased
HIF activity under normoxia in melanoma. The activity
and protein level of HIF are strictly controlled by the
quenching of ROS or inducing reagents. The crucial redox-
sensitive transcription factors in mammalian cells are NF-
κB, NRF2, and AP-1 [74, 76]. ROS can activate the tran-
scription factor NF-κB that is constitutively activated in mel-
anoma cells [74, 76]. NF-κB, in turn, can induce HIF-1
expression and NF-κB-HIF-1 interaction contributes to
breast cancer metastatic capacity [88, 100]. Studies con-
firmed the regulation of NF-κB through ROS in malignant
melanoma and showed that the inhibition of NF-κB by the
adenoviral overexpression of the IKK led to the attenuation
of the HIF activity [101]. These data support the concept
of transcriptional regulation of HIF-1 by NF-κB under nor-
moxic conditions.

Besides the described ROS-dependent regulation, HIF-1
is translationally regulated by the mammalian target of rap-
amycin (mTOR). The mechanism of regulation of HIF by
mTOR is poorly understood. It appears that under hypoxia,
mTOR is inactivated, which led to the conclusion that
mTOR signaling to HIF is oxygen independently regulated
[102]. Under severe hypoxia, no influence of mTOR inhibi-
tors was observed; thus, the stimulation of HIF-1 by mTOR
is relevant under mild hypoxia or even normoxia only [102].
Several studies confirmed this hypothesis, as rapamycin
reduced the HIF activity and protein expression under nor-
moxia. One study showed that rapamycin, in contrast to
ROS and NF-κB, does not influence HIF-1 mRNA expres-
sion, suggesting posttranscriptional regulation. Recently,
Aprelikova and colleagues described a novel role for the
cancer-testis antigen melanoma antigen-11 (MAGE11) as
an inhibitor of prolyl hydroxylase (PHD2) in hypoxic
responses [103]. Strong expression of MAGE-11 has been
seen in different melanoma cell lines, which led to HIF stabi-
lization under normoxia [104]. The finding that the regula-
tion of protein abundance and the transcriptional
regulatory network is crucial in controlling HIF-1 levels in
melanoma and other tumor types opens new therapeutic
options in modulating HIF-1 activity.

3.4. Melanin Biosynthesis. Exposure to UV is suggested to be
a significant risk factor for developing melanoma, especially
during childhood [105, 106]. However, this only refers to the
sun-induced type of melanoma and not other types of mela-
noma that were never exposed to the sun [107]. About 90%-
95% of the solar UV radiation that reaches the earth is UVA.
Due to its high penetration capacity, UVA can irradiate
melanocytes even through clothes and windows [106]. In
response to the direct mutagenic effect of UV radiation, mel-
anin synthesis by melanocytes is induced. Although melanin
is initially necessary for protection from UV, it can turn into
a prooxidant under oxidative stress because of inflamma-
tion, UV exposure, or higher metabolic processes, thus reg-
ulating epidermal homeostasis and affecting melanoma
behavior [108]. UV-induced melanin biosynthesis results
in an increased cellular concentration of its reactive
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precursors. The initial reaction in melanin formation is the
enzymatic oxidation of L-tyrosine to dopaquinone [109].
This reactive precursor is either converted into monomers
that polymerize into black/brown eumelanin or reacts with
a -SH group of cysteine to form 5-S-cysteinyldopa, ulti-
mately forming the basic monomers for red/light brown
phaeomelanin. Cysteine is a necessary amino acid for phaeo-
melanin production, even though it is also a part of the GSH
molecule, which acts as a part of the defense system against
intracellular ROS [110]. When cysteine is used for increased
UV-induced production of phaeomelanin, less GSH is pro-
duced, and oxidative stress may be more likely. Oxidative
stress, in turn, releases iron from its intracellular storages
into the cytosol of mammalian cells [111]. In the presence
of large amounts of iron, which is frequently observed in
melanoma and its precursor stages but not in normal mela-
nocytes [110], phaeomelanin and 5-S-cysteinyldopa become
prooxidants [110]. Oxidized melanin reacts with O2 to form
H2O2, O2

-, and other radicals [104] and adversely affects
ROS homeostasis. During the biosynthesis of phaeomelanin,
5-S-cysteinyldopa can disturb redox homeostasis directly
through its ROS production in the presence of iron and indi-
rectly through depletion of the GSH antioxidant buffer sys-
tem. Their independent actions or dependent interaction
play a role in UV-dependent or -independent melanoma-
genesis and progression and in drug resistance, as melano-
cytes and melanoma have higher ROS levels that seem to
coevolve with enhanced antioxidant defense systems [112].
Thus, melanin and melanogenesis play a dual role in mela-
noma. They protect the melanocytes against insults, such
as oxidative stress and UV radiation, but accelerate mela-
noma progression and weaken the effects of chemotherapy
and radiation therapy [109, 113].

3.5. Metabolic Profile. Tumor cells are metabolically hyper-
active, so it requires high ATP levels to enable cell prolifera-
tion. In melanoma, ATP is predominantly generated
through aerobic glycolytic metabolic pathways and lactic
acid production, which leads to several advantages for mela-
noma cells [114]. This includes, for instance, higher prolifer-
ation of tumor stem cell populations, increased hypoxia,
elevated M2 macrophage polarization, lower intratumoral
T cell activation, additional NADPH for ROS detoxification,
and metastasis via MMP production. An in-depth analysis of
adaptive redox homeostasis in melanoma and energy metab-
olism has been provided recently [115, 116], and the reader
is referred to these and complementing views on oxidative
phosphorylation [117].

3.6. Metastasis. Over the recent years, it has become evident
that early inflammatory and angiogenic response and
remodeling of the extracellular proteins are key factors
(i.e., type I collagen) in creating a microenvironment that
sustains tumor growth and metastasis [118]. Metastasis is a
hallmark of most malignant tumors and the primary cause
of mortality and morbidity in patients with melanoma
[119]. The entry of tumor cells into the circulation is the
critical rate-limiting step in metastasis that requires MMP
expression [119], uroplasminogen activation, epidermal

growth factor receptor-driven polarity changes and migra-
tion, interaction with integrins [120], and other mechanisms
all tightly linked to ROS. The cytoplasmic TRX is a ubiqui-
tous thiol-reducing system implicated in cancer progression
of melanoma [121]. TRX can be bound by the endogenous
inhibitor thioredoxin-interacting protein (TXNIP), which
negatively regulates TRX [121]. Importantly, inhibition of
TRX activity promotes the transendothelial migration
(TEM) of melanoma cells in vitro through endothelial injury
and the loss of VE–cadherin-mediated endothelial cell-cell
adhesion [122]. Overexpression of TRX inhibits both the
baseline and ROS-induced TEM. Therefore, ROS enhance
the TEM of melanoma cells during intravasation, and XNIP
and inhibition of TRX activity could trigger this mechanism.
It has also been observed that hypoxia in melanoma xeno-
grafts induces a higher metastatic frequency by increasing
the expression of hypoxia-inducible genes promoting metas-
tasis in a radiated transplant animal melanoma model [122].
However, the regulation of intravasation in vivo is not sim-
ply a matter of high or low intracellular concentrations of
ROS. It requires the coordinate expression and activity of,
for example, IL-8-mediated chemotaxis and CD9 and the
integrin-mediated adhesion of melanoma cells to vascular
endothelial cells [122]. The expression of the genes that pro-
mote melanoma metastasis is upregulated after subcurative
melanoma irradiation [122]. Intriguingly, antioxidant sup-
plementation in vivo was observed to spur rather than
inhibit melanoma metastasis in mice inoculated with mela-
noma cells individually isolated from patients [123]. The
authors found that blood and viscera are especially imping-
ing strong oxidative stress in melanoma cells, forming a nat-
ural barrier against cancer metastasis. Antioxidants
hampered this barrier and thus allow melanoma cells that
had migrated to the circulation to survive better, subse-
quently forming more metastasis. These results were re-
iterated in a parallel in vivo study using the antioxidant N-
acetyl-cysteine (NAC) [124].

3.7. ROS and Different Cell Types in the Tumor
Microenvironment. The production of ROS by tumor cells
plays a prominent role in driving tumorigenesis by shaping
the tumor microenvironment (TME) [125, 126]. In addition,
ROS generated by nontumor cells infiltrating the TME col-
lectively decide the overall oxidative state of local TME.
The TME consists of cancer cells, stromal cells, and immune
cells. Immune cells infiltrate the environment of cutaneous
melanoma during its early onset and throughout tumor
development [127]. During inflammation, the migration of
myeloid cells such as neutrophils, monocytes, eosinophils,
and tissue-resident macrophages, dendritic cells, and mast
cells play a role in cancer development [128].

Macrophages are of central importance in melanoma
initiation and progression, especially tumor-associated mac-
rophages (TAM) [129]. These cells fuel tumor growth by
creating an immunosuppressive micro milieu via the pro-
duction of chemokines, cytokines, and other mediators.
Intriguingly, TAM polarization in the TME is associated
with ROS and oxidative stress [130]. TAM, in turn, autoam-
plify ROS production via aberrant activation of NOX and
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NOS. The released species react to form ONOO-, a muta-
genic agent that inhibits T cell activity [131]. This will affect
cells nearby, their integrity, and the composition of the
TME, such as matrix remodeling and angiogenesis [132].
In addition, this exerts selective pressure on the development
of genetically adapted tumor cells with high resistance to
oxidative stress pressure, affecting melanoma therapy
[128]. It is also well established that ROS leads to metabolic
reprogramming of different cell types in the TME [133, 134].

ROS-mediated metabolic reprogramming also changes
the energy requirements of T cells in the TME [135, 136].
Effector T cells (Teff) are less oxidative and have more met-
abolic activity than naive T cells (Tn). Naive T cells keep in
check the ROS levels by persistently synthesizing antioxidant
molecules to avoid excessive ROS, which otherwise would
initiate cell death and introduce a constant prooxidative
state in cancer cells [20, 137]. Activation of T cells is escorted
by increases in glucose uptake and mitochondrial activity
fueled by glutaminolysis [138, 139]. Studies have shown that
low ROS levels generated by mitochondria are pivotal for
NFAT (nuclear factor of activated T cells) activation and
IL-2 production by T cells [140, 141]. By contradiction,
ROS can selectively suppress the DNA-binding capacities
of NF-κB and NFAT, resulting in the downregulation of
IL-2 transcription [142]. ROS being generated upon TCR
engagement regulate ERK proliferative pathways and
CD95/CD95L proapoptotic pathways, critical for normal T
cell responses [143]. Hence, uncontrolled surplus ROS gen-
eration in the melanoma TME leads to nonfunctional T cells
and failure to develop Teff or Tm responses. Henceforth, ROS
levels must be buffered in a safe range for clonal expansion
and differentiation of an activated T cell through metabolic
reprogramming. This is a daunting task, as antioxidants
would improve T cell activity while at the same time also
fueling melanoma growth.

In contrast to normal fibroblasts, which are responsible
for the turnover of extracellular matrix (ECM), ROS-
activated cancer-associated fibroblasts (CAFs) can be found
at the edge of tumors or infiltrating the tumor [144–146].
These cells are a potent source of ROS, adding to the already
hostile micro milieu [147]. Another considerable role of
CAFs is to enhance tumorigenesis by activating specific sig-
naling pathways crucial for promoting tumor growth. For
instance, this is done through AKT in epithelial cells and
the secretion of soluble factors like CXCL12 [148]. The dom-
ination of CAFs within cancer tissues is correlated with poor
prognosis, elevated infiltration of tumor-associated macro-
phages, epithelial to mesenchymal transition, and ROS-
driven hypoxia [149]. Hypoxia created by desmoplasia, in
turn, stimulates the production of mitochondrial ROS,
which can influence CAF function [150]. CAFs expressing
smooth-muscle α-actin (α-SMA) are called myofibroblasts.
The role of ROS in transition from fibroblasts to myofibro-
blasts is well reported, and this transition is driven by factors
such as transforming growth factor beta1 (TGF-β1) and
stromal cell-derived factor 1 (SDF-1) in a ROS-dependent
manner [151]. Moreover, chronic oxidative stress also leads
to the differentiation of fibroblasts to myofibroblasts. These
ROS effects can be reversed with prolonged exogenous anti-

oxidants in fibroblasts isolated from mouse models of oxida-
tive stress that lack prominent antioxidant transcription
factors [152]. In addition, antioxidant enzymes such as
GPX3 and thioredoxin reductase I upregulation within
fibroblasts inhibit differentiation into myofibroblasts. The
conclusion of these observations establishes that ROS can
enhance specific fibroblast subtypes, including the predomi-
nant myofibroblast differentiation in human tumors [153].
ROS produced by fibroblast can also augment tumorigenesis
[154]. Numerous studies focused on the role of H2O2 in
TME and stroma [155]. The H2O2 is produced by tumor
epithelial cells and can diffuse to adjacent cells, inducing a
more protumorigenic environment. This effect can be abro-
gated with the addition of CAT [155].

ROS levels are the prominent factor in deciding its role
as a signaling molecule or oxidative stress-causing agent,
leading to activation of various defense mechanisms or cell
death [156]. ROS can regulate autophagy through LC3-
associated autophagosomes or AMP-activated protein
kinase (AMPK) and the regulation of gene transcription fac-
tor activity like NF-κB inducing autophagy gene expression
(BECLIN1/ATG6 or SQSTM1/p62) and unfolded protein
response (UPR) during hypoxia [157]. Autophagy plays a
complex role in the initiation of cancer [158]. Fibroblasts
have p21Ras-independent ROS generating enzymatic systems
which set up extracellular H2O2 in response to TGF-β1
[159]. In addition, an enzyme similar to 15-LOX in fibro-
blasts has been shown to procreate substantial amounts of
O2

− that developed without flavoenzyme activity [160].
These modifications have a crucial impact on the proteins’
signaling and functional role, augment genome instability,
prevent inflammation, and make cancer cells survive under
hypoxia and starvation [15]. In addition, elevation in
autophagy is associated with metastasis and poor prognosis
in melanoma patients [161].

4. ROS in Melanoma Therapy with
Physical Modalities

The pillars of oncology are surgery, chemotherapy, radio-
therapy, and immunotherapy. Especially, the latter three
involve the generation of ROS as a byproduct or as a targeted
approach to eliminate melanoma. Besides, several physical
modalities have emerged throughout the past three decades
that come with therapeutic ROS production. A comprehen-
sive review on all present and experimental therapeutic che-
motherapeutic, biological, and immunological modalities for
melanoma treatment is out of scope of this review. All these
approaches are systemic treatments where local control of
ROS production may be challenging. Instead, we here focus
on local treatments of physical modalities reported to come
with augmented ROS production (Figure 6).

4.1. Radiotherapy. Radiotherapy is one of the key therapeutic
options in oncology. Radiotherapy produces radiation-
induced ROS. For instance, OH· is formed directly by the
radiolysis of water molecules or indirectly by the formation
of secondary ROS [162]. These molecules indiscriminately
attack nearby molecules such as DNA and target membranes
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of cells and organelles, leading to cell cycle arrest and apo-
ptosis [163]. ROS induced by radiation can induce cell death
through necrosis, autophagy, mitotic cell death, and cell
cycle arrest [163]. The mechanism varies by cell- and
tissue-specific factors. ROS generated by radiation triggers
DNA damage and apoptosis [162, 163]. Radiotherapy may
cause damage to normal tissues alongside tumor. Resistance
or sensitivity of tumor cells to radiotherapy depends on cell
cycle phase, endogenous antioxidant levels, oxygen availabil-
ity, and gene expression. Many tumors divide slowly due to
their long duration time in the S-phase/interphase of the cell
cycle. Therefore, they get more time to repair the damaged
DNA, which results in radiation resistance [164]. Several
studies showed that mitotic cells with the lowest SH-AOs
(SH-containing groups) are most radiosensitive than S-
phase cells, which have the highest levels of these com-
pounds [164, 165]. Henceforth, synchronization of the cell
cycle under these two sensitive cell cycle phases supports
tumor eradication [166]. Moreover, rapidly dividing tumors
are more prone to ROS-induced oxidative damage than
slowly dividing tumors [165, 167]. In addition, MAPK acti-
vation and VEGF release after radiation result in reduced
tumor cell response, as shown by several experimental stud-
ies [168]. ROS-regulated MAPK determines whether tumor
cells proliferate or undergo cell cycle arrest or apoptosis.
Lastly, the DNA damage ability of ionizing radiation can
be reduced by the antioxidant molecules inside the cells
[165]. Several studies have shown that depletion of GSH
and its synergistic effects with thioredoxin could increase
the radiosensitivity of squamous cell carcinoma cell lines
[169]. Intriguingly, depletion of ROS scavengers in cancer
stem cells (CSCs) rapidly decreases their clonogenicity and
consequence in radiosensitization [170].

The role of NRF2 in radioresistance is well described by
recent studies [171, 172]. Aberration of NRF2 activation due
to decreased KEAP1-NRF2 interaction and loss of mutations
of KEAP1 leads to radiotherapy resistance [172]. In the pres-
ence of certain antioxidants, resistant tumor cells respond to
radiation-induced killing mostly via ROS-mediated apopto-
sis [162, 165, 168, 172]. However, there is limited evidence

for definitive radiation therapy in melanoma, besides pallia-
tion [173]. However, retrospective and phase II studies have
divulged that adjuvant radiotherapy can significantly
improve the local-regional control rate in a specific clinical
setting [174]. Adjuvant radiotherapy is offered to patients
who are at high risk of recurrence [175]. Dose and fraction-
ation schedules depend upon the melanoma site, even
though the optimal radiation fractionation schedule remains
controversial and convenient for patients with low survival
expectations. ROS production is a well-recognized mecha-
nism in radiotherapy [176, 177]. This occurs during the
tumor treatment and after that, as ROS are being released
by stressed and dying cells in the TME due to uncoupled
ETC and subsequent superoxide production. Accordingly,
antioxidants were found to dampen the efficacy of radiother-
apy in preclinical cancer models [178]. Moreover, hypoxic
tumors were found to show enhanced radioresistant, and
combination treatment with ROS-promoting therapies has
been hypothesized to overcome this limitation [179].

4.2. Cryoablation. Cryoablation is an intrusive treatment
that uses nitrogen or argon gas to create extreme cold to
freeze and destroy tumors. The therapy induces tumor cell
death by necrosis, hyperosmosis, and apoptosis [180].
Therefore, the treatment is not tightly entangled with the
action of ROS [181], but since the therapy is an integral part
of melanoma management, it is briefly outlined here never-
theless. The intracellular contents of cryoablation-damaged
cells remain preserved for the immune system’s recognition
to initiate a tumor-specific immune response. Cryoablation
slows down the rate of tumor spread and weakens tumor
load by ablation of the primary site [182]. Cryoablation
combined with distinct immunostimulants enhances the
efficacy of cryoablation for the suppression of new tumor
growth in metastatic mouse models [183, 184]. This combi-
nation can overcome the limitations of immunotherapy. The
combination of cryoablation with various immunostimu-
lants (including TLR9 and CPG) has suppressed new tumor
growth in metastatic mouse models [184, 185]. In a recent
study, cryoablation combined with a transarterial infusion

Photodynamic
therapy (PDT)Hyperthermia (HT)

Radiotherapy (RT)

Medical gas plasma
technology

Electrochemo
therapy(ECT)

Imbalance redox eqillibrium

Melanoma cell death/apoptosis

ROS

Figure 6: Physical therapy modalities exploiting supraphysiological ROS for melanoma treatment. Several treatments exploit ROS-based
effects, including radiotherapy, photodynamic therapy, cryoablation, hyperthermia, and gas plasma technology. ROS induced by these
therapies lead to an imbalance in redox equilibrium and subsequently promote melanoma cell death.
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of pembrolizumab has shown promising clinical activity in
managing melanoma liver metastasis. However, the efficacy
of the therapy needs to be confirmed with a controlled trial
in the future [186]. ROS production can be anticipated with
this destructive modality, but the therapeutic relevance for
cryoablation-related ROS in melanoma remains limited as
of now.

4.3. Electrochemotherapy. Electrochemotherapy (ECT) is a
technique that involves the harmonious use of high-
intensity electric pulses to the tumor to increase the cytotox-
icity of anticancer drugs, bleomycin and cisplatin, via elec-
troporation [187]. The therapeutic efficacy of
electroporation itself without drug application is negligible
[188]. The cytotoxicity of drugs such as cisplatin and bleo-
mycin increases by a factor of 100-1000 by electroporation
of cell membranes [189]. ECT results demonstrate to be
effective for treating cutaneous and subcutaneous malignant
melanoma modules [190]. No major negative AEs were
observed [191]. ROS production is a byproduct of the pulsed
electric field treatment and plays a role in its efficacy [192] as
it can be prevented by antioxidants [193, 194]. ROS produc-
tion and oxidative stress were also observed in electropo-
rated melanoma cells in vitro [195]. Novel ECT
approaches involve calcium electroporation with promising
clinical results [196]. The treatment engages antitumor
immunity to promote systemic attack of metastasis distant
to the treatment side [197]. A case report showing such an
abscopal effect in a melanoma patient has been published
[198]. The calcium treatment locally elevates ROS that con-
tributes to this effect [199, 200] and modulates the tumor
vasculature [201]. Hence, this physical treatment modality
might be a promising approach for treating therapy-
resistant melanoma metastasis, as well as releasing tumor
antigen for immunotherapies. A study protocol for a ran-
domized clinical trial in this regard for skin cancer treatment
was recently published [202].

4.4. Hyperthermia. Hyperthermia is described as the use of
exogenous heat sources that directly kill tumor cells or
intensify the efficacy of other therapeutic means (e.g., radio-
therapy, chemotherapy, and immunotherapies) against vari-
ous cancer types. Mild hyperthermia as an adjuvant has
shown improved antitumor immune response in preclinical
and clinical data [203–205]. Hyperthermia generates heat-
shock proteins, induces the activation and migration o den-
dritic cells (DCs), increases the efficacy of tumor antigen
presentation, and releases chemo attractants to tumor sites
for leukocyte immigration and activation [206]. In vitro
studies have shown that hyperthermia inhibits the mobility
and proliferative ability of B16F10 cells in a temperature-
dependent manner and regulates the TGF-β1 protein
expression in mouse malignant melanoma B16F10 cells both
in vivo and in vitro [207]. In a metastatic mouse model,
hyperthermia has significantly extended survival in an ani-
mal model. In addition, hyperthermia enhances the thera-
peutic effectiveness of drugs by activating caspase-8 and
caspase-9 to trigger apoptotic responses [208]. The impera-
tive role of ROS in hyperthermia therapy has been thor-

oughly described [209]. Mechanistically, hyperthermia
elevates the levels of transition metal ions, which leads to
enhanced production of H2O2 and OH· by mediating mito-
chondrial damage. This can be controlled by the amount
and duration of heat applied. In doing so, the heat shock also
promotes autophagy and local apoptosis [210] while pre-
serving the ability to mount antitumor immunity. Therefore,
hyperthermia is well suited to be combined with, e.g., check-
point therapy. The hyperthermic treatment will generate
controlled melanoma cell destruction ROS-dependent and
locally restricted without any debulking or therapeutic
intent. The tumor antigens subsequently released may then
augment antitumor immunity that, in combination with
checkpoint therapy, will promote the systemic targeting of
melanoma metastasis [211]. This ROS and stress-based heat
therapy also show great promise in combination with tar-
geted and nontargeted chemotherapy [208]. Clinical
research on hyperthermia in melanoma therapy exists
[212], but only a few centers work with techniques so far.

4.5. Medical Gas Plasma Technology. Along similar lines, gas
plasma technology may be usefully combined with existing
oncotherapies [213]. In contrast to hyperthermia, where
heat and ROS are generated within the melanoma tissues
at sufficient depths, gas plasma technology generates exoge-
nous ROS applied topically to the treatment target [214].
Therefore, it might be well suited in the palliative setting
for ulcerating melanoma lesions not covered by skin [215].
Gas plasma technology is unique in generating a plethora
of ROS simultaneously with dozens of different agents
[216]. The concentration of the ROS can be tuned by chang-
ing the ionization variables and the target exposure time
[217], while the ambient air condition was found to have a
lower impact [218]. As a mechanism of action, gas plasma-
derived ROS modulate the expression of redox-regulating
enzymes and pathways [219–221] and was found to show
combinatorial effects with chemotherapy [222–224], radio-
therapy [225–227], and antibody [228] and topical immuno-
therapy [229]. We have recently also reported for the first
time apoptotic effects in patient-derived melanoma tissues
[230] and that ROS-derived oxidative posttranslational pro-
tein modifications (oxPTMs) generated with gas plasma
technology have immunogenic properties and protect from
melanoma growth in vivo [231]. Such an approach would
be entirely novel in upgrading antitumor vaccines [232]
used, for instance, for autologous DC vaccination. Intrigu-
ingly, we were also the first to report an abscopal effect in
a model of breast cancer where the tumor size of an
untreated murine flank decreased in parallel to that of the
treated flank, suggesting engagement of antitumor immunity
using gas plasma-derived therapeutic ROS [233], as sug-
gested before using human NK cell-mediated melanoma
killing in vitro [234]. Gas plasma technology is safe and vir-
tually free of side effects [235–237]. Several devices are mar-
keted in Europe based on accreditation as medical device
class IIa [238]. Clinical experience shows promising results
in treating actinic keratosis [239–241] and locally advanced
head and neck cancer in palliative patients [242–244], and
more clinical research is heavily awaited.
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4.6. Photodynamic Therapy. Photodynamic therapy (PDT)
has a long-standing application in the clinic already. This
light-based and minimally invasive therapy is promising
and effective in various types of cancers including nonmela-
noma and melanoma skin cancer, for patients with stage
III/IV cutaneous metastatic melanomas [245]. PDT is a min-
imally invasive procedure [246] that requires a photosensi-
tizer (PS) molecule which, upon excitation by the specific
wavelength of light, reacts with oxygen and causes oxidant
species in target tissues, leading to increased ROS produc-
tion, redox signaling, and cell death [247]. The advantage
of PDT is its low systemic toxicity and its ability to destroy
tumors selectively [246]. ROS, especially singlet oxygen,
unleash irreversible damage to tumor cells and tumor-
associated blood vessels, also activating antitumor immunity
via inflammatory responses [248]. The limited penetration

of light restricts the clinical use of PDT. For better efficacy
of PDT in melanoma, overcoming protective mechanisms
such as pigmentation and oxidative stress resistance is neces-
sary to treat intracutaneous lesions [249]. The concepts and
challenges of oxidative stress and PDT in skin cancer have
been elegantly reported recently [250]. Clinically, PDT can
be used along with other procedures, such as surgery, radio-
therapy, or chemotherapy [251, 252]. Combined therapies
have been studied to overcome melanoma resistance. The
combination of PDT and chemotherapy (dacarbazine) was
an efficient treatment to overcome the internal resistance
in metastatic melanoma [253]. Most ongoing trials for can-
cer are using the photosensitizers that are approved for clin-
ical use, mainly ALA (aminolevulinic acid) and photofrin
(porfimer sodium) [254]. Combining PDT with immunoad-
juvants to stimulate the antitumor immunity was more
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Figure 8: Pleitropic roles of ROS in melanoma. ROS have pleitropic roles in melanoma therapy and tumorigenesis depending on their
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efficient and safer for treating melanoma than the mono-
therapies strategy [255], but still needs more clinical studies
to elaborate efficacy and safety.

5. Conclusion

Following a review of ROS’ divergent biological processes,
some generalizations regarding the induction and function
of ROS can be made. Importantly, ROS are generally
induced by cell stress, starvation, hypoxia, and growth factor
stimulation. Mild ROS induction promotes adaptation to
ROS stress via HIF activation under hypoxia, inflammatory
cytokine production in tissue damage, and differentiation
in receptor-dependent stimulation, conjointly promoting
cell survival (Figure 7). Although ROS have been recognized
as important second messengers in cell biology, they have
only recently gained attention concerning melanoma biol-
ogy. At higher levels, ROS are detrimental, and several phys-
ical modalities directly or indirectly exploit such damaging
functions for the treatment of skin cancer (Figure 8), includ-
ing melanoma. As primary and metastatic melanoma pro-
vides high dynamic and plasticity in the TME, specifically
targeting ROS is challenging as melanoma cells adapt to
altered redox environments.

Even though the failure of dietary antioxidants in several
clinical trials resulted in the emergence of alternative anti-
melanoma therapeutic approaches, there is still considerable
controversy as to whether the use of either antioxidant sup-
plementation or inhibition of ROS modulation is detrimen-
tal or beneficial for melanoma treatment. The effect of ROS
is predominantly near the site of ROS production. There-
fore, the use of inhibitors or antioxidants may prevent mel-
anomagenesis. In addition to that, prooxidant melanoma
therapy, through which scavenging of ROS is decreased or
production of ROS is increased, or both, is a pioneering
approach to exploit the higher levels of ROS in cancer cells
to elicit cell death selectively. The eminent role of ROS mod-
ulation in antimelanoma therapies like ROS-inducing drugs
and physical modalities, such as radiotherapy and photody-
namic therapy, is well reported. It follows that combination
therapies, e.g., checkpoint inhibition and ROS-generating
therapies, might constitute novel avenues for targeting mel-
anoma. While more preclinical and clinical research is excit-
ingly awaited, the data known to date are encouraging that
understanding, targeting, and utilizing ROS in melanoma
treatment might be an effective adjuvant treatment in
patient therapy in the future.
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