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Background. Pyruvate kinase L/R (PKLR) has been suggested to affect the proliferation of hepatocytes via regulation of the cell
cycle and lipid metabolism. However, its impact on the global metabolome and its clinical implications remain unclear. Aims. We
aimed to clarify the genetic impact of PKLR on the metabolomic profiles of hepatoma cells and its potential effects on grafts for
liver transplantation (LT). Methods. Nontargeted and targeted metabolomic assays were performed in human hepatoma cells
transfected with lentiviral vectors causing PKLR overexpression and silencing, respectively. We then constructed a molecular
network based on integrative analysis of transcriptomic and metabolomic data. We also assessed the biological functions of PKLR
in the global metabolome in LT grafts in patients via a weighted correlation network model. Results. Multiomic analysis revealed
that PKLR perturbations significantly affected the pyruvate, citrate, and glycerophospholipid metabolism pathways, as crucial steps
in de novo lipogenesis (DNL). We also confirmed the importance of phosphatidylcholines (PC) and its derivative lyso-PC supply
on improved survival of LT grafts in patients. Coexpression analysis revealed beneficial effects of PKLR overexpression on
posttransplant prognosis by alleviating arachidonic acid metabolism of the grafts, independent of operational risk factors.
Conclusion. This systems-level analysis indicated that PKLR affected hepatoma cell viability via impacts on the whole process of
DNL, from glycolysis to final PC synthesis. PKLR also improved prognosis after LT, possibly via its impact on the increased
genesis of beneficial glycerophospholipids.
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1. Introduction

The liver acts as the central hub organ for the complex energy
metabolism networks in human bodies [1]. Disruptions to
lipid and glucose metabolism may have comprehensive inter-
related effects on many physiological and pathological condi-
tions in the liver. Energy metabolism can regulate hepatocyte
inflammation, proliferation, and apoptosis by affecting the fuel
provision, and the metabolic network has been shown to be
involved in the whole profile of morbidity, from simple steato-
sis to end-stage liver malignancy [2].

Pyruvate kinase (PK) is a vital rate-limiting enzyme regu-
lating glycolysis. PK catalyzes the biochemical process by
transferring phosphate groups from phosphoenolpyruvate
(PEP) to ADP, to yield ATP and pyruvate [3]. Pyruvate is
located at the crossroads of energy metabolism and provides
the raw material in the tricarboxylic acid (TCA) cycle to
support cellular energy production. PK is encoded by different
isoforms [4], of which PKM2 and PKLR are coexpressed in the
liver (https://www.proteinatlas.org/). PKLR was proven to
have a wide association with a spectrum of liver damage from
steatosis and inflammation to fibrosis via its regulation on
mitochondrial dysfunction and subsequent hepatic triglycer-
ide accumulation, based on multiomic data at systematic levels
[5, 6]. We also identified PKLR as a potential liver-specific
target for treating hepatocellular carcinoma and nonalcoholic
fatty liver disease [7]. Transcriptomic data further revealed
that PKLR might affect cell viability via regulating liver mito-
chondrial function [8]. However, its potential effects on net-
works of metabolites with executive biological functions
remain unclear and worthy of further investigation.

Liver transplantation (LT) provides the treatment of last
resort for patients with end-stage liver disease, and graft
quality is an important determinant predicting posttrans-
plant prognosis [9, 10]. Energy metabolism has been shown
to affect graft quality and postoperative outcomes after LT
[11], and reduced pyruvate or increased lactate/pyruvate
ratio predicted more severe ischemia/reperfusion damage
in liver grafts [12, 13]. As a key gene involved in the regula-
tion of glycolysis and intracellular mitochondrial function
[8], we postulated a potential link between PKLR and energy
output in liver grafts, which might affect posttransplant out-
comes. Metabolomic analysis of grafts might help to eluci-
date the mechanism responsible for these effects.

Advanced high-throughput omics data provide a novel
approach for unveiling the biological functions and molecular
mechanisms involved in complex phenotypes, based on the
genome, proteome, and metabolome [14, 15]. Integration of
transcriptomic and metabolomic data might provide convinc-
ing evidence to allow the construction of a reliable network
covering the biological process from the encoding gene to
the final metabolic product, with mutual validation [16, 17].
Omics data might also be used to construct networks to
improve the efficiency of diagnostic or prognostic predictions
for specific diseases, by integrating clinical information from
individual patients [17, 18]. Weighted gene coexpression net-
work analysis (WGCNA) is a topological algorithm that can
be used to investigate clinical-omics interactions in a scale-
free network and is widely used in expression and metabolo-
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mic studies by modularization of coexpressed metabolites in
clinical studies [19, 20]. The current study is aimed at applying
integrative multiomics and the WGCNA algorithm to investi-
gate the mechanism responsible for the genetic impact of
PKLR on liver function, as well as its potential significance
in terms of graft quality and posttransplant outcomes.

We assessed the molecular function of PKLR on global
metabolites by integrating untargeted and targeted metabolo-
mic and transcriptomic data in human hepatoma cells over- or
underexpressing PKLR. We also evaluated the impact of PKLR
on the LT graft metabolome, based on a scale-free network
model. The results of this study might clarify the regulatory
mechanism by which PKLR affects global liver metabolism
and its potential effects on LT graft survival.

2. Materials and Methods

2.1. Study Design. A study-flow diagram is presented in
Figure S1. HepG2 cells were transfected with short hairpin
RNA (shRNA) and plasmids via lentiviral particles to
silence or overexpress PKLR, respectively. Global and
energy metabolites were measured in the transfected cells.
Multiomic analysis was then performed by combining the
results with previously published transcriptomic data for
HepG2 cells with PKLR perturbation [8].

We also carried out untargeted metabolomic analysis in
LT grafts and applied the WGCNA algorithm integrated
with clinical information for patients who received LT grafts.
Metabolites in positive modules were extracted for pathway
analysis. Finally, hub metabolites were defined as overlap-
ping differential substrates in cells and livers by classification
of PKLR expression.

2.2. Cell Culture and Construction of Cellular Models with
PKLR Perturbation. The effects of modification of PKLR
expression were determined in HepG2 cells. In brief, HepG2
cells were cultured in RPMI-1640 medium (R8758; Sigma-
Aldrich) including 10% fetal bovine serum (F8687, Sigma-
Aldrich). The cells were placed in a humidified incubator
at 37°C with 5% CO,.

PKLR expression levels in HepG2 cells were altered by
lentiviral transfection, and the cells were subjected to
subsequent metabolomic assay. Cells were transfected with
lentiviral particles including an open reading frame clone
or shRNA for PKLR, respectively, according to the manufac-
turer’s instructions (RC212337L2V for overexpression (OV)
and TL302463V for silencing (SI) of PKLR expression) (Ori-
Gene, USA). Corresponding control particles or scrambled
shRNA in empty vectors served as internal references for
transfection (PS100071V for OV (OV-NC), TR30021V for
SI (SI-NC), OriGene). The shRNA sequence used for SI is
presented in Table S1.

2.3. LT Cases and Clinical Information. All patients under-
went LT during January 1*, 2015, and March 1%, 2019. Sam-
ples for the metabolomic assay were collected from wedge
resections carried out for routine biopsy before transplanta-
tion. Exclusion criteria were (1) donor/recipient age < 18
years, (2) living donor LT, (3) split LT, (4) retransplantation,
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(5) multiorgan transplantation, (6) unavailable graft tissue,
(7) unavailable graft RNA, and (8) loss to follow-up after
LT. The study was carried out in accordance with the Decla-
ration of Helsinki, and the study protocol was approved by
the Institutional Review Board of our center (no. 2020-IIT-
1063). Seventy-nine LT cases were finally enrolled for the
metabolomic study.

Donor, recipient, allograft, and surgical information was
collected retrospectively from medical records for each LT case.
Follow-up visits to assess posttransplant survival status and
duration of patients/grafts were managed by specialized staff.

Major complications, including early allograft dysfunc-
tion (EAD) and primary nonfunction (PNF), were also
assessed in each recipient postoperatively, based on liver
and coagulation function tests. More details of the defini-
tions of EAD/PNF have been described previously [21].
Detailed clinical data and follow-up information for the
enrolled cases are shown in Table 1.

2.4. Measurement of Key Gene Expression. Cells or tissues
were resolved in the TRIzol reagent (15596026; Invitrogen)
for RNA isolation. The subsequent RNA samples were puri-
fied using an RNeasy Mini Kit (74104; Qiagen), according to
the manufacturer’s instructions.

Expression of target genes was measured by quantitative
real-time polymerase chain reaction (QRT-PCR) using SYBR
Green Master Mix (1725121; Bio-Rad), with an integrative
detection system (CFX96; Bio-Rad). Primer sequences are
listed in Table S2. Gene expression was compared by the
delta-delta Ct method, as described previously [22], with
B-actin as an internal reference.

2.5. Metabolomic Analysis of Hepatoma Cells and Liver Tissues.
Nontargeted metabolomic assays were performed using hepa-
toma cells and LT graft tissues. Metabolic profiling was ana-
lyzed by liquid chromatography-mass spectrometry (LC-MS)
via coupled application of ultra-high-performance liquid chro-
matography (UHPLC) and QE plus system (Thermo Fisher
Scientific, USA) in both electrospray ionization-positive and
ionization-negative ion modes.

HepG2 cells were also assayed by energy-specific targeted
metabolomic analysis by LC-MS via UHPLC coupled to a
QTRAP system (AB Sciex, USA) based on multiple reaction
monitoring [23]. Assays were performed based on the mod-
ules developed by Shanghai Applied Protein Technology
Company, with coverage of 31 key metabolites in pathways
including glycolysis, TCA, and oxidative phosphorylation.
Information on the included energy metabolites is listed in
Table S3.

2.6. Statistical Comparisons. Nonnormally distributed data
were log-transformed. Normally distributed data were
described as the mean + standard deviation and compared
by one-way ANOVA. Nonnormally distributed data were
described as median/(interquartile range) and compared
using the nonparametric Mann-Whitney U test. Relation-
ships between variables were assessed by correlation analysis
using Pearson’s, Spearman’s, and Kendall’s coefficients for
continuous, rank, and ordinal covariates, respectively. Sur-

vival analysis was performed using a Cox proportional
hazards regression model. And interactions between key
genes were imputed by a protein-protein interaction (PPI)
network via the STRING database [24].

2.7. Principal Component Analysis (PCA). PCA and orthog-
onal partial least-squares-discriminant analysis (OPLS-DA)
were performed to evaluate the discrimination of metabolo-
mic profiles separated by key traits using SIMCA-P software
(version 14.1, Umetrics, Sweden).

2.8. Network Construction for LT Grafts. WGCNA has been
shown to be suitable for constructing biological network
models based on gene expression and metabolomic datasets
[20]. We therefore used this algorithm to establish connec-
tions between PKLR expression and the global metabolome
of LT grafts in a scale-free model [25].

The LT graft metabolome was first divided into different
coexpressed modules, and the metabolite dendrogram
branches were cut to produce merged modules based on
thresholds defined by a degree of independence of 0.8. Differ-
ent modules were indicated by different colors in a heatmap.

We then carried out a correlation analysis between
merged modules and individual sample traits, including
genetic and phenotypic expression. Clustering analysis was
performed based on merged module categories for the 100
top selected metabolites.

The metabolite significance (MS) and module member-
ship (MM) were defined as the correlation of each metabolite
with individual traits (especially for PKLR expression) or
module eigengene, respectively. The significance of the corre-
lation between MS and MM was developed as an indicator to
evaluate intramodule connectivity. We also assessed intermo-
dule connectivity by correlation analysis. Significant modules
were then selected for further pathway and hub metabolite
investigation. More details of the application of WGCNA to
metabolomic data have been published previously [20].

2.9. Enrichment, Pathway Analysis, and Network Construction
Based on Multiomic Datasets. Based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, clusters of potential
metabolites were enriched for pathway imputation via the
online toolkit “MetaboAnalyst” (https://www.metaboanalyst
.ca/) [26]. Differentially expressed gene sets (DEGs) were
imputed by the analysis of transcriptomic data for HepG2 cells
with PKLR alterations in our previous study [8]. Potential path-
ways were also enriched by Gene Set Enrichment Analysis
(GSEA) using the “clusterProfiler” package based on significant
candidate genes detected by RNA-seq [27, 28]. Joint pathway
analysis was then used to combine differentially expressed traits
from multiomic datasets in cells with PKLR perturbations, and
pathway maps integrating transcriptomics and metabolomic
data were visualized using “Pathview” (https://pathview.uncc
.edu/), according to the developer’s instructions [29].

We also visualized the regulatory network and screening
of hub metabolites using Cytoscape (v 3.8.0) [30]. Based on
metabolites with significant internal correlations (P < 0.05),
networks were constructed based on targeted (for cells)
and untargeted (for cells/liver tissues) metabolomic analyses


https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://pathview.uncc.edu/
https://pathview.uncc.edu/

4 Oxidative Medicine and Cellular Longevity
TasLE 1: Clinical features of liver transplant cases.
Covariates Characteristics
Recipients (R)
R-age (years) 47.7+12.1
R-gender (M/F) 67112
R-BMI (kg/m?) 235+3.1
R-HBYV infector (Y/N) 62/17
R-blood type (A/B/O/AB) 33/8/33/5
R-MELD score 33 (27-40)
R-Child-Pugh score 11 (10-12)
Indication for LT
(Viral hepatitis-related cirrhosis/cholestatic cirrhosis/liver failure/liver cancer/others) 24/5/12/13
Donors (D)
D-age (years) 41.7 +13.7
D-gender (M/F) 67/12
D-BMI (kg/m?) 232427
D-HBYV infector (Y/N) 11/68
D-blood type (A/B/O/AB) 27/10/31/11

D-ALT (U/L)

D-TB (pmol/L)

D-CR (pmol/L)

D-BUN (mmol/L)

D-sodium (mmol/L)

D-potassium (mmol/L)
Grafts (G)

PKLR-RQ

PKM-RQ

Steatosis (MaS/MiS/none)

Donation type (DCD/DBD)

Surgery
Surgical duration (min)
CIT (min)
WIT (min)
Blood loss (mL)

Blood product transfusion

FFP (mL)
RBC (U)
PCC (U)
ALB (g)
FIB (g)
Posttransplant events
Peak TB (umol/L)
Peak ALT (U/L)
Peak AST (U/L)
EAD (Y/N)
PNF (Y/N)
Follow-up duration (d)

40.0 (25.0-66.0)

17.2 (11.0-23.1)

87.0 (56.3-151.6)
8.4 (5.2-11.0)
146 (138-152)
3.8 (3.7-4.3)

1.0 (0.3-9.4)
1.0 (0.5-3.0)
35/9/35
57/22

303 (272-375)
652 (567-744)
7 (1-12)
1500 (800-2500)

780 (540-1120)
5 (2-8)
2000 (900-3000)
125 (75-150)
5 (0.5-10)

211 (125-387)
2571 (1972-3255)
6284 (4485-9712)

50/29
10/69
308 (35-980)

Data in normal distribution was presented by mean + SD, and data in nonnormal distribution was presented by median (IQR (interquartile range)). Abbreviations:
ALB: albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; CIT: cold ischemia time; D: donor; DBD: donation after
brain death; DCD: donation after cardiac death; EAD: early allograft dysfunction; F: female; FFP: fresh frozen plasma; FIB: fibrinogen; HBV: hepatitis B virus; LT:
liver transplantation; M: male; MELD: model for end-stage liver disease; PCC: prothrombin complex; PNF: primary liver graft nonfunction; R: recipient; RBC: red
blood cell; RQ: relative quantity; TB: total bilirubin; WIT: warm ischemia time.
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using the “cytoHubba” module, respectively. Hub metabo-
lites were then screened using appropriate algorithms in
the cytoHubba module. Regulatory networks were also
incorporated based on metabolites correlated with key traits
in prior pathway analysis.

Descriptive data and their interactive relationships were
visualized using heatmaps, bar charts, Venn diagrams, and
volcano, bubble, and scatter plots. Regarding the statistical
methods, more details of the availability of the online and
locally installed toolkits, packages, and algorithms used for
data interpretation are listed in Table S4.

2.10. High-Glucose Treatment, Oil Red O Staining, and
Biochemical Tests. Cellular models with PKLR perturbations
(OV, S, and corresponding NC, see Section 2.2) were prepared
in six-well plates at 80% confluence and incubated in high-
glucose medium (50 mmol/L for D-glucose, G7021; Sigma-
Aldrich) for 48 h. The cells were then assayed for steatosis by
oil red O staining, as described previously [31]. The severity
of steatosis was assessed quantitatively as the ratio of the area
between lipid droplets and hepatocytes in the same micro-
scopic field. Meanwhile, cellular triglyceride (TG) and total
cholesterol (TC) were measured, respectively, according to
the instruction provided by commercial kits (E1013, E1015,
Applygen). All experiments were repeated in triplicates.

3. Results

3.1. Creation of Cell Models with Altered PKLR Expression. Cell
models were created by transfection with lentiviral particles to
generate stable changes in PKLR expression. Compared with
NC samples, transfection with open reading frame particles
resulted in an increase of PKLP of about 4.7-fold, while trans-
fection with shRNA caused an approximately 70% decrease in
PKLR mRNA expression (both P < 0.05, Figure S2).

3.2. Clinical Features of LT Patients. The LT cases are
described in Table 1. Briefly, most surgeries were performed
in nonelderly adults (aged <60 years). Elderly recipients and
donors accounted for 7.6% and 13.9% of the whole cohort.
The average follow-up duration was around 10 months
(308 days). Most recipients (79%) and 14% of donors were
hepatitis B-positive.

3.3. Untargeted Metabolomic Profiling in Hepatoma Cells. The
whole metabolite profile of HepG2 cells was assayed by non-
targeted metabolomic analysis. As shown in Figure 1, PCA
by OPLS-DA plot revealed that the metabolomic profile could
be clearly separated based on PKLR expression (Figures 1(a)
and 1(c)). This was validated by permutation analysis
(R*=0.75,Q*=-0.37 for the OV group, R>=0.77,Q* = —
0.52 for the SI group, Figures 1(b) and 1(d)). After adjustment
by quality control (QC) samples, 960 and 954 metabolites
were matched from the Human Metabolome Database
(HMDB) in the OV and SI groups, respectively.
Up-/downregulation of PKLR had no significant effect on
the metabolomic perspective (P > 0.05, Figure 1(e)). Normal-
ized quantities of identified differential metabolites in the OV
and SI groups and their intersection were clustered and pre-
sented in heatmaps (Figures 1(j) — 1(1)). Overall, the changes

in potential metabolites in cells with altered PKLR expression
differed from those in the NC samples. We also demonstrated
the significance (fold change/P value) for each metabolite in a
volcano plot. Notably, prominent elevations (FC > 2, P < 0.05)
were observed in fewer metabolites in cells with PKLR down-
regulation (16 vs. 72 between metabolites with increased and
decreased levels, Figure 1(n)). Further correlation analysis
found that about half of the positive connections were pre-
sented among the top 20 metabolites (P <0.05, 51.6%,
48.9%, and 50% for OV, SI, and overlapped components,
respectively, Figures 1(o) - 1(q)).

When categorized according to the KEGG database, the
Venn diagram found 12 metabolites that overlapped as key
molecules in the OV and SI groups (Figure 1(f), Table S5).
Pathway analysis revealed that the overlapped metabolites
between the OV and SI groups were involved in
glycerophospholipid metabolism (P < 0.05, impact value =
0.11, Figures 1(g) and 1(h)), with five metabolites having
consistent/reverse directions with PKLR variation (Figure 1(r)).

3.4. Targeted Metabolomic Analysis of Energy Metabolism in
HepG2 Cells. Targeted metabolomic analysis of molecules
involved in energy metabolism (Table S3) was carried out
using a kit developed by Shanghai Applied Protein
Technology Company. As shown in Figure 2, PCA revealed
that samples could be clearly separated according to PKLR
expression in the OPLS-DA model (Figures 2(a) and 2(c)),
and the significance of the PCA results was validated by
permutation tests (R*=0.72, Q* =~-1.92 for the OV group,
R? =0.76, Q* = -3.45 for the SI group, Figures 2(b) and 2(d)).

All the enrolled metabolites were presented in a clus-
tered heatmap (Figures 2(e) — 2(g)). There was a signifi-
cant inverse correlation across metabolic changes in the
OV and SI groups for the whole metabolite profile
(R*=0.76, P <0.01, Figure 2(1)). The correlation heatmap
showed a percentage of positive links (P <0.05) of only
22.1% for all metabolites (Figure 2(h)).

Six molecules (fumarate, alpha-ketoglutarate, AMP,
PEP, L-malic acid, and pyruvate) showed significant associ-
ations with PKLR expression in hepatocytes. The FCs of
the candidate components are presented in Figure 2(p). Pos-
itive interconnections were observed in 84% of links among
the candidate metabolites. AMP was inversely correlated
with the other five components (Figure 2(i)).

We performed enrichment analysis of the candidate metab-
olites (Figure 2(j)) and showed that the TCA cycle and pyruvate
metabolism were the most involved pathways for the candidate
metabolites (P < 0.001, impact > 0.15, Figure 2(n), Table S6).
Pyruvate and PEP were overlapped in referred TCA cycle,
pyruvate metabolism, and glycolysis pathways (Figure 2(q)).
Further assessment of the dynamic composite index of the
energy metabolites showed significant increments in the
pyruvate/PEP and ATP/ADP ratios in cells with PKLR
upregulation (P < 0.05, Figures 2(m) and 2(n)).

3.5. Transcriptomic Data and Integrative Pathway Analysis
Based on Multiomic Datasets Categorized by PKLR Expression.
Based on DEGs from RNA-seq data, GSEA identified 10 and
15 KEGG pathways that were significantly associated with
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FiGure 1: Comprehensive analysis on nontargeted metabolomic results in cells with PKLR variations. (a) PCA revealed clear separation in
nontargeted metabolomic data from hepatocytes with overexpressed PKLR, dots in blue [2] represented the samples with overexpressed
PKLR, and dots in green [1] represented the corresponded NC samples. (b) Validation of OPLS-DA model by class permutation analysis
for (a). (c) PCA revealed clear separation in nontargeted metabolomic data from hepatocytes with overexpressed PKLR, dots in blue [2]
represented the samples with downregulated PKLR, and dots in green [1] represented the corresponded NC samples. (d) Validation of
OPLS-DA model by class permutation analysis for (c). (e) Correlation on FC of each metabolite in the group with PKLR overexpression
and downregulation. (f) Heatmap of metabolites showed significant association with PKLR overexpression. (g) Heatmap of metabolites
showed significant association with PKLR downregulation. (h) Heatmap of metabolites showed both significant associations with PKLR
overexpression/downregulation. (i) Volcano plot to visualize both FC and significance for each metabolite compared between hepatocytes
with PKLR overexpression and corresponded NC, red dots represented significantly higher metabolites (FC > 1.6, P < 0.05) in the group
with overexpressed PKLR, green dots represented significantly lower metabolites (FC < 0.625, P < 0.05) in the group with overexpressed
PKLR. (j) Volcano plot to visualize both FC and significance for each metabolite compared between hepatocytes with PKLR
downregulation and corresponded NC, red dots represented significantly higher metabolites (FC>1.6, P <0.05) in the group with
downregulated PKLR, and green dots represented significantly lower metabolites (FC < 0.625, P < 0.05) in the group with downregulated
PKLR. (k) Correlation heatmap for the top 20 metabolites that are associated with PKLR overexpression; the table is color coded by
correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the heatmap.
(1) Correlation heatmap for the top 20 metabolites that are associated with PKLR downregulation; meaning of legend was the same as (j).
(m) Correlation heatmap for the top 20 metabolites that are both associated with PKLR overexpression/downregulation; meaning of
legend was the same as (j). (n) Metabolites showed to have association with PKLR overexpression/downregulation by KEGG ID. (o)
Overlapped metabolites between PKLR OV and SI groups. (p) Pathway analysis from nontargeted metabolomics based on positive
metabolites that are associated with PKLR expression. (q) Details of pathway on glycerophospholipid metabolism and positive
metabolites associated with PKLR expression. (r) Details of pathway on linoleic acid metabolism and positive metabolites associated with
PKLR expression. Abbreviations: FC: fold change; NC: negative control; OV: overexpression; PCA: principal component analysis; SI: silence.
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Ficure 2: Comprehensive analysis on targeted metabolomic results in cells with PKLR variations. (a) PCA revealed clear separation in
targeted metabolomic data from hepatocytes with overexpressed PKLR (OV), dots in green [2] represented the samples with
overexpressed PKLR, and dots in blue [1] represented the corresponded NC samples. (b) Validation of OPLS-DA model by class
permutation analysis for (a). (c) PCA revealed clear separation in targeted metabolomic data from hepatocytes with downregulated
PKLR (SI), dots in green [2] represented the samples with downregulated PKLR, and dots in blue [1] represented the corresponded NC
samples. (d) Validation of OPLS-DA model by class permutation analysis for (c). (e) Heatmap for comparison between samples from
OV group and corresponded NC in all enrolled metabolites. (f) Heatmap for comparison between samples from SI group and
corresponded NC in all enrolled metabolites. (g) Heatmap for comparison between samples from OV and SI groups in all enrolled
metabolites. (h) Correlations on log-transformed FCs of each metabolite from OV and SI groups. (i) Overlapped positive metabolites
compared in (f)/(g)/(h). (j) Correlation heatmap for all enrolled metabolites from targeted metabolomics; the table is color coded by
correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the heatmap.
(k) Correlation heatmap for positive metabolites from targeted metabolomics that are associated with PKLR variations; the table is color
coded by correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the
heatmap. (1) Details on variations of positive metabolites in different comparisons categorized by PKLR expression (OV vs. NC/SI vs.
NC/OV vs. SI); # represented insignificant FC in comparison. (m) Rank of pathways based on positive metabolites from targeted
metabolomics by enrichment ratios. (n) Pathway analysis based on positive metabolites from targeted metabolomics that are associated
with PKLR expression. (0) Details of pathway on TCA cycle and positive metabolites that are associated with PKLR expression. (p)
Details of pathway on pyruvate metabolism and positive metabolites that are associated with PKLR expression. (q) Venn plot for those
overlapped across the positive metabolites from pathways A (TCA cycle), B (pyruvate metabolism), and C (glycolysis). (r) PEP-to-
pyruvate ratio presented in different comparisons (OV vs. NC/SI vs. NC). (s) ATP-to-ADP ratio presented in different comparisons (OV
vs. NC/SI vs. NC). (t) NADPH-to-NADP+ ratio presented in different comparisons (OV vs. NC/SI vs. NC). Abbreviations: FC: fold
change; NC: negative control; OV: overexpression; PCA: principal component analysis; PEP: phosphoenolpyruvate; SI: silence; TCA:
tricarboxylic acid cycle.

PKLR expression, respectively (P <0.05). Following PKLR
alterations, pathways relating to metabolism, glycine/serine/-
threonine metabolism, peroxisome proliferator-activated recep-
tor signaling, and butanoate and neuroactive ligand-receptor
interaction were shown to be overlapped candidates with con-
sistent trends in both the OV and SI groups (Table S7,
Figures S3 and S4, and Figure 3).

Molecular pathways were imputed and visualized using
online tools (MetaboAnalyst and Pathview) [29, 32], based
on the integration of differential metabolites and genes
related to PKLR variations in omics data from HepG2 cells.

Pathway imputation was first performed by integrative
evaluation of clustered significant metabolites and genes from

omics data in the OV and SI groups, respectively, via the
online toolkit MetaboAnalyst (https://www.metaboanalyst
.ca/; Tables S8-S11), and the imputed pathways were then
merged in accordance with the datasets from the OV and SI
groups (Tables S12 and S13). For nontargeted metabolomic
data, glycerophospholipid and linoleic acid metabolism were
significant pathways including metabolites in both the OV
and SI groups. Notably, C00157 (glycerophospholipid) was
involved as an overlapped potential metabolite in selected
pathways based on data from both the OV and SI groups
(Figures 3(a) — 3(d), Table S12).

Similarly, PKLR expression was significantly related to
five pathways, including glycolysis, pyruvate metabolism,


https://www.