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Background. Pyruvate kinase L/R (PKLR) has been suggested to affect the proliferation of hepatocytes via regulation of the cell
cycle and lipid metabolism. However, its impact on the global metabolome and its clinical implications remain unclear. Aims. We
aimed to clarify the genetic impact of PKLR on the metabolomic profiles of hepatoma cells and its potential effects on grafts for
liver transplantation (LT). Methods. Nontargeted and targeted metabolomic assays were performed in human hepatoma cells
transfected with lentiviral vectors causing PKLR overexpression and silencing, respectively. We then constructed a molecular
network based on integrative analysis of transcriptomic and metabolomic data. We also assessed the biological functions of PKLR
in the global metabolome in LT grafts in patients via a weighted correlation network model. Results. Multiomic analysis revealed
that PKLR perturbations significantly affected the pyruvate, citrate, and glycerophospholipid metabolism pathways, as crucial steps
in de novo lipogenesis (DNL). We also confirmed the importance of phosphatidylcholines (PC) and its derivative lyso-PC supply
on improved survival of LT grafts in patients. Coexpression analysis revealed beneficial effects of PKLR overexpression on
posttransplant prognosis by alleviating arachidonic acid metabolism of the grafts, independent of operational risk factors.
Conclusion. This systems-level analysis indicated that PKLR affected hepatoma cell viability via impacts on the whole process of
DNL, from glycolysis to final PC synthesis. PKLR also improved prognosis after LT, possibly via its impact on the increased
genesis of beneficial glycerophospholipids.
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1. Introduction

The liver acts as the central hub organ for the complex energy
metabolism networks in human bodies [1]. Disruptions to
lipid and glucose metabolism may have comprehensive inter-
related effects on many physiological and pathological condi-
tions in the liver. Energy metabolism can regulate hepatocyte
inflammation, proliferation, and apoptosis by affecting the fuel
provision, and the metabolic network has been shown to be
involved in the whole profile of morbidity, from simple steato-
sis to end-stage liver malignancy [2].

Pyruvate kinase (PK) is a vital rate-limiting enzyme regu-
lating glycolysis. PK catalyzes the biochemical process by
transferring phosphate groups from phosphoenolpyruvate
(PEP) to ADP, to yield ATP and pyruvate [3]. Pyruvate is
located at the crossroads of energy metabolism and provides
the raw material in the tricarboxylic acid (TCA) cycle to
support cellular energy production. PK is encoded by different
isoforms [4], of which PKM2 and PKLR are coexpressed in the
liver (https://www.proteinatlas.org/). PKLR was proven to
have a wide association with a spectrum of liver damage from
steatosis and inflammation to fibrosis via its regulation on
mitochondrial dysfunction and subsequent hepatic triglycer-
ide accumulation, based onmultiomic data at systematic levels
[5, 6]. We also identified PKLR as a potential liver-specific
target for treating hepatocellular carcinoma and nonalcoholic
fatty liver disease [7]. Transcriptomic data further revealed
that PKLR might affect cell viability via regulating liver mito-
chondrial function [8]. However, its potential effects on net-
works of metabolites with executive biological functions
remain unclear and worthy of further investigation.

Liver transplantation (LT) provides the treatment of last
resort for patients with end-stage liver disease, and graft
quality is an important determinant predicting posttrans-
plant prognosis [9, 10]. Energy metabolism has been shown
to affect graft quality and postoperative outcomes after LT
[11], and reduced pyruvate or increased lactate/pyruvate
ratio predicted more severe ischemia/reperfusion damage
in liver grafts [12, 13]. As a key gene involved in the regula-
tion of glycolysis and intracellular mitochondrial function
[8], we postulated a potential link between PKLR and energy
output in liver grafts, which might affect posttransplant out-
comes. Metabolomic analysis of grafts might help to eluci-
date the mechanism responsible for these effects.

Advanced high-throughput omics data provide a novel
approach for unveiling the biological functions and molecular
mechanisms involved in complex phenotypes, based on the
genome, proteome, and metabolome [14, 15]. Integration of
transcriptomic and metabolomic data might provide convinc-
ing evidence to allow the construction of a reliable network
covering the biological process from the encoding gene to
the final metabolic product, with mutual validation [16, 17].
Omics data might also be used to construct networks to
improve the efficiency of diagnostic or prognostic predictions
for specific diseases, by integrating clinical information from
individual patients [17, 18]. Weighted gene coexpression net-
work analysis (WGCNA) is a topological algorithm that can
be used to investigate clinical-omics interactions in a scale-
free network and is widely used in expression and metabolo-

mic studies by modularization of coexpressed metabolites in
clinical studies [19, 20]. The current study is aimed at applying
integrative multiomics and the WGCNA algorithm to investi-
gate the mechanism responsible for the genetic impact of
PKLR on liver function, as well as its potential significance
in terms of graft quality and posttransplant outcomes.

We assessed the molecular function of PKLR on global
metabolites by integrating untargeted and targeted metabolo-
mic and transcriptomic data in human hepatoma cells over- or
underexpressing PKLR.We also evaluated the impact of PKLR
on the LT graft metabolome, based on a scale-free network
model. The results of this study might clarify the regulatory
mechanism by which PKLR affects global liver metabolism
and its potential effects on LT graft survival.

2. Materials and Methods

2.1. Study Design. A study-flow diagram is presented in
Figure S1. HepG2 cells were transfected with short hairpin
RNA (shRNA) and plasmids via lentiviral particles to
silence or overexpress PKLR, respectively. Global and
energy metabolites were measured in the transfected cells.
Multiomic analysis was then performed by combining the
results with previously published transcriptomic data for
HepG2 cells with PKLR perturbation [8].

We also carried out untargeted metabolomic analysis in
LT grafts and applied the WGCNA algorithm integrated
with clinical information for patients who received LT grafts.
Metabolites in positive modules were extracted for pathway
analysis. Finally, hub metabolites were defined as overlap-
ping differential substrates in cells and livers by classification
of PKLR expression.

2.2. Cell Culture and Construction of Cellular Models with
PKLR Perturbation. The effects of modification of PKLR
expression were determined in HepG2 cells. In brief, HepG2
cells were cultured in RPMI-1640 medium (R8758; Sigma-
Aldrich) including 10% fetal bovine serum (F8687, Sigma-
Aldrich). The cells were placed in a humidified incubator
at 37°C with 5% CO2.

PKLR expression levels in HepG2 cells were altered by
lentiviral transfection, and the cells were subjected to
subsequent metabolomic assay. Cells were transfected with
lentiviral particles including an open reading frame clone
or shRNA for PKLR, respectively, according to the manufac-
turer’s instructions (RC212337L2V for overexpression (OV)
and TL302463V for silencing (SI) of PKLR expression) (Ori-
Gene, USA). Corresponding control particles or scrambled
shRNA in empty vectors served as internal references for
transfection (PS100071V for OV (OV-NC), TR30021V for
SI (SI-NC), OriGene). The shRNA sequence used for SI is
presented in Table S1.

2.3. LT Cases and Clinical Information. All patients under-
went LT during January 1st, 2015, and March 1st, 2019. Sam-
ples for the metabolomic assay were collected from wedge
resections carried out for routine biopsy before transplanta-
tion. Exclusion criteria were (1) donor/recipient age < 18
years, (2) living donor LT, (3) split LT, (4) retransplantation,
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(5) multiorgan transplantation, (6) unavailable graft tissue,
(7) unavailable graft RNA, and (8) loss to follow-up after
LT. The study was carried out in accordance with the Decla-
ration of Helsinki, and the study protocol was approved by
the Institutional Review Board of our center (no. 2020-IIT-
1063). Seventy-nine LT cases were finally enrolled for the
metabolomic study.

Donor, recipient, allograft, and surgical information was
collected retrospectively frommedical records for each LT case.
Follow-up visits to assess posttransplant survival status and
duration of patients/grafts were managed by specialized staff.

Major complications, including early allograft dysfunc-
tion (EAD) and primary nonfunction (PNF), were also
assessed in each recipient postoperatively, based on liver
and coagulation function tests. More details of the defini-
tions of EAD/PNF have been described previously [21].
Detailed clinical data and follow-up information for the
enrolled cases are shown in Table 1.

2.4. Measurement of Key Gene Expression. Cells or tissues
were resolved in the TRIzol reagent (15596026; Invitrogen)
for RNA isolation. The subsequent RNA samples were puri-
fied using an RNeasy Mini Kit (74104; Qiagen), according to
the manufacturer’s instructions.

Expression of target genes was measured by quantitative
real-time polymerase chain reaction (qRT-PCR) using SYBR
Green Master Mix (1725121; Bio-Rad), with an integrative
detection system (CFX96; Bio-Rad). Primer sequences are
listed in Table S2. Gene expression was compared by the
delta-delta Ct method, as described previously [22], with
β-actin as an internal reference.

2.5. Metabolomic Analysis of Hepatoma Cells and Liver Tissues.
Nontargeted metabolomic assays were performed using hepa-
toma cells and LT graft tissues. Metabolic profiling was ana-
lyzed by liquid chromatography-mass spectrometry (LC-MS)
via coupled application of ultra-high-performance liquid chro-
matography (UHPLC) and QE plus system (Thermo Fisher
Scientific, USA) in both electrospray ionization-positive and
ionization-negative ion modes.

HepG2 cells were also assayed by energy-specific targeted
metabolomic analysis by LC-MS via UHPLC coupled to a
QTRAP system (AB Sciex, USA) based on multiple reaction
monitoring [23]. Assays were performed based on the mod-
ules developed by Shanghai Applied Protein Technology
Company, with coverage of 31 key metabolites in pathways
including glycolysis, TCA, and oxidative phosphorylation.
Information on the included energy metabolites is listed in
Table S3.

2.6. Statistical Comparisons. Nonnormally distributed data
were log-transformed. Normally distributed data were
described as the mean ± standard deviation and compared
by one-way ANOVA. Nonnormally distributed data were
described as median/(interquartile range) and compared
using the nonparametric Mann-Whitney U test. Relation-
ships between variables were assessed by correlation analysis
using Pearson’s, Spearman’s, and Kendall’s coefficients for
continuous, rank, and ordinal covariates, respectively. Sur-

vival analysis was performed using a Cox proportional
hazards regression model. And interactions between key
genes were imputed by a protein-protein interaction (PPI)
network via the STRING database [24].

2.7. Principal Component Analysis (PCA). PCA and orthog-
onal partial least-squares-discriminant analysis (OPLS-DA)
were performed to evaluate the discrimination of metabolo-
mic profiles separated by key traits using SIMCA-P software
(version 14.1, Umetrics, Sweden).

2.8. Network Construction for LT Grafts. WGCNA has been
shown to be suitable for constructing biological network
models based on gene expression and metabolomic datasets
[20]. We therefore used this algorithm to establish connec-
tions between PKLR expression and the global metabolome
of LT grafts in a scale-free model [25].

The LT graft metabolome was first divided into different
coexpressed modules, and the metabolite dendrogram
branches were cut to produce merged modules based on
thresholds defined by a degree of independence of 0.8. Differ-
ent modules were indicated by different colors in a heatmap.

We then carried out a correlation analysis between
merged modules and individual sample traits, including
genetic and phenotypic expression. Clustering analysis was
performed based on merged module categories for the 100
top selected metabolites.

The metabolite significance (MS) and module member-
ship (MM) were defined as the correlation of each metabolite
with individual traits (especially for PKLR expression) or
module eigengene, respectively. The significance of the corre-
lation between MS and MM was developed as an indicator to
evaluate intramodule connectivity. We also assessed intermo-
dule connectivity by correlation analysis. Significant modules
were then selected for further pathway and hub metabolite
investigation. More details of the application of WGCNA to
metabolomic data have been published previously [20].

2.9. Enrichment, Pathway Analysis, and Network Construction
Based onMultiomic Datasets. Based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, clusters of potential
metabolites were enriched for pathway imputation via the
online toolkit “MetaboAnalyst” (https://www.metaboanalyst
.ca/) [26]. Differentially expressed gene sets (DEGs) were
imputed by the analysis of transcriptomic data for HepG2 cells
with PKLR alterations in our previous study [8]. Potential path-
ways were also enriched by Gene Set Enrichment Analysis
(GSEA) using the “clusterProfiler” package based on significant
candidate genes detected by RNA-seq [27, 28]. Joint pathway
analysis was then used to combine differentially expressed traits
from multiomic datasets in cells with PKLR perturbations, and
pathway maps integrating transcriptomics and metabolomic
data were visualized using “Pathview” (https://pathview.uncc
.edu/), according to the developer’s instructions [29].

We also visualized the regulatory network and screening
of hub metabolites using Cytoscape (v 3.8.0) [30]. Based on
metabolites with significant internal correlations (P < 0:05),
networks were constructed based on targeted (for cells)
and untargeted (for cells/liver tissues) metabolomic analyses
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Table 1: Clinical features of liver transplant cases.

Covariates Characteristics

Recipients (R)

R-age (years) 47:7 ± 12:1
R-gender (M/F) 67/12

R-BMI (kg/m2) 23:5 ± 3:1
R-HBV infector (Y/N) 62/17

R-blood type (A/B/O/AB) 33/8/33/5

R-MELD score 33 (27-40)

R-Child-Pugh score 11 (10-12)

Indication for LT

(Viral hepatitis-related cirrhosis/cholestatic cirrhosis/liver failure/liver cancer/others) 24/5/12/13

Donors (D)

D-age (years) 41:7 ± 13:7
D-gender (M/F) 67/12

D-BMI (kg/m2) 23:2 ± 2:7
D-HBV infector (Y/N) 11/68

D-blood type (A/B/O/AB) 27/10/31/11

D-ALT (U/L) 40.0 (25.0-66.0)

D-TB (μmol/L) 17.2 (11.0-23.1)

D-CR (μmol/L) 87.0 (56.3-151.6)

D-BUN (mmol/L) 8.4 (5.2-11.0)

D-sodium (mmol/L) 146 (138-152)

D-potassium (mmol/L) 3.8 (3.7-4.3)

Grafts (G)

PKLR-RQ 1.0 (0.3-9.4)

PKM-RQ 1.0 (0.5-3.0)

Steatosis (MaS/MiS/none) 35/9/35

Donation type (DCD/DBD) 57/22

Surgery

Surgical duration (min) 303 (272-375)

CIT (min) 652 (567-744)

WIT (min) 7 (1-12)

Blood loss (mL) 1500 (800-2500)

Blood product transfusion

FFP (mL) 780 (540-1120)

RBC (U) 5 (2-8)

PCC (U) 2000 (900-3000)

ALB (g) 125 (75-150)

FIB (g) 5 (0.5-10)

Posttransplant events

Peak TB (μmol/L) 211 (125-387)

Peak ALT (U/L) 2571 (1972-3255)

Peak AST (U/L) 6284 (4485-9712)

EAD (Y/N) 50/29

PNF (Y/N) 10/69

Follow-up duration (d) 308 (35-980)

Data in normal distribution was presented bymean ± SD, and data in nonnormal distribution was presented by median (IQR (interquartile range)). Abbreviations:
ALB: albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; CIT: cold ischemia time; D: donor; DBD: donation after
brain death; DCD: donation after cardiac death; EAD: early allograft dysfunction; F: female; FFP: fresh frozen plasma; FIB: fibrinogen; HBV: hepatitis B virus; LT:
liver transplantation; M: male; MELD: model for end-stage liver disease; PCC: prothrombin complex; PNF: primary liver graft nonfunction; R: recipient; RBC: red
blood cell; RQ: relative quantity; TB: total bilirubin; WIT: warm ischemia time.
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using the “cytoHubba” module, respectively. Hub metabo-
lites were then screened using appropriate algorithms in
the cytoHubba module. Regulatory networks were also
incorporated based on metabolites correlated with key traits
in prior pathway analysis.

Descriptive data and their interactive relationships were
visualized using heatmaps, bar charts, Venn diagrams, and
volcano, bubble, and scatter plots. Regarding the statistical
methods, more details of the availability of the online and
locally installed toolkits, packages, and algorithms used for
data interpretation are listed in Table S4.

2.10. High-Glucose Treatment, Oil Red O Staining, and
Biochemical Tests. Cellular models with PKLR perturbations
(OV, SI, and corresponding NC, see Section 2.2) were prepared
in six-well plates at 80% confluence and incubated in high-
glucose medium (50mmol/L for D-glucose, G7021; Sigma-
Aldrich) for 48h. The cells were then assayed for steatosis by
oil red O staining, as described previously [31]. The severity
of steatosis was assessed quantitatively as the ratio of the area
between lipid droplets and hepatocytes in the same micro-
scopic field. Meanwhile, cellular triglyceride (TG) and total
cholesterol (TC) were measured, respectively, according to
the instruction provided by commercial kits (E1013, E1015,
Applygen). All experiments were repeated in triplicates.

3. Results

3.1. Creation of Cell Models with Altered PKLR Expression.Cell
models were created by transfection with lentiviral particles to
generate stable changes in PKLR expression. Compared with
NC samples, transfection with open reading frame particles
resulted in an increase of PKLP of about 4.7-fold, while trans-
fection with shRNA caused an approximately 70% decrease in
PKLR mRNA expression (both P < 0:05, Figure S2).

3.2. Clinical Features of LT Patients. The LT cases are
described in Table 1. Briefly, most surgeries were performed
in nonelderly adults (aged <60 years). Elderly recipients and
donors accounted for 7.6% and 13.9% of the whole cohort.
The average follow-up duration was around 10 months
(308 days). Most recipients (79%) and 14% of donors were
hepatitis B-positive.

3.3. Untargeted Metabolomic Profiling in Hepatoma Cells. The
whole metabolite profile of HepG2 cells was assayed by non-
targeted metabolomic analysis. As shown in Figure 1, PCA
by OPLS-DA plot revealed that the metabolomic profile could
be clearly separated based on PKLR expression (Figures 1(a)
and 1(c)). This was validated by permutation analysis
(R2 = 0:75,Q2 = −0:37 for the OV group, R2 = 0:77,Q2 = −
0:52 for the SI group, Figures 1(b) and 1(d)). After adjustment
by quality control (QC) samples, 960 and 954 metabolites
were matched from the Human Metabolome Database
(HMDB) in the OV and SI groups, respectively.

Up-/downregulation of PKLR had no significant effect on
the metabolomic perspective (P > 0:05, Figure 1(e)). Normal-
ized quantities of identified differential metabolites in the OV
and SI groups and their intersection were clustered and pre-
sented in heatmaps (Figures 1(j) – 1(l)). Overall, the changes

in potential metabolites in cells with altered PKLR expression
differed from those in the NC samples. We also demonstrated
the significance (fold change/P value) for each metabolite in a
volcano plot. Notably, prominent elevations (FC > 2, P < 0:05)
were observed in fewer metabolites in cells with PKLR down-
regulation (16 vs. 72 between metabolites with increased and
decreased levels, Figure 1(n)). Further correlation analysis
found that about half of the positive connections were pre-
sented among the top 20 metabolites (P < 0:05, 51.6%,
48.9%, and 50% for OV, SI, and overlapped components,
respectively, Figures 1(o) – 1(q)).

When categorized according to the KEGG database, the
Venn diagram found 12 metabolites that overlapped as key
molecules in the OV and SI groups (Figure 1(f), Table S5).
Pathway analysis revealed that the overlapped metabolites
between the OV and SI groups were involved in
glycerophospholipid metabolism (P < 0:05, impact value =
0:11, Figures 1(g) and 1(h)), with five metabolites having
consistent/reverse directions with PKLR variation (Figure 1(r)).

3.4. Targeted Metabolomic Analysis of Energy Metabolism in
HepG2 Cells. Targeted metabolomic analysis of molecules
involved in energy metabolism (Table S3) was carried out
using a kit developed by Shanghai Applied Protein
Technology Company. As shown in Figure 2, PCA revealed
that samples could be clearly separated according to PKLR
expression in the OPLS-DA model (Figures 2(a) and 2(c)),
and the significance of the PCA results was validated by
permutation tests (R2 = 0:72,Q2 = −1:92 for the OV group,
R2 = 0:76,Q2 = −3:45 for the SI group, Figures 2(b) and 2(d)).

All the enrolled metabolites were presented in a clus-
tered heatmap (Figures 2(e) – 2(g)). There was a signifi-
cant inverse correlation across metabolic changes in the
OV and SI groups for the whole metabolite profile
(R2 = 0:76, P < 0:01, Figure 2(l)). The correlation heatmap
showed a percentage of positive links (P < 0:05) of only
22.1% for all metabolites (Figure 2(h)).

Six molecules (fumarate, alpha-ketoglutarate, AMP,
PEP, L-malic acid, and pyruvate) showed significant associ-
ations with PKLR expression in hepatocytes. The FCs of
the candidate components are presented in Figure 2(p). Pos-
itive interconnections were observed in 84% of links among
the candidate metabolites. AMP was inversely correlated
with the other five components (Figure 2(i)).

We performed enrichment analysis of the candidate metab-
olites (Figure 2(j)) and showed that the TCA cycle and pyruvate
metabolism were the most involved pathways for the candidate
metabolites (P < 0:001, impact > 0:15, Figure 2(n), Table S6).
Pyruvate and PEP were overlapped in referred TCA cycle,
pyruvate metabolism, and glycolysis pathways (Figure 2(q)).
Further assessment of the dynamic composite index of the
energy metabolites showed significant increments in the
pyruvate/PEP and ATP/ADP ratios in cells with PKLR
upregulation (P < 0:05, Figures 2(m) and 2(n)).

3.5. Transcriptomic Data and Integrative Pathway Analysis
Based on Multiomic Datasets Categorized by PKLR Expression.
Based on DEGs from RNA-seq data, GSEA identified 10 and
15 KEGG pathways that were significantly associated with
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Figure 1: Comprehensive analysis on nontargeted metabolomic results in cells with PKLR variations. (a) PCA revealed clear separation in
nontargeted metabolomic data from hepatocytes with overexpressed PKLR, dots in blue [2] represented the samples with overexpressed
PKLR, and dots in green [1] represented the corresponded NC samples. (b) Validation of OPLS-DA model by class permutation analysis
for (a). (c) PCA revealed clear separation in nontargeted metabolomic data from hepatocytes with overexpressed PKLR, dots in blue [2]
represented the samples with downregulated PKLR, and dots in green [1] represented the corresponded NC samples. (d) Validation of
OPLS-DA model by class permutation analysis for (c). (e) Correlation on FC of each metabolite in the group with PKLR overexpression
and downregulation. (f) Heatmap of metabolites showed significant association with PKLR overexpression. (g) Heatmap of metabolites
showed significant association with PKLR downregulation. (h) Heatmap of metabolites showed both significant associations with PKLR
overexpression/downregulation. (i) Volcano plot to visualize both FC and significance for each metabolite compared between hepatocytes
with PKLR overexpression and corresponded NC, red dots represented significantly higher metabolites (FC > 1:6, P < 0:05) in the group
with overexpressed PKLR, green dots represented significantly lower metabolites (FC < 0:625, P < 0:05) in the group with overexpressed
PKLR. (j) Volcano plot to visualize both FC and significance for each metabolite compared between hepatocytes with PKLR
downregulation and corresponded NC, red dots represented significantly higher metabolites (FC > 1:6, P < 0:05) in the group with
downregulated PKLR, and green dots represented significantly lower metabolites (FC < 0:625, P < 0:05) in the group with downregulated
PKLR. (k) Correlation heatmap for the top 20 metabolites that are associated with PKLR overexpression; the table is color coded by
correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the heatmap.
(l) Correlation heatmap for the top 20 metabolites that are associated with PKLR downregulation; meaning of legend was the same as (j).
(m) Correlation heatmap for the top 20 metabolites that are both associated with PKLR overexpression/downregulation; meaning of
legend was the same as (j). (n) Metabolites showed to have association with PKLR overexpression/downregulation by KEGG ID. (o)
Overlapped metabolites between PKLR OV and SI groups. (p) Pathway analysis from nontargeted metabolomics based on positive
metabolites that are associated with PKLR expression. (q) Details of pathway on glycerophospholipid metabolism and positive
metabolites associated with PKLR expression. (r) Details of pathway on linoleic acid metabolism and positive metabolites associated with
PKLR expression. Abbreviations: FC: fold change; NC: negative control; OV: overexpression; PCA: principal component analysis; SI: silence.
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PKLR expression, respectively (P < 0:05). Following PKLR
alterations, pathways relating to metabolism, glycine/serine/-
threoninemetabolism, peroxisome proliferator-activated recep-
tor signaling, and butanoate and neuroactive ligand-receptor
interaction were shown to be overlapped candidates with con-
sistent trends in both the OV and SI groups (Table S7,
Figures S3 and S4, and Figure 3).

Molecular pathways were imputed and visualized using
online tools (MetaboAnalyst and Pathview) [29, 32], based
on the integration of differential metabolites and genes
related to PKLR variations in omics data from HepG2 cells.

Pathway imputation was first performed by integrative
evaluation of clustered significant metabolites and genes from

omics data in the OV and SI groups, respectively, via the
online toolkit MetaboAnalyst (https://www.metaboanalyst
.ca/; Tables S8–S11), and the imputed pathways were then
merged in accordance with the datasets from the OV and SI
groups (Tables S12 and S13). For nontargeted metabolomic
data, glycerophospholipid and linoleic acid metabolism were
significant pathways including metabolites in both the OV
and SI groups. Notably, C00157 (glycerophospholipid) was
involved as an overlapped potential metabolite in selected
pathways based on data from both the OV and SI groups
(Figures 3(a) – 3(d), Table S12).

Similarly, PKLR expression was significantly related to
five pathways, including glycolysis, pyruvate metabolism,
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Figure 2: Comprehensive analysis on targeted metabolomic results in cells with PKLR variations. (a) PCA revealed clear separation in
targeted metabolomic data from hepatocytes with overexpressed PKLR (OV), dots in green [2] represented the samples with
overexpressed PKLR, and dots in blue [1] represented the corresponded NC samples. (b) Validation of OPLS-DA model by class
permutation analysis for (a). (c) PCA revealed clear separation in targeted metabolomic data from hepatocytes with downregulated
PKLR (SI), dots in green [2] represented the samples with downregulated PKLR, and dots in blue [1] represented the corresponded NC
samples. (d) Validation of OPLS-DA model by class permutation analysis for (c). (e) Heatmap for comparison between samples from
OV group and corresponded NC in all enrolled metabolites. (f) Heatmap for comparison between samples from SI group and
corresponded NC in all enrolled metabolites. (g) Heatmap for comparison between samples from OV and SI groups in all enrolled
metabolites. (h) Correlations on log-transformed FCs of each metabolite from OV and SI groups. (i) Overlapped positive metabolites
compared in (f)/(g)/(h). (j) Correlation heatmap for all enrolled metabolites from targeted metabolomics; the table is color coded by
correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the heatmap.
(k) Correlation heatmap for positive metabolites from targeted metabolomics that are associated with PKLR variations; the table is color
coded by correlation according to the color legend; legend on intensity and direction of correlations is indicated on the right side of the
heatmap. (l) Details on variations of positive metabolites in different comparisons categorized by PKLR expression (OV vs. NC/SI vs.
NC/OV vs. SI); # represented insignificant FC in comparison. (m) Rank of pathways based on positive metabolites from targeted
metabolomics by enrichment ratios. (n) Pathway analysis based on positive metabolites from targeted metabolomics that are associated
with PKLR expression. (o) Details of pathway on TCA cycle and positive metabolites that are associated with PKLR expression. (p)
Details of pathway on pyruvate metabolism and positive metabolites that are associated with PKLR expression. (q) Venn plot for those
overlapped across the positive metabolites from pathways A (TCA cycle), B (pyruvate metabolism), and C (glycolysis). (r) PEP-to-
pyruvate ratio presented in different comparisons (OV vs. NC/SI vs. NC). (s) ATP-to-ADP ratio presented in different comparisons (OV
vs. NC/SI vs. NC). (t) NADPH-to-NADP+ ratio presented in different comparisons (OV vs. NC/SI vs. NC). Abbreviations: FC: fold
change; NC: negative control; OV: overexpression; PCA: principal component analysis; PEP: phosphoenolpyruvate; SI: silence; TCA:
tricarboxylic acid cycle.
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Figure 3: Continued.
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the TCA cycle, arginine biosynthesis, and butanoate metab-
olism, with the inclusion of candidate metabolites identified
by multiomic analysis in both the OV and SI groups for tar-
geted metabolomic data (Figures 3(e) – 3(n), Table S13).

All metabolites involved in glycolysis and pyruvate
metabolism were included in the TCA process. Intriguingly,
AMP, as the only molecule affected in the opposite direction
to the other metabolites, was not involved in any of the inte-
grated pathways. Further clustering analysis showed that the
supporting metabolites in arginine biosynthesis differed
from the compounds involved in the TCA cycle, glycolysis,
and pyruvate metabolism, while alpha-ketoglutarate played
a key role in linking the two different pathway clusters
(Figure 3(o)). Finally, the selected pathways were visualized
using Pathview (https://pathview.uncc.edu/). Details of the
key pathways are shown in Figure 3.

3.6. Metabolomic Validation in LT Grafts. The genetic impacts
of PKLR on clinical and metabolomic profiles of LT grafts are
shown in Figure 4. Perioperative features, including blood los-

s/transfusion, surgical duration, and indicators of coagula-
tion/liver function, showed close mutual connections with
each other (P < 0:05, Figure 4(a)). Details of the correlations
between the genetic and clinical indicators are presented in
Figure S5. There was a weak association between PKLR and
PKM, as another PK-encoding gene in the liver (P > 0:05,
Figure 4(b)). Survival analysis also showed that PKLR (but
not PKM) negatively affected posttransplant prognosis (HR
for PKLR: 0.39 (95% CI: 0.22-0.71), P < 0:05; HR for PKM:
1.05 (95% CI: 0.59-1.86), P > 0:05; Figures 4(c) and 4(d)),
and PKLR was negatively associated with the occurrence of
EAD (51% vs. 75% for higher vs. lower PKLR expression,
Figure 4(e)).

The hazard ratios (HRs) of higher PKLR expression for
posttransplant survival of patients and grafts (PS/GS) were
0.37 (95% confidence interval (CI): 0.24–0.64) and 0.49 (95%
CI: 0.32–0.81), respectively, while the risk was decreased in
patients with grafts with higher PKLR expression (PS/GS HR
= 0:37/0.49, Table S14). Further metabolomic analysis was
performed in grafts categorized by median PKLR expression.

alpha-ketoglutarateL-Malic acid Phosphoenolpyruvic acid

Fumaric acid

Adenosine monophosphate

Pyruvic acid

(o)

Figure 3: Integrative multiomic study in hepatocytes with PKLR perturbation. (a) Integrative transcriptomic and nontargeted metabolomic
analysis identified the variations on pathways of linoleic acid metabolism in hepatocytes with overexpressed PKLR. (b) Integrative
transcriptomic and nontargeted metabolomic analysis identified the variations on pathways of linoleic acid metabolism in hepatocytes
with downregulated PKLR. (c) Integrative transcriptomic and nontargeted metabolomic analysis identified the variations on pathways of
glycerophospholipid metabolism in hepatocytes with overexpressed PKLR. (d) Integrative transcriptomic and nontargeted metabolomic
analysis identified the variations on pathways of glycerophospholipid metabolism in hepatocytes with downregulated PKLR. (e)
Integrative transcriptomic and targeted metabolomic analysis identified the variations on pathways of glycolysis in hepatocytes with
overexpressed PKLR. (f) Integrative transcriptomic and targeted metabolomic analysis identified the variations on pathways of glycolysis
in hepatocytes with downregulated PKLR. (g) Integrative transcriptomic and targeted metabolomic analysis identified the variations on
pathways of citrate cycle in hepatocytes with overexpressed PKLR. (h) Integrative transcriptomic and targeted metabolomic analysis
identified the variations on pathways of citrate cycle in hepatocytes with downregulated PKLR. (i) Integrative transcriptomic and
targeted metabolomic analysis identified the variations on pathways of arginine biosynthesis in hepatocytes with overexpressed PKLR. (j)
Integrative transcriptomic and targeted metabolomic analysis identified the variations on pathways of arginine biosynthesis in
hepatocytes with downregulated PKLR. (k) Integrative transcriptomic and targeted metabolomic analysis identified the variations on
pathways of pyruvate metabolism in hepatocytes with overexpressed PKLR. (l) Integrative transcriptomic and targeted metabolomic
analysis identified the variations on pathways of pyruvate metabolism in hepatocytes with downregulated PKLR. (m) Integrative
transcriptomic and targeted metabolomic analysis identified the variations on pathways of butanoate metabolism in hepatocytes with
overexpressed PKLR. (n) Integrative transcriptomic and targeted metabolomic analysis identified the variations on pathways of butanoate
metabolism in hepatocytes with downregulated PKLR. (o) Network connection for variations of key metabolites from targeted
metabolomics in hepatocytes with overexpressed PKLR. In (a–n), the frame in rectangle represented the genes involved in pathways; the
frame in ellipse or circle represented the metabolites involved in pathways. In (o), the frame in green represented downregulation, and
the frame in red represented upregulation in cells with PKLR overexpression.
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Figure 4: Comprehensive analysis on nontargeted metabolomic results in grafts for transplantation classified by PK variations. (a) Heatmap
for correlation between interconnection between PKLR/PKM genes and clinical factors in LT; frame in ∗ represented the correlation with
statistical significance (P < 0:05). (b) Correlation analysis between log-transformed PKLR and PKM expression in grafts for LT. (c) Analysis
on grafts’ survival categorized by PKLR/PKM expression. (d) Analysis on patients’ survival categorized by PKLR/PKM expression. (e)
Distribution of EAD occurrence in patients categorized by PKLR/PKM expression. (f) Distribution of PNF occurrence in patients
categorized by PKLR/PKM expression. (g) PCA in patients categorized by PKLR expression, dots in blue represented the samples with
higher PKLR, and the dots in green represented the samples with lower PKLR. (h) Heatmap for clusters of metabolites significantly
associated with PKLR expression. (i) Volcano plot on visualization of both FC and significance for each metabolite compared between
higher and lower PKLR expression, red dots represented significantly higher metabolites (FC > 2, P < 0:05) in grafts with higher PKLR,
and green dots represented significantly lower metabolites (FC < 0:5, P < 0:05) in grafts with higher PKLR. (j) Correlation heatmap for
the top 20 metabolites associated with PKLR expression. (k) Overlap between significant metabolites in cells and grafts by KEGG
identification. (l) FC of C00157 and C04230 categorized by PKM/PKLR expression. (m) Scatter plot for correlation between log-
transformed PKLR and C00157 expression. (n) Scatter plot for correlation between log-transformed PKLR and C04230 expression. (o)
Scatter plot for correlation between log-transformed PKM and C00157 expression. (p) Scatter plot for correlation between log-
transformed PKM and C04230 expression. Abbreviations: EAD: early allograft dysfunction; FC: fold change; LT: liver transplantation;
PCA: principal component analysis; PNF: primary nonfunction.
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Figure 5: Weighted correlation network analysis on nontargeted metabolome of grafts and its connections with clinical factors. (a) Cluster
dendrogram obtained by dissimilarity based on consensus topological overlap with the corresponding modules indicated by the color row.
Each colored row represented a color-coded module containing a group of highly connected metabolites. (b) Relationships of consensus
module and clinical features of LT cases. Each row in the table corresponded to a consensus module, and each column corresponded to
a feature. The module name was shown on the left side for each cell. Numbers in the table reported the correlations of the corresponded
module and feature, with the P values printed below. The table is color coded by correlation according to the color legend. Intensity and
direction of correlations are indicated on the right side of the heatmap. (c) Dendrogram of consensus module and heatmap of the
adjacencies obtained by WGCNA on the consensus correlation. Numbers in the table reported the intermodule correlations, with the P
values printed below. The table was color coded by correlation according to the color legend indicated on the right side of the heatmap.
(d) Scatterplot of metabolite significance PKLR vs. MM in the green module. (e) Results for pathway enrichment based on metabolites in
the green module. (f) Details of arachidonic acid metabolism and related metabolites involved in module. (g) Scatterplot of metabolite
significance PKLR vs. MM in the brown module. (h) Scatterplot of metabolite significance PKLR vs. MM in the turquoise module. (i)
Coexpression network by top 20 nodes based on coexpressed links in positive metabolites from nontargeted metabolomics of
hepatocytes. (j) Coexpression network by top 10 nodes based on coexpressed links in positive metabolites from nontargeted
metabolomics of human grafts for transplantation. (k) Coexpression network centered by C00157 and C04230 based on coexpressed
links from nontargeted metabolomics of hepatocytes. (l) Coexpression network centered by C00157 and C04230 based on coexpressed
links from nontargeted metabolomics of grafts for transplantation. Abbreviations: LT: liver transplantation; MM: module membership.
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Figure 6: Genetic impact of pyruvate kinase L/R on the process of de novo lipogenesis. HepG2 cells with PKLR alteration were treated by
high-glucose medium (50mmol/L), respectively, for 48 hours. And lipogenic severity was evaluated by ORO staining. (a) ORO staining for
cells with overexpressed PKLR. (b) ORO staining for NC cells with overexpressed PKLR. (c) ORO staining for cells with suppressed PKLR.
(d) ORO staining for NC cells with suppressed PKLR. (e) Comparison of lipogenic severity between cells with overexpressed/suppressed
PKLR and their corresponded NC. (f) Comparison of hepatic TG between cells with overexpressed/suppressed PKLR and their
corresponded NC. (g) Comparison of hepatic TC between cells with overexpressed/suppressed PKLR and their corresponded NC. (h)
Comparison of key genes that located on DNL process between cells with overexpressed PKLR and their corresponded NC. (i)
Comparison of key genes that located on DNL process between cells with suppressed PKLR and their corresponded NC. (j) PPI network
between PKLR and selected genes that located on DNL process. (k) Speculated mechanism for the impact of PKLR on DNL process.
Stained cells were observed and scanned under a microscope (magnification: 400x); ∗ represented statistical significance for comparisons
between targeted cells and corresponded NC (P < 0:05); TG and TC were both evaluated in systems with 100 000 cells in 100 μL of
solution buffer. Frames in red represented the molecules with upregulations; frames in blue represented the molecules with
downregulations. Abbreviations: a-KG: alpha-ketoglutarate; DNL: de novo lipogenesis; G-6-P: glucose-6-phosphate; ORO: oil red O; NC:
negative control; OAA: oxaloacetate; PEP: phosphoenolpyruvate; PC: phosphatidylinositol; PKLR: pyruvate kinase L/R; PPI: protein-
protein interaction; TCA: tricarboxylic acid cycle; TC: total cholesterol; TG: triglyceride.
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PCA using the OPLS-DA model showed clear separation
across groups with higher and lower PKLR expression
(Figure 4(g)).

Among the 2513 metabolites identified by HMDB IDs, 45
differential metabolites (14 upregulated vs. 31 downregulated)
had significant associations with PKLR expression in the vol-
cano diagram (∣log2FC ∣ >1, P < 0:05, Figure 4(i)). Potential
metabolites seemed disperse and independent with less inter-
correlation (21.5% of positive links in top significant metabo-
lites, Figures 4(h) and 4(j)). According to KEGG identity, PC
(C00157) and 2-lysolecithin (C04230) were significantly over-
lapping components in both cells and LT grafts according to
PKLR expression (Figure 4(k)). Higher PKLR (but not PKM)
expression was associated with decreased C04230 and
increased C00157 (Figure 4(l), P < 0:05). These trends were
confirmed in scatter plots (P < 0:05, Figures 4(m) – 4(p)).

3.7. Weighted Metabolome Coexpression Network Analysis of
LT Grafts. We constructed a network model of the metabo-
lome for LT grafts by WGCNA, as a scale-free model. Seven
modules were detected based on predefined cut-off values of
0.8 (Figure 5(a)). Connectivity across eigengenes was checked
by cluster analysis. The brown, green, black, and blue modules
were differentiated but showed close interactions with a rela-
tively high correlation index (r > 0:6, Figure 5(c)).

We also assessed the relationships between the metabolite
modules and clinical indicators (Figure 5(b)). The brown,
black, and blue modules were significantly associated with
blood product transfusion and subsequent occurrence of
EAD, with increased metabolites in the turquoise module
indicating more transfusion of blood products and more
severe EAD. Notably, there was an inverse correlation between
PKLR expression and EAD occurrence in the green module,
which was independent of the transfusion of blood products.
The scatter plot showed significant correlations between mod-
ule membership and metabolite significance based on all
enrolled molecules in the green, brown, and turquoise mod-
ules (r = 0:50, 0.34, and 0.43, respectively, P < 0:05). Further
analysis also showed that the metabolites included in the green
module were enriched in the arachidonic acid (ARA) metabo-
lism pathway (Figures 5(e) and 5(f)).

3.8. Screening of Hub Metabolites Correlated with PKLR
Expression. Further networks of potential candidate metabo-
lites with differential expression in cells and graft tissues
according to PKLR variations were visualized using Cytos-
cape software [30].

For nontargeted metabolomic data, 2216 significantly
coexpressed links between positive metabolites in the OV
and SI groups in hepatocytes were imputed by correlation
tests (P for correlation < 0:05, Table S15). A coexpression
network was constructed using the MNC algorithm for the
top 20 nodes, including C00157 and C04230 (Figure 5(j)).
We also constructed a coexpression network using the
MCC algorithm for the top metabolites based on 139
positive links in LT grafts (Table S16). Consistent with the
data for cells, the key roles of C00157 and C04230 were
validated in tissues.

There was an inverse correlation between C00157 and
C04230 in liver cells and liver tissues. Furthermore, we also
created coexpression models for metabolites centered on
C00157 and C04230 as overlapped molecules in cells and liver
tissues (Figures 5(k) and 5(m)). Around 34% of metabolites
were associated with the variations in C00157 and C04230,
simultaneously (Table S17), and these cocorrelations were
more common in metabolites (80%) from transplanted grafts
(Table S18).

3.9. Cellular Lipogenesis Associated with PKLR Expression.
HepG2 cells with different PKLR expression levels were
incubated in high-glucose medium. And high-glucose levels
resulted in severer steatosis and higher cellular TG and TC
levels in cells overexpressing PKLR (P < 0:05, Figure 6). Sim-
ilarly, decreased fat accumulation with lower TG and TC
levels was also presented in cells with suppressed PKLR
(P < 0:05).

Combined with results from metabolomic and transcrip-
tomic data, we imputed and described the potential role of
PKLR in the DNL process.

Meanwhile, key genes with significance in transcrip-
tomic data on the DNL process were also validated to be
associated with PKLR perturbation by the qRT-PCR test.
Further PPI network analysis also revealed a close connec-
tion between PKLR and most selected genes on the DNL
process (Figure 6).

4. Discussion

4.1. Omics Study in HepG2 Cells.We previously found a posi-
tive correlation between PKLR expression and HepG2 cell via-
bility [8]; however, the role of metabolites in this connection
was unclear and worthy of further investigation. In the current
study, we systemically evaluated the biological function and
clinical implications of PKLR by combined transcriptomic
and metabolomic analysis of liver cells and tissues.

Glycerophospholipid and linoleic acid metabolism were
identified as pathways affected by changes in PKLR expression
in hepatic cells according to global transcriptome and metab-
olome analysis. The glycerophospholipid molecule (C00157)
was also positively correlated with PKLR expression. Targeted
study of energy metabolism also found that differential metab-
olites were enriched in TCA and pyruvate metabolism path-
ways. Diminished reaction was observed on candidate
metabolic pathways in cells with overexpressed PKLR. Inte-
grative analysis of RNA-seq and metabolomic data also sug-
gested that the PKLR mechanism could be extended to
involve the glycolysis, arginine biosynthesis, and butanoate
metabolism pathways, while alpha-ketoglutarate exerted a
key effect in regulating the coexpression network associated
with PKLR modulation by candidate energy metabolites.

4.2. LT Grafts and Liver Cell Line Results. Regarding LT
grafts, donor PKLR expression had a protective effect in
terms of posttransplant prognosis and was associated with
lower incidences of EAD, graft failure, and patient death.
Further network analysis by WGCNA found that the effect
of graft PKLR expression was independent of the effects of
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surgical factors, such as transfusion of blood products on
metabolomic perspectives. Metabolites in the PKLR-related
module (green) were enriched in ARA metabolism, and PC
(C00157) and 2-lysolecithin (C04230) were presented as
hub metabolites related to PKLR expression in both liver
cells and liver tissues.

4.3. Impact of PKLR on Glycerophospholipid and Linoleic
Acid Metabolism. We previously found that hepatic cell
growth was accelerated in cells overexpressing PKLR [8].
PC is a major component of biological membranes [33],
and PC synthesis is required for cell proliferation and differ-
entiation [34]. As an autotaxin of PC, increased lyso-PC also
affects the progression of the cell cycle [35]. Our combined
transcriptomic and metabolomic analysis accordingly sug-
gested that the positive impact of PKLR on cell growth might
be due to its upregulation of glycerophospholipid metabo-
lism, specifically by increasing PC (C00157) and its deacy-
lated derivative 2-lyso-PC (C04230). This extensive study
of PKLR function suggested that the causal link between
PKLR and accelerated cell growth might involve the genera-
tion of lipids required for the creation of cell membranes.

4.4. Impact of PKLR on Energy Metabolism by Targeted
Metabolomic Analysis. Given the crucial role of PKLR in
regulating energy metabolism, we carried out targeted meta-
bolomic analysis in cells with altered PKLR expression. Unsur-
prisingly, PK was activated in the presence of an increased
pyruvate/PEP ratio in cells overexpressing PKLR [36]. Mean-
while, a higher ATP/ADP ratio indicated improved aerobic
mitochondrial function and oxidative phosphorylation in cells
with upregulated PKLR [37]. Enhanced flux of anabolic and
synthetic metabolism seemed to be the main cellular feature
affected by PKLR. The TCA cycle and pyruvate metabolism
pathways were identified as the most likely pathways affected
by PKLR expression in hepatoma cells. As substrates in glycol-
ysis catalyzed by PK, PEP and pyruvate are both involved in
potential pathways related to PKLR. Interestingly, network
analysis revealed that alpha-ketoglutarate acted as a hub
metabolite in the cluster of potential candidates coexpressed
with PKLR. As a precursor of glutamate and glutamine [38],
alpha-ketoglutarate is a key molecule determining the rate of
the canonical TCA cycle [39]. PKLRmight thus determine cell
fate by regulating the production of the metabolic fuel supply
centered on alpha-ketoglutarate.

4.5. Imputative Mechanism for Impact of PKLR on Cellular
Metabolism. The results of metabolomic and transcriptomic
analyses can be related to de novo lipogenesis (DNL), and
PKLR might participate in activating the DNL process in
hepatic cells. DNL represents the process involving the con-
version of carbohydrate in the circulation to the formation
of lipids in the liver [40]. The current results of lipogenic
assays in hepatic cells confirmed that PKLR might be
involved in DNL activation under high-glucose-induced oxi-
dative stress (Figure 6).

Meanwhile, the generation of PC, as a major cell mem-
brane component and an end product of DNL, provides a
substrate for further cell growth and proliferation. The effi-

ciency of DNL depends on the TCA cycle [41, 42]. We
previously found that PKLR was coexpressed with Fatty
Acid Synthase (FASN) as the key gene of DNL in the liver
[7], and the current integrative multiomic analysis con-
firmed that PKLR per se was also involved in DNL. And this
speculation was also confirmed by further lipogenic assays
(Figure 6). PKLR exerted its positive effects by upregulating
the synthesis of PC at the expense of exhausting the
consumption of intermediates in the TCA cycle in mito-
chondria. The potential impact of PKLR on the DNL mech-
anism is shown in Figure 6(f).

4.6. WGCNA of LT Grafts. We constructed a network model
for the impact of PKLR on graft metabolism and survival in
LT cases. PKLR showed protective effects on posttransplant
outcomes. Clinically, intraoperative bleeding and transfu-
sion of blood products had significant impacts on graft sur-
vival. Coexpression network analysis also showed that the
functional module (green color) for PKLR was distinct from
modules for operational risk traits. Based on a metabolomic
perspective, our data indicated that PKLR might have an
independent impact on posttransplant prognosis, irrespec-
tive of surgical risk covariates.

Pathway analysis showed that metabolites in the PKLR-
related module were enriched in ARA metabolism, with mol-
ecules including prostaglandin G2 being activated in grafts
overexpressing PKLR. As a polyunsaturated fatty acid compo-
nent of membrane phospholipids, ARA plays vital roles as
substrates for cell survival, growth, and proliferation [43, 44].
ARA might also alleviate the inflammatory response via com-
plex regulation of relevant cytokines [45], and activation of
ARA metabolism has demonstrated anti-inflammatory effects
of PKLR in the liver, as a more complex system.

Interestingly, PKLR expression overlapped with PC
(C00157) in a consistent direction, indicating that PKLR
promoted the PC content in both cells and graft tissues.
However, the networks centered on the overlapped metabo-
lites (C00157 and C04230) differed between cells and LT
grafts. The comprehensive effects of PC on graft function
have been summarized previously [46]. The current results
suggested that PKLR might improve graft quality and post-
operative survival by positively regulating PC, as a major
component of the cell membrane. Further studies are needed
to clarify the interconnections among PKLR expression, liver
inflammation, and cell survival.

4.7. Genetic Functions of PKM and PKLR. PK occurs as four
isozymes with different organ specificities and encoded by
different genes (PKM/PKLR), with the liver expressing both
genes [3]. A recent study reviewed the multifaceted function
of the PKM gene in supporting cell growth and carcinogen-
esis and also noted its nonspecific occurrence throughout
the human body [47]. In contrast, we previously showed that
PKLR was a possible liver-specific target for disease therapy,
with PKLR inhibition potentially having more benefits and
fewer complications for the treatment of liver cancer [7].
The current study suggested that PKLR might exert its
unique effects on liver metabolomic independent of PKM2.
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However, further studies are needed to investigate the dis-
tinct properties of PK isozymes.

4.8. Strength of the Study in terms of Clinical Applications. The
current study had several strengths. First, the mechanistic
pathways of PKLR were derived from integrative analysis
based on transcriptomic and metabolomic data, thus provid-
ing mutual confirmation of the results. Second, the results of
targeted and nontargeted metabolomic data outlined the func-
tion of PKLR in the DNL process, from carbohydrate utiliza-
tion (TCA) to PC composition. Third, metabolomic data
from hepatocytes and liver tissues confirmed the reliability of
the potential metabolites by cross-validation at different levels.
Finally, the networkmodel was constructed by comprehensive
adjustment of surgical indicators to clarify the intrinsic genetic
function following artificial interventions.

4.9. Potential Limitations and Future Directions. Some poten-
tial limitations of this study should also be noted. First, as a
comprehensive analysis based on the whole molecule profile,
the multiomic data identified the most important candidate
pathways; however, functional experiments are needed to val-
idate the details of the intermolecular connections. Second,
WGCNA cannot be used in integrated omics data from
hepatic cell lines for relatively fewer samples and phenotypic
traits acquired. Third, some algorithms like Mendelian Ran-
domization (MR) might be useful for the elucidation of causal
links across transcriptomic and proteomic data by PKLR
perturbations [48–50]. However, the lack of proteomic data
limited the further use of MR on clarification of these causal-
ities. Fourth, the genetic function of PKLR cannot be assessed
in grafts after implantation for ethical reasons, and further
in vivo analysis using LT models (e.g., in rats or mice) could
help to elucidate the potential mechanisms. The results of
the current study revealed that PKLR might affect hepatoma
cell proliferation via its impact on lipogenesis, but further
in vitro and in vivo experiments are needed to clarify the reg-
ulatory mechanism of PKLR on the abovementioned path-
ways. Otherwise, transcriptional translation is complex, and
the role of N4-acetylcytidine (ac4C) as an important mRNA
regulator on the exertion of genetic effect of PKLR is also wor-
thy of further investigations [51].

4.10. Conclusion. In conclusion, this comprehensive integra-
tive transcriptomic andmetabolomic study showed that PKLR
might promote cell growth and proliferation by regulating
DNL. PC and lyso-PC played central roles as key mediators
in pathways affected by PKLR in both hepatoma cells and
LT grafts. PKLRmay thus promote graft survival via activating
ARA metabolism and relieving inflammation. Contrastingly,
PKLR might accelerate the progression of tumor cell growth
but might also improve the survival of grafts after LT. The
effects of altered PKLR expression on themetabolomic profiles
of hepatoma cells and grafts suggest the need to assess its func-
tion in specific scenarios.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding authors upon request.

Ethical Approval

The study protocol was established according to the ethical
guidelines of the Helsinki Declaration and was approved
by the Human Ethics Committee of First Affiliated Hospital,
School of Medicine, Zhejiang University.

Consent

Written informed consent was obtained from individual or
guardian participants.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

ZTL and SSZ conceived and designed the study; WCW, JJQ,
and SW performed experiment and extracted information;
ZTL, JSZ, HZ, and SPQ analyzed the data; ZTL and SPQ
wrote the manuscript; FZ, SYY, LZ, LG, and SSZ reviewed
the manuscript; SSZ provided the funding support. All of
the authors approved the final version of the manuscript
for submission. Zhengtao Liu, Junsheng Zhao, Wenchao
Wang, and Hai Zhu contributed equally to this work. All
authors have approved to publish this paper.

Acknowledgments

This study is supported by the Innovative Research Group Pro-
ject of the National Natural Science Foundation of China
(81721091), Major program of National Natural Science Foun-
dation of China (91542205), National S&T Major Project
(2017ZX10203205), National Natural Science Foundation of
China (81902813), Zhejiang International Science and Tech-
nology Cooperation Project (2016C04003), Zhejiang Provincial
Natural Science Foundation of China (LY18H030002), Grant
from Zhejiang Medical Association (2019ZYC-A81), Interna-
tional Youth Exchange Programme by China Association for
Science and Technology (2019), Tianqing Liver Diseases
Research Fund (TQGB20200114), Medical Health Science
and Technology Project of Health Commission of Zhejiang
Province (2021KY145), and Open Fund of Key laboratory of
High-Incidence-Tumor Prevention & Treatment (Guangxi
Medical University) belonging to Ministry of Education.

Supplementary Materials

Table S1: shRNA sequence for SI of PKLR. Table S2:
sequence for primer of target genes. Table S3: information of
enrolled metabolites for energy metabolism. Table S4: toolkit
used for data visualization. Table S5: details of overlapped
metabolites in the OV and SI groups from nontargeted meta-
bolomics in hepatocytes. Table S6: speculative pathways based
on enriched energy metabolites that are associated with PKLR
variations. Table S7: KEGG pathway enrichment on differen-
tial genes fromHepG2 cells with PKLR perturbation by GSEA.
Table S8: speculative pathways in hepatocytes with overex-
pressed PKLR by integrative analysis of transcriptomic and

29Oxidative Medicine and Cellular Longevity



nontargetedmetabolomic data. Table S9: speculative pathways
in hepatocytes with downregulated PKLR by integrative anal-
ysis of transcriptomic and nontargeted metabolomic data.
Table S10: speculative pathways in hepatocytes with overex-
pressed PKLR by integrative analysis of transcriptomic and
targeted metabolomic data. Table S11: speculative pathways
in hepatocytes with downregulated PKLR by integrative anal-
ysis of transcriptomic and targeted metabolomic data. Table
S12: potential pathways overlapped between transcriptomics
and nontargeted metabolomic data in the OV and SI groups.
Table S13: potential pathways overlapped between tran-
scriptomics and targeted metabolomic data in the OV and SI
groups. Table S14: impact of graft PKM and PKLR expression
on posttransplant prognosis. Table S15: positive coexpressed
links in hepatocytes with PKLR perturbation. Table S16: pos-
itive coexpressed links in grafts for liver transplantation. Table
S17: coexpressed links centered by C00157 and C04230 in
hepatocytes categorized by PKLR perturbation. Table S18:
coexpressed links centered by C00157 and C04230 in grafts
categorized by PKLR expression. Figure S1: flow diagram of
study design. Figure S2: construction of hepatocytes with
PKLR perturbation. Figure S3: KEGG pathway enrichment
on differential genes from HepG2 cells with overexpressed
PKLR by GSEA. Figure S4: KEGGpathway enrichment on dif-
ferential genes from HepG2 cells with suppressed PKLR by
GSEA. Figure S5: correlation analysis for interconnection in
matrix with inclusion of PKLR/PKM gene and all enrolled
clinical indicators. (Supplementary Materials)

References

[1] L. Rui, “Energy metabolism in the liver,” Comprehensive Phys-
iology, vol. 4, pp. 177–197, 2014.

[2] L. P. Bechmann, R. A. Hannivoort, G. Gerken, G. S. Hotamisli-
gil, M. Trauner, and A. Canbay, “The interaction of hepatic
lipid and glucose metabolism in liver diseases,” Journal of
Hepatology, vol. 56, no. 4, pp. 952–964, 2012.

[3] W. J. Israelsen and M. G. Vander Heiden, “Pyruvate kinase:
function, regulation and role in cancer,” in Seminars in cell &
developmental biology, pp. 43–51, Elsevier, 2015.

[4] K. Imamura and T. Tanaka, “[25] Pyruvate kinase isozymes
from rat,” in Methods in enzymology, vol. 90, pp. 150–165,
Elsevier, 1982.

[5] K. Chella Krishnan, R. R. Floyd, S. Sabir et al., “Liver Pyruvate
Kinase Promotes NAFLD/NASH in Both Mice and Humans
in a Sex- Specific Manner,” Cellular and Molecular Gastroen-
terology and Hepatology, vol. 11, no. 2, pp. 389–406, 2021.

[6] K. Chella Krishnan, Z. Kurt, R. Barrere-Cain et al., “Integra-
tion of multi-omics data frommouse diversity panel highlights
mitochondrial dysfunction in non-alcoholic fatty liver dis-
ease,” Cell systems, vol. 6, no. 1, pp. 103–115.e7, 2018.

[7] S. Lee, C. Zhang, Z. Liu et al., “Network analyses identify liver-
specific targets for treating liver diseases,” Molecular Systems
Biology, vol. 13, no. 8, p. 938, 2017.

[8] Z. Liu, C. Zhang, S. Lee et al., “Pyruvate kinase L/R is a regula-
tor of lipid metabolism and mitochondrial function,” Meta-
bolic Engineering, vol. 52, pp. 263–272, 2019.

[9] E. S. Orman, M. E. Mayorga, S. B. Wheeler et al., “Declining
liver graft quality threatens the future of liver transplantation

in the United States,” Liver Transplantation, vol. 21, no. 8,
pp. 1040–1050, 2015.

[10] A. Zarrinpar and R. W. Busuttil, “Liver transplantation: past,
present and future,” Nature Reviews Gastroenterology & Hepa-
tology, vol. 10, no. 7, pp. 434–440, 2013.

[11] B. G. Bruinsma, J. H. Avruch, G. V. Sridharan et al., “Peritrans-
plant energy changes and their correlation to outcome after
human liver transplantation,” Transplantation, vol. 101,
no. 7, pp. 1637–1644, 2017.

[12] G. Nowak, J. Ungerstedt, J. Wernerman, U. Ungerstedt, and
B. G. Ericzon, “Metabolic changes in the liver graft monitored
continuously with microdialysis during liver transplantation
in a pig model,” Liver Transplantation, vol. 8, no. 5, pp. 424–
432, 2002.

[13] M. A. Silva, D. A. Richards, S. R. Bramhall, D. H. Adams, D. F.
Mirza, and N. Murphy, “A study of the metabolites of
ischemia-reperfusion injury and selected amino acids in the
liver using microdialysis during transplantation,” Transplan-
tation, vol. 79, no. 7, pp. 828–835, 2005.

[14] Y. Wu, H. Cao, A. Baranova et al., “Multi-trait analysis for
genome-wide association study of five psychiatric disorders,”
Translational Psychiatry, vol. 10, no. 1, p. 209, 2020.

[15] Z. Yao, J. Petschnigg, R. Ketteler, and I. Stagljar, “Application
guide for omics approaches to cell signaling,”Nature Chemical
Biology, vol. 11, no. 6, pp. 387–397, 2015.

[16] Y. Hasin, M. Seldin, and A. Lusis, “Multi-omics approaches to
disease,” Genome Biology, vol. 18, pp. 1–15, 2017.

[17] H. Yu, R. Pan, Y. Qi et al., “_LEPR_ hypomethylation is signif-
icantly associated with gastric cancer in males,” Experimental
and Molecular Pathology, vol. 116, p. 104493, 2020.

[18] H. Li, X. Wang, X. Lu et al., “Co-expression network analysis
identified hub genes critical to triglyceride and free fatty acid
metabolism as key regulators of age-related vascular dysfunc-
tion in mice,” Aging, vol. 11, no. 18, pp. 7620–7638, 2019.

[19] J. Chen, X. Zhao, L. Cui et al., “Genetic regulatory subnetworks
and key regulating genes in rat hippocampus perturbed by pre-
natal malnutrition: implications for major brain disorders,”
Aging, vol. 12, no. 9, pp. 8434–8458, 2020.

[20] G. Pei, L. Chen, and W. Zhang, “WGCNA application to pro-
teomic and metabolomic data analysis,” Methods in Enzymol-
ogy, vol. 585, pp. 135–158, 2017.

[21] Z. Liu, W. Wang, L. Zhuang et al., “Clear mortality gap caused
by graft macrosteatosis in Chinese patients after cadaveric liver
transplantation,” Hepatobiliary surgery and nutrition, vol. 9,
no. 6, pp. 739–758, 2020.

[22] T. D. Schmittgen and K. J. Livak, “Analyzing real-time PCR
data by the comparative _C_ T method,” Nature Protocols,
vol. 3, no. 6, pp. 1101–1108, 2008.

[23] Y. Cai, K. Weng, Y. Guo, J. Peng, and Z.-J. Zhu, “An integrated
targeted metabolomic platform for high-throughput metabo-
lite profiling and automated data processing,” Metabolomics,
vol. 11, no. 6, pp. 1575–1586, 2015.

[24] D. Szklarczyk, A. L. Gable, D. Lyon et al., “STRING v11: pro-
tein–protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental
datasets,” Nucleic Acids Research, vol. 47, no. D1, pp. D607–
D613, 2019.

[25] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, pp. 1–13, 2008.

30 Oxidative Medicine and Cellular Longevity

https://downloads.hindawi.com/journals/omcl/2021/7182914.f1.docx


[26] J. Chong, D. S. Wishart, and J. Xia, “Using MetaboAnalyst 4.0
for comprehensive and integrative metabolomics data analy-
sis,” Current protocols in bioinformatics, vol. 68, p. e86, 2019.

[27] J. Reimand, R. Isserlin, V. Voisin et al., “Pathway enrichment
analysis and visualization of omics data using g:Profiler,
GSEA, Cytoscape and EnrichmentMap,” Nature Protocols,
vol. 14, no. 2, pp. 482–517, 2019.

[28] G. Yu, clusterProfiler: universal enrichment tool for functional
and comparative study, BioRxiv, 2018.

[29] W. Luo, G. Pant, Y. K. Bhavnasi, S. G. Blanchard Jr., and
C. Brouwer, “Pathview Web: user friendly pathway visualiza-
tion and data integration,” Nucleic Acids Research, vol. 45,
no. W1, pp. W501–W508, 2017.

[30] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
environment for integrated models of biomolecular interac-
tion networks,” Genome Research, vol. 13, no. 11, pp. 2498–
2504, 2003.

[31] Z. Liu, T. Chen, X. Lu, H. Xie, L. Zhou, and S. Zheng, “Overex-
pression of variant PNPLA3 gene at I148M position causes
malignant transformation of hepatocytes via IL-6-JAK2/-
STAT3 pathway in low dose free fatty acid exposure: a labora-
tory investigation in vitro and in vivo,” American Journal of
Translational Research, vol. 8, p. 1319, 2016.

[32] J. Chong, O. Soufan, C. Li et al., “MetaboAnalyst 4.0: towards
more transparent and integrative metabolomics analysis,”
Nucleic Acids Research, vol. 46, no. W1, pp. W486–W494,
2018.

[33] M. Hermansson, K. Hokynar, and P. Somerharju, “Mecha-
nisms of glycerophospholipid homeostasis in mammalian
cells,” Progress in Lipid Research, vol. 50, no. 3, pp. 240–257,
2011.

[34] J. V. Swinnen, K. Brusselmans, and G. Verhoeven, “Increased
lipogenesis in cancer cells: new players, novel targets,” Current
Opinion in Clinical Nutrition & Metabolic Care, vol. 9, no. 4,
pp. 358–365, 2006.

[35] M. Chen and K. L. O'Connor, “Integrin _α_ 6 _β_ 4 promotes
expression of autotaxin/ENPP2 autocrine motility factor in
breast carcinoma cells,” Oncogene, vol. 24, no. 32, pp. 5125–
5130, 2005.

[36] C. P. Long, J. Au, N. R. Sandoval, N. A. Gebreselassie, and
M. R. Antoniewicz, “Enzyme I facilitates reverse flux from
pyruvate to phosphoenolpyruvate in Escherichia coli,” Nature
Communications, vol. 8, pp. 1–8, 2017.

[37] E. N. Maldonado and J. J. Lemasters, “ATP/ADP ratio, the
missed connection between mitochondria and the Warburg
effect,” Mitochondrion, vol. 19, pp. 78–84, 2014.

[38] L. He, Z. Xu, K. Yao et al., “The physiological basis and nutri-
tional function of alpha-ketoglutarate,” Current Protein and
Peptide Science, vol. 16, no. 7, pp. 576–581, 2015.

[39] N. Wu, M. Yang, U. Gaur, H. Xu, Y. Yao, and D. Li, “Alpha-
ketoglutarate: physiological functions and applications,” Bio-
molecules & Therapeutics, vol. 24, no. 1, pp. 1–8, 2016.

[40] F. Ameer, L. Scandiuzzi, S. Hasnain, H. Kalbacher, and
N. Zaidi, “_De novo_ lipogenesis in health and disease,”
Metabolism, vol. 63, no. 7, pp. 895–902, 2014.

[41] Z. Cui and M. Houweling, “Phosphatidylcholine and cell
death,” Biochimica et Biophysica Acta (BBA) - Molecular and
Cell Biology of Lipids, vol. 1585, no. 2-3, pp. 87–96, 2002.

[42] N. D. Ridgway, “The role of phosphatidylcholine and choline
metabolites to cell proliferation and survival,” Critical Reviews
in Biochemistry and Molecular Biology, vol. 48, no. 1, pp. 20–
38, 2013.

[43] V. S. Hanna and E. A. A. Hafez, “Synopsis of arachidonic acid
metabolism: a review,” Journal of Advanced Research, vol. 11,
pp. 23–32, 2018.

[44] for the Shanghai Birth Cohort Study, X. Wang, X. Jiao et al.,
“Associations between maternal vitamin D status during three
trimesters and cord blood 25(OH)D concentrations in new-
borns: a prospective Shanghai birth cohort study,” European
Journal of Nutrition, vol. 4, 2021.

[45] S. Zheng, T. Zhao, S. Yuan et al., “Immunodeficiency promotes
adaptive alterations of host gut microbiome: an observational
metagenomic study in mice,” Frontiers in Microbiology,
vol. 10, 2019.

[46] H.-I. Tsai, C.-J. Lo, C.-W. Zheng et al., “A lipidomics study
reveals lipid signatures associated with early allograft dysfunc-
tion in living donor liver transplantation,” Journal of Clinical
Medicine, vol. 8, no. 1, p. 30, 2019.

[47] M.-C. Hsu and W.-C. Hung, “Pyruvate kinase M2 fuels multi-
ple aspects of cancer cells: from cellular metabolism, transcrip-
tional regulation to extracellular signaling,”Molecular Cancer,
vol. 17, pp. 1–9, 2018.

[48] F. Zhang, A. Baranova, C. Zhou et al., “Causal influences of
neuroticism on mental health and cardiovascular disease,”
Human Genetics, vol. 140, pp. 1267–1281, 2021.

[49] F. Zhang, S. Rao, H. Cao et al., “Genetic evidence suggests
posttraumatic stress disorder as a subtype of major depressive
disorder,” The Journal of Clinical Investigation, 2021.

[50] X.Wang, X. Fang, W. Zheng et al., “Genetic support of a causal
relationship between iron status and type 2 diabetes: a Mende-
lian randomization study,” The Journal of Clinical Endocrinol-
ogy and Metabolism, 2021.

[51] G. Jin, M. Xu, M. Zou, and S. Duan, “The processing, gene reg-
ulation, biological functions, and clinical relevance of N4-
acetylcytidine on RNA: a systematic review,” Molecular
Therapy-Nucleic Acids, vol. 20, pp. 13–24, 2020.

31Oxidative Medicine and Cellular Longevity


	Integrative Network Analysis Revealed Genetic Impact of Pyruvate Kinase L/R on Hepatocyte Proliferation and Graft Survival after Liver Transplantation
	1. Introduction
	2. Materials and Methods
	2.1. Study Design
	2.2. Cell Culture and Construction of Cellular Models with PKLR Perturbation
	2.3. LT Cases and Clinical Information
	2.4. Measurement of Key Gene Expression
	2.5. Metabolomic Analysis of Hepatoma Cells and Liver Tissues
	2.6. Statistical Comparisons
	2.7. Principal Component Analysis (PCA)
	2.8. Network Construction for LT Grafts
	2.9. Enrichment, Pathway Analysis, and Network Construction Based on Multiomic Datasets
	2.10. High-Glucose Treatment, Oil Red O Staining, and Biochemical Tests

	3. Results
	3.1. Creation of Cell Models with Altered PKLR Expression
	3.2. Clinical Features of LT Patients
	3.3. Untargeted Metabolomic Profiling in Hepatoma Cells
	3.4. Targeted Metabolomic Analysis of Energy Metabolism in HepG2 Cells
	3.5. Transcriptomic Data and Integrative Pathway Analysis Based on Multiomic Datasets Categorized by PKLR Expression
	3.6. Metabolomic Validation in LT Grafts
	3.7. Weighted Metabolome Coexpression Network Analysis of LT Grafts
	3.8. Screening of Hub Metabolites Correlated with PKLR Expression
	3.9. Cellular Lipogenesis Associated with PKLR Expression

	4. Discussion
	4.1. Omics Study in HepG2 Cells
	4.2. LT Grafts and Liver Cell Line Results
	4.3. Impact of PKLR on Glycerophospholipid and Linoleic Acid Metabolism
	4.4. Impact of PKLR on Energy Metabolism by Targeted Metabolomic Analysis
	4.5. Imputative Mechanism for Impact of PKLR on Cellular Metabolism
	4.6. WGCNA of LT Grafts
	4.7. Genetic Functions of PKM and PKLR
	4.8. Strength of the Study in terms of Clinical Applications
	4.9. Potential Limitations and Future Directions
	4.10. Conclusion

	Data Availability
	Ethical Approval
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

