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Background. This study is aimed at investigating the changes in relevant pathways and the differential expression of related gene
expression after ischemic stroke (IS) at the single-cell level using multiple weighted gene coexpression network analysis
(WGCNA) and single-cell analysis. Methods. The transcriptome expression datasets of IS samples and single-cell RNA
sequencing (scRNA-seq) profiles of cerebrovascular tissues were obtained by searching the Gene Expression Omnibus (GEO)
database. First, gene pathway scoring was calculated via gene set variation analysis (GSVA) and was imported into multiple
WGCNA to acquire key pathways and pathway-related hub genes. Furthermore, SCENIC was used to identify transcription
factors (TFs) regulating these core genes using scRNA-seq data. Finally, the pseudotemporal trajectory analysis was used to
analyse the role of these TFs on various cell types under hypoxic and normoxic conditions. Results. The scores of 186 KEGG
pathways were obtained via GSVA using microarray expression profiles of 40 specimens. WGCNA of the KEGG pathways
revealed the two following pathways: calcium signaling pathway and neuroactive ligand-receptor interaction pathways.
Subsequently, WGCNA of the gene expression matrix of the samples revealed the calcium signaling pathway-related genes
(AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) that were identified as core genes via correlation
analysis. Furthermore, SCENIC and pseudotemporal analysis revealed JUN, IRF9, ETV5, and PPARA score gene-related TFs.
Jun was found to be associated with hypoxia in endothelial cells, whereas Irf9 and Etv5 were identified as astrocyte-specific TFs
associated with oxygen concentration in the mouse cerebral cortex. Conclusions. Calcium signaling pathway-related genes
(AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) and TFs (JUN, IRF9, ETV5, and PPARA) were
identified to play a key role in IS. This study provides a new perspective and basis for investigating the pathogenesis of IS and
developing new therapeutic approaches.

1. Introduction

Ischemic stroke (IS) is the most prevalent type of stroke,
accounting for 87% of all strokes [1–3]. Because no effective
treatment other than thrombolytic therapy is available for
the neurological impairment caused by IS, developing new
treatments for IS to improve prognosis is necessary.

Investigating signaling pathways involved in the post-
stroke period may help to identify new approaches to deal
with the complex sequelae of IS. Gene set variation analysis
(GSVA) is an approach that allows the assessment of poten-
tial changes in pathway activity [4]. It has recently been used
in studies on pancreatic and breast cancers and has demon-
strated excellent potential for identifying prognosis-related
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pathways in various cancers [5–9]. However, it has not yet
been used in stroke research. In addition, microarray tech-
nology is effective in screening for pathways and functional
genes associated with stroke, and weighted gene coexpres-
sion network analysis (WGCNA) can be used to construct
coexpression networks between genes and pathways to pre-
dict changes in related signaling pathways after IS [10].

We quantified the activity of each pathway in samples
using GSVA. Subsequently, WGCNA was used to assess
the core genes associated with these pathways and analyse
changes in the expression of core genes in these pathways
in peripheral whole blood samples after acute IS. Single-
cell regulatory network inference and clustering (SCENIC)
is used to analyse transcription factors (TFs) for identifying
gene regulatory networks (GRNs). We used SCENIC to
assess TFs regulating the core genes and their role in cell tra-
jectory development using pseudotemporal and RNA veloc-
ity analyses. This study is aimed at assessing the core
pathways and their associated genes in peripheral blood
samples after IS and revealing the role of TFs targeting core
genes at the cell level under hypoxic and normoxic
conditions.

2. Materials and Methods

2.1. Data Acquisition and Processing. The Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm. http://nih
.gov/geo/) was accessed via the National Center for Biotech-
nology Information to search the term “ischemic stroke”.
The gene expression profile microarray data for IS were
retrieved using the same term.

The inclusion and exclusion criteria were as follows: (i)
datasets must comprise genome-wide expression mRNA
microarray data, (ii) data should include peripheral blood
specimens from both patients with IS and healthy subjects,
and (iii) the number of specimens in each dataset must be
greater than 20. A total of 40 samples from GSE22255 were
retrieved based on these criteria [11]. In addition,
GSE110993 was selected as the IS miRNA database for
screening IS-associated miRNAs [12].

Based on a search of cerebrovascular-related databases, a
total of 3186 mouse cerebrovascular cell samples were
obtained from GSE98816 [13]. In addition, a total of 7925
cerebral cortex cell samples from GSE125708 were used to
investigate differences in gene transcriptional regulation
between the hypoxia and normoxia states [14]. Furthermore,
these data were used for single-cell analysis.

2.2. Identification of Key Modules. GSVA allows the assess-
ment of potential changes in pathway activity in each sample
[4]. The GSVA package in R software was used for the anal-
ysis, and the enrichment scores of pathways in all samples
were calculated.

The “WGCNA” R package was used to screen for IS-
related pathways and genes in the dataset obtained from
GSVA according to the following requirements: (i) outlier
removal: pathways/genes were clustered hierarchically
according to pathway/gene expression patterns, with outliers
being removed; (ii) pathway/gene module formation: genes

were grouped by K-means clustering to form modules; and
(iii) module screening: modules were subjected to principal
component analysis. Pearson correlation analysis was per-
formed to derive the relationship between the first principal
component of each module and clinical phenotypes. Subse-
quently, it was screened for pathways/genes that were sub-
stantially associated with poststroke development. Pearson
correlation coefficient (CC) was used to determine the asso-
ciation between each module and characteristics.

2.3. Construction of miRNA-mRNA and Protein-Protein
Interaction Networks. The miRWalk 3.0 and miRTarBase
database were used to assess the correlation between
mRNAs and miRNAs [15]. Genes obtained from WGCNA
and differentially expressed genes (DEGs) between patients
with IS and healthy controls were entered into a search tool
on the STRING to retrieve interacting genes to identify hub
genes [16]. SCENIC and TRRUST (version 2) [17] were used
to predict the regulatory relationship between TFs and core
genes. Cytoscape (v. 3.8.0) was used to visualise the
networks.

2.4. Single-Cell Analysis. Single-cell analysis was used to val-
idate and assess the expression of hub genes at the single-cell
level. Quality control, dimensional reduction, and clustering
of the scRNA-seq data of the mouse brain vasculature
(GSE98816) were performed using Seurat (v. 4.0.4) as
described in a previous study [18]. We annotated clusters
using singleR (v. 1.0) followed by manual correction using
CellMarker [19, 20].

We further analysed the expression of hub genes obtained
from WGCNA in each cell subset using two mouse cerebral
samples under hypoxic and normoxic conditions. The
scRNA-seq data of mouse cerebral cortices were filtered
according to the following criteria: genes expressed in at least
40 cells and cells in which at least 200 genes were expressed.
Gene expression was normalised logarithmically and scaled.
Variable genes for each of the two samples were calculated
using the “FindVariableGenes” function in Seurat (v. 2.2.0).
The union of the top 1000 genes with the highest dispersion
in each of the two samples was selected as a global set of var-
iable genes for clustering. Subsequently, a canonical correla-
tion analysis was performed to identify common sources of
variation between the normoxia and hypoxia groups using
the “RunCCA” function. We selected CC1–20 to align the
CCA subspaces for clustering based on the correlation
strength of each CC using “MetageneBicorPlot” function.
We used marker genes reported in the original study to anno-
tate the cell clusters as specific cell type. The Tabula Muris
consortium set was also used to annotate the cells using scmap
[21]. The integrated scRNA-seq profile was used as the input
file of pySCENIC workflow. We used DESeq2 (v. 1.26.0)
[22] to identify DEGs inmouse brain samples under normoxic
and hypoxic conditions in each cluster.

2.5. Gene Regulatory Networks and Hub TFs. A modified
SCENIC method (pySCENIC, v. 11.2) was used as previ-
ously described to identify GRNs from single-cell transcripts
[23, 24]. We identified the key TFs in two steps. The first
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step was to predict GRNs and TFs using SCENIC, which con-
sisted of the following three steps: establishment of coexpres-
sion modules, identification of direct relationship using motif
analysis, and calculation of regulon activity score (RAS) with
AUCell [18]. We identified the corresponding GRNs and TFs
from mouse cerebrovascular cells and cerebral cortex cell sam-
ples. In the second step, hub genes obtained from theWGCNA
were used to interfere with the hub TFs and corresponding tar-
geted genes in GRNs. Finally, we performed intersection and
union analyses of the TF-target gene pairs between GSE98816
and GSE125708. TFs in the intersection analysis were named
hub TFs, and those in the union analysis were named key
TFs. These TFs were used for further analysis.

2.6. Pseudotemporal Trajectory Inference and RNA Velocity.
We performed pseudotemporal trajectory inference analysis
on the mouse brain vasculature and cerebral cortex using
monocle3 (v. 1.0) and monocle (v. 2.4) [25–28].

DEGs between the normoxia and hypoxia groups were
used as ordering genes for subclustering in each cell cluster
using monocle (v. 2.4). The tSNE and DDRTree algorithms
were used to visualise data in each cluster. The subclusters
were classified based on oxygen concentration, and states
were classified based on subcluster and oxygen concentra-
tion. The progress of possible cell transitions was presented
and inferred using the DDRTree graphs and states.

We ran velocyto.py (v. 11.2) annotator for each BAM file
processed by CellRanger using the default parameters and a
modified gencode vM12 gene transfer format file as described
in a previous study [29]. The loom object files for each group
were processed using velocyto.R (R package; v. 0.6). Monocle2
DDRTree representation was used to construct the final veloc-
ity plots embedded in cell-cell distance plots.

2.7. Functional Enrichment Analysis. As described in a previ-
ous research, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) pathway
enrichment analyses were performed using the “clusterProfi-
ler” R package [30–32]. The Benjamini–Hochberg method
was employed to adjust the p values (adjust-p < 0:05 was
considered significant). Gene set enrichment analysis
(GSEA) was used to investigate potential mechanisms based
on gene collection (c2.cp.v7.2.symbols.gmt [Curated]) from
Molecular Signatures Database (MSigDB, https://www
.gsea-msigdb.org/gsea/msigdb/index.jsp) using JAVA as
described in previous studies [33, 34].

2.8. Statistical Analysis. The general information and other
data of patients were used for statistical analyses using R ver-
sion 4.0.2 (https://www.r-project.org/). For continuous vari-
ables, Student’s t-tests were used to compare two distinct
groups. For categorical variables, chi-square tests were per-
formed. Logistic regression analysis was used to further
screen the results of univariable analysis, and the R was used
to establish a risk prediction model for the screened inde-
pendent risk factors. In addition, the “rms” package and
bootstrap internal validation method were used to verify
the nomogram. The “ROCR” package was used to produce
the ROC curves.

3. Results

3.1. Demographic Characteristics of GSE22255 and GSVA.
Based on the inclusion and exclusion criteria, GSE22255
was, to the best of our knowledge, the only mRNA dataset
that met our requirements. A total of 20 peripheral blood
specimens from patients with IS and 20 specimens from a
healthy control population were included. These 40 samples,
20 from men and 20 from women, were tested using the
Affymetrix microarray platform. Details of the demographic
characteristics are shown in Supplementary Table 1. A total
of 186 KEGG pathway score matrices were obtained in the
40 samples using GSVA to score patients with IS. Various
scores for each pathway in different subgroups suggested
dissimilarities in the activity of each pathway between
patients with IS and healthy subjects, which may be an
important factor for determining the prognosis of patients
after the onset of IS.

3.2. WGCNA Based on KEGG Pathway of GSE22255. The
186 pathways from 40 specimens obtained via GSVA were
subjected to coexpression network construction. First, a soft
threshold was calculated, and a scale-free topology model
was built. The CC was greater than 0.85, and our data selec-
tion threshold was 9 (Supplementary Figure 1(a)). The
pathways in the top 25% of variance were eventually
filtered out, and a total of 18 pathway modules were
selected according to their weight values (Supplementary
Figure 1(b)). These modules were clustered, and the results
are shown in Supplementary Figure 1(c). The tan module
had the highest correlation with IS (CC = 0:39, p = 0:01;
Supplementary Figure 1(d)) and a strong correlation with
diabetes (CC = 0:32, p = 0:04). The two KEGG pathways
included in the tan module were the calcium signaling and
neuroactive ligand-receptor interaction pathways
(Supplementary Figure 1(e)). We discovered that the
calcium signaling pathway was correlated with both IS and
diabetes, with a CC of 0.39 and a p value of <0.05, whereas
the neuroactive ligand-receptor interaction pathway was
correlated with only IS (CC = 0:37, p = 0:02).

3.3. Gene Modules Derived from WGCNA Based on Gene
Expression of GSE22255. A coexpression network was con-
structed based on the gene expression matrix of the 40 spec-
imens from GSE22255. Similar to the previous analysis, we
calculated a soft threshold and built a scale-free topology
model. The CC was greater than 0.85, and the data selection
threshold was 6 (Supplementary Figure 2(a)). After weight-
based filtering, we obtained a total of 14 modules
(Supplementary Figure 2(b)), and the clustering of these
modules is shown in Supplementary Figure 2(c).
Furthermore, the correlation among the featured genes of
each module is presented in Supplementary Figure 3(a).
Eventually, the pink module was found to have the highest
correlation with the KEGG calcium signaling pathway
(CC = 0:33, p = 0:04; Supplementary Figure 2(d)). The
following 15 genes were included in the pink module:
AC079305.10, ARMC8, ATF3, BCL10, BCL2A1, BRE-AS1,
DYNLL2, EIF1, EREG, IL1B, MAP3K8, NFIL3, NR4A2,
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OTUD1, and PTGS2 (Supplementary Figure 2(e)).
Furthermore, the calcium signaling pathway showed a
significant positive correlation with AC079305.10BCL10,
BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2 (p < 0:05).

3.4. GO and KEGG Enrichment Analyses. GO enrichment
analysis of the calcium signaling pathway-related genes
revealed that the genes were enriched in the apoptotic sig-
naling pathway, cellular response to external stimuli, cyto-
kine biosynthesis, cellular response to mechanical stimuli,
fever generation, heat generation, and regulation of heat
generation (p < 0:05; Supplementary Figure 3(b)).
Furthermore, KEGG enrichment analysis revealed the
following pathways (p < 0:05; Supplementary Figure 3(c)):
NF-kappa B, C-type lectin, TNF, MAPK, IL-17, toll-like
receptor, and T cell receptor signaling pathways and
leishmaniasis. Therefore, calcium signaling pathway-related
genes may be associated with the pathogenesis of IS by
regulating these biological functions and pathways.

3.5. Characterisation of Hub Genes and miRNA-mRNA
Network Construction. The expression of hub genes in the
GSE22255 dataset is shown in Figure 1(a). We obtained IS-
associated miRNAs from the GSE110993 dataset. The miR-
Walk 3.0 and miRTarBase databases were used to construct
the miRNA-mRNA network (Figure 1(b)). The correlation
analysis of clinical features with central genes is shown in
Figure 1(c). Consequently, we found a positive correlation
among the expression of AC079305.10, BCL10, BCL2A1,
BRE-AS1, DYNLL2, EREG, and PTGS2. In addition, protein-
protein interaction (PPI) networks were mapped to describe
the association among these hub genes (Figure 1(d)).

3.6. Construction of a Predictive Model of IS History. All fea-
tures of the GSE22255 dataset were used to perform a mul-
tivariable logistic analysis to plot a nomogram-based
prediction model (Supplementary Figure 4(a))
(Supplementary Tables 2 and 3). The ROC curve is shown
in Supplementary Figure 4(b) (AUC = 0:8325). The
calibration curve suggested that the model had good
predictive ability (Supplementary Figure 4(c)). In addition,
the C-index of the model was 0.832 (95% CI, 0.704–0.960),
which represented a good predictive performance. The
decision curve reflected that the model had good clinical
applicability (Supplementary Figure 4(d)).

3.7. Single-Cell Analysis. The results of single-cell downscal-
ing and clustering revealed 10 cell clusters and 4 cell sub-
groups in GSE98816 (Figures 2(a) and 2(b)). Annotation of
cell clusters using SingleR is shown in Supplementary
Figure 5(a). Figure 2(c) shows the differential expression of
relevant core genes in the cells. We further analysed the
differential expression of related genes in cell
subpopulations (Figures 2(d) and 2(e)) and found that
Ptgs2 was specifically expressed in microglia. In addition,
the Bcl family genes (Bcl10, Bcl2A1a, Bcl2A1b, Bcl2A1c, and
Bcl2A1d) were mainly expressed in endothelial cells, and
Bre was mainly expressed in oligodendrocytes. These
results revealed that the key genes in our screened
pathways were specifically expressed at the single-cell level,

thus providing a direction for subsequent in-depth studies
targeting specific cells. The processes of dimensional
reduction and cluster annotation of scRNA-seq data in
GSE125708 are shown in Supplementary Figures 6–7, and
the cell clustering and annotation results revealed a total of
18 cell clusters, and 13 annotated cell subpopulations were
obtained (Figures 3(a) and 3(b)).

3.8. Identification of TF-Target Gene Pairs Using SCENIC.
The SCENIC analysis of GSE98816 and GSE125708 revealed
32 and 116 TF-targeted gene pairs, respectively (Figure 4(a)).
Among these gene pairs, 16 hub TF-target gene pairs were
shared by both datasets (Figure 4(b)). In these 16 gene pairs,
the TFs AHR, ETV5, IRF9, JUN, PPARA, and SP1 and the
targeted genes BCL10 and PTGS2 differed between patients
with IS and healthy subjects in GSE22255. Figure 4(c) dem-
onstrates a PPI network constructed based on these 16 TF-
target gene pairs, with SP1, JUN, PPARA, and PTGS2 at
the centre of the network. The key TFs and corresponding
target genes and differentially expressed miRNAs were used
for constructing an interaction network (Figure 4(d)).

3.9. Regulons in the Mouse Brain Vasculature. Based on the
RSS scores, mouse cerebrovascular cells were clustered (Sup-
plementary Figure 5(b)), and M1–M6 modules were
constructed (Supplementary Figure 5(c)). The heat map of
scores for these modules is shown in Supplementary
Figure 5(d). Figures 5(a)–5(c) reveal that the top five TFs
with major transcriptional regulatory roles in endothelial
cells are Lef1, Irf7, Fli1, Stat1, and Elk3. In microglia,
Cebpa, Spi1, Rest, Maf, and Junb were the major regulatory
TFs (Figures 5(d)–5(f)). The most relevant specific
regulators of oligodendrocytes were Ppara, Bmyc, Klf15,
Smarca4, and Maf (Figures 5(g)–5(i)). In fibroblasts, Jund,
Sp1, Klf15, Bclaf1, and Atf1 were identified as important
regulatory TFs (Figures 5(j)–5(l)).

3.10. Regulons in the Mouse Cerebral Cortex. Figures 6(a)–
6(c) demonstrate the top five TFs, namely, Lef1, Ppard,
Elk3, Irf9, and Ets1, with major transcriptional regulatory
roles in vascular endothelial cells. In microglia, Etv3, Maf,
Irf5, Ikzf1, and Runx1 were the major regulatory TFs
(Figures 6(d)–6(f)). The most relevant specific regulators of
oligodendrocytes were Sp1, Klf15, Mxi1, Erf, and Nr3c1
(Figures 6(g)–6(i)). In astrocytes, Klf15, Foxo1, Bmyc, Zfp595,
and Kdm5a were identified as important regulatory TFs
(Figures 6(j)–6(l)). In vascular SMCs, Nfatc4, Ppara, Bcl3,
Pml, andAtf3were identified as themost important regulatory
TFs. In pericytes, Ppara,Nfatc4, Pml, Bcl3, and Ets1were iden-
tified as important TFs. Ppara expression was found to be sig-
nificantly specific in both vascular endothelial cells and
pericytes. In glutamatergic neurons, Egr4, Etv5, Kdm5b, Ahr,
and Bmyc were among the important TFs. In fibroblasts,
Nfatc4, Zfp595, Zfp110, Sp3, and Bcl3were identified as impor-
tant TFs of key genes (Supplementary Figure 8). These results
suggest that GRNs are different in different cell types.

3.11. Pseudotemporal Trajectory Inference Analysis in the
Mouse Brain Vasculature. The trajectories of each cell popu-
lation are shown in Figure 7(a). Figure 7(b) shows the
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pseudotime of cells in the DDRTree plot, and Figure 7(c)
shows the states of each cell type. Endothelial cells and fibro-
blasts had their respective developmental trajectories in
addition to overlapped trajectories with microglia and oligo-
dendrocytes. Figure 7(d) demonstrates the expression of the
16 hub TFs and targeted genes.

3.12. Pseudotemporal Analysis of Mouse Cerebral Cortex
Cells in Hypoxia and Normoxia. We further investigated
the changes in gene expression at the single-cell level in
the cerebral cortex under hypoxic and normoxic conditions.
UMAP analysis revealed evident differences in vascular
endothelial cells between the normoxia and hypoxia groups
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Figure 1: Characterisation of hub genes and miRNA-mRNA network construction. (a) A heat map of hub genes in the GSE22255 datasets.
(b) A Sankey plot of miRNA-mRNA interaction for IS. (c) Correlation analysis of clinical features and hub genes. (d) Protein-protein
interaction networks of hub genes.
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Figure 2: Expression of hub genes in the mouse brain vasculature. (a, b) UMAP analysis showing the results of descending clustering and
annotation of cell subpopulations (endothelial cells, fibroblasts, oligodendrocytes, and microglia) in cells of the mouse cerebrovascular
system. (c) ANOVA analysis showing the variation of gene expression in the mouse cerebrovascular system cells. Variable genes are
indicated by red dots according to selected thresholds, and nonvariable genes are indicated by black dots. The relevant hub genes (Bcl10,
Bcl2A1a, Bcl2A1b, Bcl2A1c, Bcl2A1d, Bre, Dynll2, and Ptgs2) are indicated in the figure. (d) Relative expression of related hub genes in
various cell subpopulations. (e) A heat map showing the relative expression of each molecule in cell subpopulations and cell clusters. The
relative expression profiles of marker genes associated with each cell subpopulation are known.
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(Figure 3(c)), and the corresponding expression of hub genes
between the two groups is shown in Figure 3(d). Figures 3(e)
and 3(f) demonstrate the results of UMAP analysis of
microglia. The vascular endothelial cells were well separated
between the normoxia and hypoxia groups based on pseudo-
time (Figures 8(a) and 8(b)). Figure 8(c) shows the states of
vascular endothelial cells under hypoxic and normoxic con-
ditions. Jun and Nr3c1 were found to play an important role
in cellular transformation from hypoxia to normoxia
(Figure 8(d) and Supplementary Figure 9). RNA velocity
analysis of the two groups is shown in Figure 8(e).
Different RNA velocity was found in different subclusters,

which revealed transcriptional heterogeneity in vascular
endothelial cells. The expression of hub TFs and target
genes is shown in Figure 8(f).

Furthermore, the same analysis was performed in
microglia (Figures 9(a) and 9(b)). Evident heterogeneous
differentiation of microglia was observed in state 7 between
the normoxia and hypoxia groups, whereas a transition from
hypoxia to normoxia was observed in state 1 (Figures 9(c)
and 9(e)). In addition, cells in the hypoxic state had
increased RNA velocity than that in the normoxic state, sug-
gesting stronger transcriptional activity and a high number
of unspliced RNAs. This finding suggests that hypoxia has
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a negative effect on the transformation of microglia from
hypoxia to normoxia. Bcl2a1d, Creb1, Ets1, Irf1, and Nr3c1
were identified as pseudotemporal-related markers in
microglia during the transformation (Figure 9(f)).
Figures 6(d) and 9(d) demonstrate that Maf, Irf5, and Ikzf1
play an important role in cell state transition between hyp-
oxia and normoxia.

A similar analysis was also performed for astrocytes and
pericytes (Supplementary Figures 10, 11, and 12). Astrocytes

showed distinctly different differentiation trajectories and
RNA velocity in hypoxia and normoxia (Supplementary
Figures 10(e) and 10(f)). Bmyc, Ep300, Etv5, Irf9, Jun,
Nr3c1, and Uqcrb were the intersecting genes of key genes
and pseudotemporal-related genes (Supplementary
Figure 11(e)). Furthermore, pericytes also had different
differentiation trajectories in normoxia and hypoxia
(Supplementary Figures 12 (a–c)). Hif1a, Klf6, Nr3c1,
Smarca4, and Uqcrb were identified as important
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pseudotime-related genes between the two groups.
Moreover, the pseudotime of pericytes was longer in
hypoxia than in normoxia. This finding suggests that
pericytes play a role in responses to hypoxia
(Supplementary Figure 12(e)).

3.13. Differentially Expressed Hub Genes in Clinical Cohorts.
The heat map of differentially expressed hub genes in clinical
samples is demonstrated in Figure 10(a), whereas the differ-
ential hub TFs are presented in Figure 10(b). Combined with
the previous pseudotemporal trajectory and SCENIC analy-
ses, JUN, IRF9, ETV5, and PPARA were subjected to GSEA.

The GSEA of JUN revealed that tRNA processing in the
nucleus, synthesis of substrates in N-glycan biosynthesis,
and mitochondrial translation were downregulated in IS,
whereas natural killer cell-mediated cytotoxicity and chemo-
kine signaling pathway were upregulated. The GSEA of IRF9
revealed that G1/S-specific transcription and resolution of
D-loop structures through synthesis-dependent strand
annealing (SDSA) were downregulated in IS, whereas the
VEGFA-VEGFR2 signaling pathway and T cell receptor sig-
naling pathway were upregulated (FDR < 0:05). The enrich-
ment pathways of ETV5 and PPARA are shown in
Figures 10(e) and 10(f) (p < 0:05).
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Figure 5: Cell type-specific regulons in the mouse brain vasculature. (a) Ranks of regulons in the mouse brain vasculature endothelial cells
sorted based on regulon specificity scores (right) and the corresponding binding motifs of TFs. (b) Endothelial cells are highlighted as red
dots in the tSNE plot. (c) The expression values of interesting genes are presented as green dots in the tSNE plot. (d–f) Same as (a–c) but for
microglia. (g–i) Same as (a–c) but for oligodendrocytes. (j–l) Same as (a–c) but for fibroblasts.
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4. Discussion

In this study, WGCNA of 186 pathways in 40 specimens
obtained via GSVA of GSE22255 yielded 18 pathway mod-
ules; of which, the tan module was most significantly pos-
itively correlated with IS. The two KEGG pathways,
calcium signaling and neuroactive ligand-receptor interac-
tion pathways, were included in the tan module. The cal-
cium signaling pathway was found to be significantly
positively correlated with the pink module in the subse-
quent WGCNA based on the gene expression of
GSE22255. In addition, the pink module had the highest

correlation with IS. Furthermore, we found that the cal-
cium signaling pathway was positively correlated with
genes in the pink module, including AC079305.10,
BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2.
An IS-associated miRNA-mRNA regulatory network was
also constructed, which revealed the core pathways and
key genes that may be altered after the onset of IS. In
addition, we used SCENIC to identify key TFs regulating
these genes using mouse scRNA-seq data, followed by
pseudotemporal trajectory inference analysis to assess the
role of these TFs and target genes at the single-cell level
under normoxic and hypoxic conditions.
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Figure 6: Cell type-specific regulons in the mouse cerebral cortex. (a) Ranks of regulons in the mouse cerebral cortex vascular endothelial
cells sorted based on regulon specificity scores (right), and the corresponding binding motifs of TFs. (b) Vascular endothelial cells are
highlighted as red dots in the tSNE plot. (c) The expression values of interesting genes are presented as green dots in the tSNE plot. (d–
f) Same as (a–c) but for microglia. (g–i) Same as (a–c) but for oligodendrocytes. (j–l) Same as (a–c) but for astrocytes.
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We established that the calcium signaling pathway activ-
ity was associated with the development of IS. Calcium ion
overload leads to cell necrosis or apoptosis [35]. Further-
more, the upregulation of calcium ions in the cell plasma
increases, leading to platelet activation and thrombosis, sug-
gesting that overactivation of the calcium signaling pathway
is associated with both thrombosis and platelet activation
[36]. However, a deficiency of calcium channels may exhibit
neurovascular protective activity [37]. Recent meta-analyses
have confirmed that some calcium channels exert a vascular
protective effect against stroke. In conclusion, our findings
are consistent with those of related results, revealing that
the calcium signaling pathway is a risk factor associated with
IS and may be associated with poor prognosis after the
development of IS in patients.

Calcium signaling pathway-related genes (AC079305.10,
BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2)
are related to apoptosis after stroke, whereas posttranscrip-
tional regulation of BCL2A1 may be possibly associated with
IS [38, 39]. It has been proposed that EREG genes may be
associated with homeostatic imbalances in immune and
inflammatory function after IS, and the PTGS2 gene may
be a risk factor for the development of IS [40–42]. In this
study, calcium signaling pathway-related genes
(AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG,
and PTGS2) were found to be significantly enriched in the
NF-kappa B, C-type lectin receptor, TNF, and MAPK signal-
ing pathways. Existing studies indicate that activation of the

NF-kappa B/MAPK signaling pathway promotes the activa-
tion of inflammatory vesicles in neurons in the brain, exac-
erbating the neurological damage caused by IS [43]. In
addition, studies have shown that sevoflurane inhibits the
NF-kappa B/MAPK signaling pathway, which in turn signif-
icantly alleviates cerebral oedema and cerebral infarction
after IS. Sevoflurane also moderates the death of astrocytes,
neurons, and vascular endothelial cells, thereby playing a
neuroprotective role in IS [44]. Therefore, inhibition of the
NF-kappa B/MAPK signaling pathway can reduce IS-
induced brain damage. Numerous studies have confirmed
that overactivation of these pathways is associated with
inflammatory responses and further thrombogenesis
[45–48]. Recent studies have reported that proinflammatory
signals from immune cells after the onset of IS further exac-
erbate brain injury. Understanding the changes in inflam-
matory mediators after the onset of IS may help to develop
inflammation-related neuroprotective strategies for post-
stroke complications [49]. In this study, the GO enrichment
analysis revealed that calcium signaling pathway-related
genes might be involved in apoptosis-related processes, sug-
gesting that the occurrence of IS is closely related to apopto-
sis. Increased levels of apoptosis are one of the serious
consequences of IS [50].

We further analysed the TFs of hub genes at the single-
cell level. Vascular endothelial cells perform several func-
tions, including regulating vascular wall contraction based
on chemical, physical, or electrical signals; participating in
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Figure 7: Pseudotemporal trajectory inference analysis in the mouse brain vasculature. (a) Trajectory inference in each of the four cell types.
(b) Pseudotime of cells in the DDRTree plot. (c) State distribution of each cell type in the DDRTree plot. (d) Expression of hub TFs and
targeted genes in mouse brain vasculature cells.
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Figure 8: Pseudotemporal and RNA velocity analyses of vascular endothelial cells. (a) DDRTree plot of endothelial cells in normoxia and
hypoxia. (b) Visualisation of subcluster analysis in the DDRTree plot. (c) State distribution of vascular endothelial cells in the DDRTree plot.
(d) A heat map showing pseudotime-related genes among the 19 hub TFs and target genes. (e) RNA velocity plot with longer arrows
representing stronger transcriptional activity. (f) Expression of the 19 hub TFs and target genes in vascular endothelial cells.
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inflammatory responses; stimulating neoangiogenesis; and
regulating vascular barrier permeability [51]. Hypoxia is an
important stimulus for promoting vascular neovasculariza-
tion and also alters endothelial cell function, metabolism,
and migration [52, 53]. Our study suggested that Jun and
Junb were pseudotime-associated genes in mouse endothe-
lial cells under normoxic and hypoxic conditions. Previous
studies have reported that the JNK/c-Jun/AP-1 pathway
can be regulated via IL-13 in human vascular endothelial
cells to participate in vascular inflammation-related patho-
physiological alterations [54]. JUNB plays an important role
in the production of vascular endothelial growth factor
(VEGF), which induces JUNB expression in the budding
vascular adventitia [55–57]. During mouse development,
Junb expression is elevated in vascular endothelial cells
owing to neurovascular interactions and is involved in the
embryonic vascular network construction [58]. In our study,
Jun and Junb expressions were downregulated in vascular
endothelial cells in hypoxia. In addition, Junb-deficient vas-
cular SMCs and endothelial cells were found to have
impaired motility owing to the failure of stress fibre forma-
tion [59]. In microglia, ATP can contribute to the early tran-

scriptional accumulation of JUNB, thereby activating
microglia [60]. The GSEA of JUN suggested a disturbance
of cellular energetic balance in IS. The association between
JUN and cellular energetic balance needs further investiga-
tion, including proteins involved in oxidative phosphoryla-
tion. In addition, REST was found to be a possible
inhibitor of microglial migration [61].

Astrocytes perform diverse functions, which can be both
beneficial and harmful [62]. Jun, Irf9, and Etv5 are putative
time-related TFs grouped according to oxygen concentra-
tion. Astrocytes can induce proliferation and reduce cellular
autophagy by activating c-Jun N-terminal kinase [63]. To
the best of our knowledge, this is the first study to report that
IRF9 and ETV5 might be astrocyte-specific TFs associated
with oxygen concentration in IS. The GSEA of IRF9 revealed
that G1/S-specific transcription and resolution of D-loop
structures through synthesis-dependent strand annealing
(SDSA) were downregulated, whereas the VEGFA-
VEGFR2 signaling pathway was upregulated in IS. Etv5/
Erm promotes astrocyte production and is regulated by
MEK [64]. During the differentiation of neural progenitor
cells (NPCs) into neurons, ETV5 prevents the production
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Figure 9: Pseudotemporal and RNA velocity analyses of microglia. (a) DDRTree plot of microglia in normoxia and hypoxia. (b)
Visualisation of subcluster analysis in the DDRTree plot. (c) RNA velocity plot with longer arrows representing stronger transcriptional
activity. (d) A heat map showing pseudotime-related genes among the 19 hub TFs and target genes. (e) State distribution of microglia in
the DDRTree plot. (f) Expression of the 19 hub TFs and targeted genes in microglia.

26 Oxidative Medicine and Cellular Longevity



PPARA

AHR

IRF9

ETV5

PTGS2

SP1

JUN

MXI1

ATF3

KLF15

REST

ZNF738

KDM5B

FOXO1

PML

ATF4

JUNB

Group

−4

−2

0

2

4

Class

Key (hub)

Key

Group

Control

IS

(a)

0

1

2

3

4

−L
og

10
 (P

va
lu

e)

PPARA
JUN

ETV5
IRF9

AHR

PTGS2
SP1

−2 −1 0 1 2

Log2 (fold change)

(b)

Figure 10: Continued.

27Oxidative Medicine and Cellular Longevity



−0.3

0.0

0.3

0.6

A L

REAC TOME_TRNA_PROCESSING_IN_THE_NUCLEUS
REAC TOME_SYNTHESIS_OF_SUBSTRTES_IN_N_GYCAN_BIOSYTHESIS
REAC TOME_MITOCHONDRIAL_TRANSLATION
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY
KEGG_CHEMOKINE_SIGNALING_PATHWAY

5000 10000 15000

Rank in ordered dataset

JUN

A LLLLL

JUN

(c)

Figure 10: Continued.

28 Oxidative Medicine and Cellular Longevity



−0.50

−0.25

0.00

0.25

0.50

REACTOME_G1_S_SPECIFIC_TRANSCRIPTION
REACTOME_RESOLUTION_OF_D_LOOP_STRUCTURES_THR
OUGH_SYNTHESIS_DEPENDENT_STRAND_ANNEALING_SDSA_
WP_VEGFAVEGFR2_SIGNALING_PATHWAY
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY

5000 10000 15000

Rank in ordered dataset

IRF9IRF9

(d)

Figure 10: Continued.

29Oxidative Medicine and Cellular Longevity



0.0

0.2

0.4

REACTOME_NEUTROPHIL_DEGRANULATION
REACTOME_CELL_CYCLE_MITOTIC
REACTOME_CELL_CYCLE_CHECKPOINTS
KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_
METABOLISM

5000 10000 15000

Rank in ordered dataset

ETV5ETV5

(e)

Figure 10: Continued.

30 Oxidative Medicine and Cellular Longevity



of glutamatergic neurons and increases the number of
GABAergic subtype neurons from NPCs [65]. The GSEA
of ETV5 revealed that neutrophil degranulation and amino
sugar and nucleotide sugar metabolism were downregulated
in IS. Sp1 is an important transcriptional regulator of oligo-
dendrocytes and fibroblasts. Sp1 phosphorylation can regu-
late oligodendrocyte differentiation by regulating MBP
transcription and is also an important factor in the regula-
tory network mediating the differentiation of NSCs [66,
67]. The GSEA of PPARA revealed that cytokines and
inflammatory response were upregulated in IS.

Numerous factors are now known to be associated with
IS [68–70]. In recent years, several studies have identified
genes that may be associated with the development and
prognosis of IS [71–74]. These studies have played a key role
in the clinical treatment of IS. Concerting with the calcium
signaling pathway, BCL10, BCL2A1, and EREG were used
to build a predictive model for IS history. Furthermore, miR-
NAs have also been found to play a crucial role in the ner-
vous system. Therefore, an IS-associated miRNA-mRNA
interaction network was constructed in this study [75]. Pos-
sibly a post-IS regulatory network may also be involved.

We first used GSVA to reveal the underlying mecha-
nisms of IS associated with the KEGG pathway, providing
a guiding study for further research. In this study, we

identified new key genes and signaling pathways by inte-
grating WGCNA, suggesting that bioinformatics-based
WGCNA is an excellent approach to reveal the molecular
mechanisms of IS-related disorders. To the best of our
knowledge, we have reported for the first time that the cal-
cium signaling pathway and the genes of the pink module
(including AC079305.10, BCL10, BCL2A1, BRE-AS1,
DYNLL2, EREG, and PTGS2) were significantly correlated
with IS. Enrichment analyses also suggested that alter-
ations in the microenvironment after the onset of IS fur-
ther increased the risk of thrombosis, which may be
related to the inflammatory responses. Finally, we analysed
the role of TFs of these core genes at the single-cell level
using SCENIC and pseudotemporal trajectory inference
analyses. Jun and Junb were identified to be associated
with hypoxia in endothelial cells, and Irf9 and Etv5 were
identified as astrocyte-specific TFs associated with oxygen
concentration. These results offer clues to understand IS
as well as its treatment and prognosis.

However, the findings of this study require to be vali-
dated in studies with large sample size, which was limited
in this study by a restricted database. In addition, the path-
ways and genes that were screened require further confirma-
tion. In future studies, we will continue to collect blood
samples and clinical information from patients with IS to
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Figure 10: Differential analysis of hub TFs and GSEA in clinical cohorts. (a) A heat map showing the expression of differentially expressed
hub TFs between patients with IS and healthy controls. (b) A volcano plot showing the distribution in fold change of hub TFs. (c–f) GSEA of
JUN, IRF9, ETV5, and PPARA. Pathways with upward curves are enriched in samples with downregulated gene expression.
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further validate and optimise the foundation of this study.
To the best of our knowledge, for the first time, we have
identified a correlation between the calcium signaling path-
way and the genes of the pink module; however, this corre-
lation requires validation by cellular and animal
experiments. We further assessed the expression of TFs that
regulate these genes at the single-cell level. In conclusion,
further studies are warranted to assess the specific regulatory
mechanisms of these genes and pathways.

5. Conclusion

The main objective of this study was to identify characteris-
tic alterations in the post-IS microenvironment. Genes of the
calcium signaling pathway and pink module (including
AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG,
and PTGS2) and related TFs (JUN, IRF9, ETV5, and PPARA)
were identified as possible core pathways and genes of the
altered blood microenvironment after IS. Jun and Junb were
identified to be associated with hypoxia in endothelial cells,
and Irf9 and Etv5 were identified as astrocyte-specific TFs
associated with oxygen concentration in the mouse cerebral
cortex. This study provides clues to understanding the path-
ogenesis of IS and developing new diagnostic and therapeu-
tic strategies.
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