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The acquisition of functional magnetic resonance imaging (fMRI) images of blood oxygen level-dependent (BOLD) effect and the
signals to be analyzed is based on weak changes in the magnetic field caused by small changes in blood oxygen physiological levels,
which are weak signals and complex in noise. In order to model and analyze the pathological and hemodynamic parameters of
BOLD-fMRI images effectively, it is urgent to use effective signal analysis techniques to reduce the interference of noise and
artifacts. In this paper, the noise characteristics of functional magnetic resonance imaging and the traditional signal denoising
methods are analyzed. The Bayesian decision criterion takes into account the probability of the total occurrence of all kinds of
references and the loss caused by misjudgment and has strong discriminability. So, an improved adaptive wavelet threshold
denoising method based on Bayesian estimation is proposed. By using the correlation characteristics of multiscale wavelet
coefficients, the corresponding wavelet components of useful signals and noises are processed differently; while retaining useful
frequency information, the noise is weakened to the greatest extent. The new adaptive threshold wavelet denoising method
based on Bayesian estimation is applied to the actual experiment, and the results of OEF (oxygen extraction fraction) are
optimized. A series of simulation experiments are carried out to verify the effectiveness of the proposed method.

1. Introduction

OEF (oxygen extraction fraction) refers to the ratio of oxygen
uptake from the blood to the total oxygen content of arterial
blood when oxygen-rich arterial blood flow passes through
capillaries in a region of the brain, which reflects the activity
of oxygen metabolism in the brain [1]. It is one of the three
physiological indicators of energy metabolism in brain tissue,
along with CBF (cerebral blood flow) and CMRO2 (cerebral
metabolic rate of oxygen) [2]. OEF is also the difference in
oxygen content between arterial and venous blood when tis-
sues take oxygen from the capillary network for utilization.
OEF indicates the ability of neurons to utilize oxygen and is
an indicator of energy metabolism in brain tissue. Under nor-
mal circumstances, the metabolic oxygen supply and oxygen
demand of neurons in the brain are in a dynamic equilibrium.
When some abnormal conditions such as ischemic stroke and

brain injury destroy this equilibrium relationship, physiologi-
cal metabolic indicators such as cerebral blood flow and OEF
will be abnormal. Therefore, the measurement of OEF is of
great significance for the prevention and treatment of ischemic
stroke. Over the past 25 years, the increase of OEF has been
recognized as the gold standard to prove the existence of cere-
bral hemodynamic damage [3]. In addition, there is no signif-
icant difference in OEF values between gray matter and white
matter, and the variability in the population is small, which is
suitable as a measurement index. At present, the relatively
mature OEF measurement technology is to measure the cere-
bral hemodynamic parameters through PET (positron emis-
sion tomography) technology [4]. However, PET technology
is very expensive, and it also needs to use 15O2 as a radioactive
labeling substance. The radioactive substance itself has radia-
tion trauma effect on the tested human body, and the half-
life of this radioactive substance is very short, only about 2
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minutes, resulting in this technology not being easy to apply in
the clinic. With the rapid development of magnetic resonance
imaging (MRI) and blood oxygen level-dependent (BOLD)
effects, more and more studies have begun to use BOLD for
T2∗-weighted imaging to study and process cerebral blood
perfusion and metabolism [5–8]. The difference between this
method and other imaging methods is that MRI has the high-
est spatial resolution for brain lesions and is safer and more
comprehensive in tissue structure, physiology, function,
metabolism, and other aspects, especially in the diagnosis of
neurological diseases.

In 1994, Haacke et al. [9] proposed a theoretical model to
measure the signal decline caused by extracellular deoxygen-
ated hemoglobin through a new MRI sequence. In 2000, An
and Lin [10] proposed an MRI sequence that combined GRE
and spin echo (SE) and solved the brain tissue OEF value
through a mathematical model. In 2003, An and Lin contin-
ued to improve and reorganize the MRI sequence, trying to
measure the OEF value from another perspective [11]. The
sequence they proposed does not need to calculate R2, which
can reduce the measurement error to a certain extent. Based
on the research of An et al., researchers have developed a lot
of OEF postprocessing software, which can directly output
OEFmeasurement results after inputting the nuclear magnetic
resonance images of GESSE sequences [12]. However, there
are still few researches on measuring OEF with new nuclear
magnetic resonance sequences or algorithms [13].

A mathematical model is established by using the func-
tional magnetic resonance imaging of blood oxygen level-
dependent (BOLD-fMRI) effect, which can accurately mea-
sure the OEF value of the human brain [14]. However, since
the image signal is based on a small change in the physiologi-
cal level of blood oxygen, the magnetic field is weakly changed,
and the noise is complicated. So it is urgent to have effective
signal analysis technology to reduce the interference of noise
and artifacts [15, 16] and improve the accuracy of OEF mea-
surement. In this paper, an adaptive wavelet threshold denois-
ing method based on Bayesian estimation is proposed on the
basis of traditional wavelet denoising. After the wavelet
decomposition, according to the different wavelet subband
characteristics, the improved wavelet scaling function param-
eter equation is used to determine the optimal threshold for
each wavelet decomposition scale level. The simulation results
show that compared with the traditional wavelet hard thresh-
old and soft threshold denoising, this method can better
improve the SNR and reduce the mean square error of the
denoising image and has better denoising effect, making the
final measurement result of OEF more accurate.

After reconstruction, the NMR image signal is inherently
complex. Two signals are collected through the receiving coil.
After orthogonal detection, the two image signals have zero
mean value with equal variance and Gaussian noise except
the phase difference. Magnetic resonance image signals obey
Gaussian distribution in the signal region with high SNR
and Rayleigh distribution in the signal region with low SNR
[17]. The noise is no longer completely independent but
related to the signal.

The noise in NMR image signals obeys Rician distribu-
tion, as shown in Figure 1.

As can be seen from the figure, if the signal-to-noise ratio
is high, the Rician distribution [18] will be close to the Gauss-
ian distribution; if the signal-to-noise ratio is close to 0 (in
this case, only noise exists), the Rician distribution will
become a Rayleigh distribution. When the signal-to-noise
ratio is low, it is signal dependent, and it is very difficult to
remove the random variation and deviation rate of Rician
noise generation. How to choose an effective denoising
method to effectively separate the signal from the noise is also
very meaningful and challenging.

The wavelet threshold denoising method [19, 20] is to
process the decomposed wavelet coefficients by finding
appropriate thresholds in the appropriate method and to
remove the wavelet coefficients belonging to the noise, leav-
ing the wavelet coefficients belonging to the signal, and then
reconstruct the processed wavelet coefficients to get the
denoised signal. Classical threshold processing wavelet
denoising has the following types: wavelet hard threshold
denoising, soft threshold denoising, and soft and hard
threshold denoising [21].

1.1. Wavelet Hard Threshold Denoising.As shown in Figure 2,
the hard threshold denoising is that after the wavelet coeffi-
cients are decomposed, the wavelet coefficients with absolute
values greater than T are retained, and the wavelet coefficients
with absolute values less than T are set to zero. Set the thresh-
old T to 0.5. The specific expression is as follows [22]:

ρT xð Þ =
x, xj j ≥ T ,

0, xj j ≥ T ,

(
ð1Þ

It can also be seen from the figure that the wavelet hard
threshold denoising has a sudden change when the absolute
value of the wavelet coefficient is equal to T, which will lead
to excessive denoising and being unnatural [23, 24].

1.2. Soft Threshold Denoising. As shown in Figure 3, the soft
threshold denoising is that after the wavelet coefficient is
decomposed, shrink the wavelet coefficients whose absolute
value is greater than T to the zero point, and set the wavelet
coefficient whose absolute value is smaller than T to zero.
Set the threshold T to 0.5. The specific expression is as
follows [22]:

ρT xð Þ =
x − T , x ≥ T ,

x + T , x≤−T ,

0, xj j ≤ T:

8>><
>>: ð2Þ

In this way, the coefficient change is more natural and
softer than the hard threshold denoising [25, 26].

2. Materials and Methods

2.1. Calculation Method of OEF. In this paper, the two-
chamber model [12, 27] is used to calculate the relevant
parameters, and the OEF value is finally calculated. The
two-chamber model treats the magnetized material and the
tissue of the magnetized material as two chambers. In MRI
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analysis of cerebral blood vessels, magnetized substance
refers to hemoglobin in the capillaries and blood vessels;
the tissue of the magnetized substance is brain substance.
In the BOLD effect fMRI image, the brain parenchyma corre-
sponding to a pixel contains many capillaries. Assuming that
the distribution direction of capillaries in the brain paren-
chyma is random, its magnetic moment can be decomposed
into short-term scale �SsðtÞ and long-term scale �SlðtÞ:

Ss tð Þ = ρ ⋅ 1 − λð Þ ⋅ exp −0:3 ⋅ ς ⋅ δ�w ⋅ tð Þ2� �
, ð3Þ

Sl tð Þ = ρ ⋅ 1 − λð Þ ⋅ exp −R2c′ ⋅ t − tcj j
h i

, ð4Þ
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Figure 1: (a) When the SNR is high, the Rician distribution is close to the Gaussian distribution. (b) When the SNR is very low, the Rician
distribution is close to the Rayleigh distribution. (c) When the SNR is medium, the Rician distribution is shown in the figure.
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Figure 2: Wavelet hard threshold denoising.
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where tc = ðδ�wÞ−1, R2c′= λ ⋅ δ�w, ς is a constant, ρ is a con-
stant, and λ is the relative volume of the magnetized material.
δ�w in equation (3) can be obtained from

δ�w = γ ⋅
4
3
⋅ π ⋅ Δχ ⋅Hct ⋅OEF ⋅ B0: ð5Þ

Among them, Hct is the hematocrit, B0 is the intensity of
the external magnetic field, Δχ is the magnetic susceptibility
shift between deoxyhemoglobin and oxyhemoglobin, usually
0.18ppm/Hct, γ is themagnetic susceptibility of the substance,
and δ�w is the frequency deviation of the magnetized sub-
stance. Calculate λ by short-term scale fitting of the brightness
change curve in the image and then substitute λ into equation
(4) to calculate δ�w by long-term scale fitting, and finally, sub-
stitute δ�w into equation (5) to calculate the OEF value [28].

2.2. Adaptive Wavelet Threshold Denoising Method Based on
Bayesian Estimation. Research on the denoising method of
wavelet threshold has been active recently. Many new wavelet
threshold denoising methods have been derived for the
improvement of soft and hard thresholds and the different cal-
culation methods of thresholds. Based on the Bayesian estima-
tion, LkahwinderKaur proposed the NormalShrink wavelet
threshold denoising method for the problem that the Donoho
threshold method [29] cannot maximize the separation of
image and noise at each level of wavelet. However, this method
has a disadvantage; the image after denoising loses some
details, and the edges appear blurry. In this paper, the wavelet
threshold denoising method of NormalShrink is further
improved. A wavelet adaptive threshold method based on
Bayesian estimation [30] is used to denoise the image. After
wavelet decomposition, according to different wavelet sub-
band characteristics, the improved wavelet scale function
parameter equations are used to determine the optimal thresh-
old T that is appropriate for each wavelet decomposition scale.

In the process of denoising the image, if the prior informa-
tion of the image can be considered and then the optimal
threshold is obtained for the risk function, the result error will
be reduced. The coefficients of each subband of image wavelet
decomposition are basically symmetrically distributed near the
zero point, forming a spike distribution, which can be described
by a zero-mean generalized Gauss distribution GGD.

The general Gauss distribution is [31, 32]

GGσX ,β xð Þ = C σX , βð Þ exp − α σX , βð Þ ∣ x∣½ �β
n o

−∞ < x <∞,σX > 0, β > 0,

α σX , βð Þ = σ−1X
Γ 3/βð Þ
Γ 1/βð Þ
� �1/2

,

C σX , βð Þ = βα σX , βð Þ
2Γ 1/βð Þ ,

Γ tð Þ =
ð∞
0
e−uut−1du, ð6Þ

where σX is the standard deviation and β is the morphologi-
cal parameter.

Suppose that X obeys a mean of zero and the variance is a
Gaussian distribution of σ2X , that is, X ∼Nð0, σ2XÞ, β = 2, then
the Bayesian risk estimation function is

γ Tð Þ = E X
∧
− X

� �2
= EXEY ∣X X

∧
− X

� �2
,

X
∧
= ηT Yð Þ, Y ∣X ∼N x, σ2� 	

, X ∼GGσX ,β:

ð7Þ

For a given set of parameters, the threshold T is searched
so that the result of γðTÞ in (4) is the minimum. T∗ðσX , βÞ
= arg min rðTÞ

T
is used to represent the optimized threshold

function.
Next, the optimization threshold T∗ is obtained:

EXEY ∣X X
Λ
− X

� �2
=
ð+∞
−∞

ð+∞
−∞

ηT yð Þ − xð Þ2p y ∣ xð Þp xð Þdydx

= σ2ω
σ2
X

σ2
,
T
σ

� �
,

ω σ2
X , T

� 	
= σ2X + 2 T2 + 1 − σ2

X

� 	
�ϕ

Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2

X

p
 !

− 2T 1 + σ2X
� 	

ϕ T , 1 + σ2X
� 	

:

ð8Þ

The standard density function is

ϕ x, σ2
� 	

=
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
� �

exp −
x2

2σ2

� �� �
,

�ϕ xð Þ =
ð∞
x
ϕ t, 1ð Þdt: ð9Þ

So

TB σXð Þ = σ2

σX
: ð10Þ
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Figure 3: Soft threshold denoising.
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TBðσXÞ is an approximation of T∗ðσX , 2Þ, and its maxi-
mum deviation is not more than 0.01. The noise variance
σ2 in (10) can be estimated by using the median absolute var-
iance for the highest frequency subband [28]:

σ
Λ2

=
Median Yi,j

�� ��
0:6745

" #2
Yi,j ∈ subbandHH1, ð11Þ

σ
Λ2

Y = n−2 〠
n

i,i=1
Y2
ij n × n is the considered subband sizeð Þ,

σX
Λ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max σ

Λ2

Y − σ
Λ2
, 0

� �s
:

ð12Þ
Finally, a data-driven, subband-based adaptive threshold

is obtained as shown in [33]

T
Λ

B σX
Λ

� �
=

σ
Λ2

σX
Λ
: ð13Þ

3. Experimental Results

3.1. Experimental Method. There were 12 young normal vol-
unteers in this experiment, all aged 22-30 years old, with no gen-
der selectivity. The 12 normal volunteers were scanned with
GESSE sequence of brain parenchyma, and the scanning level
was located above the lateral ventricle. Scanning parameters
are as follows: tr = 1:5 s, TE = 56ms, bandwidth 62.5kHz,
image matrix 256 ∗ 256, gradient echo number 32, echo gap
1.5ms, and layer thickness 7.5mm. 32DICOM images obtained
from the GESSE sequence are used as the original data input.

3.2. Wavelet Threshold Denoising Method. In this paper,
three evaluation indexes of image display, SNR (signal-to-
noise ratio), and MSE (mean square error) are considered
in the comparison of various denoising methods. Each indi-
cator verifies one of the advantages and disadvantages of
the denoising method. Among them, the image display
shows that the denoising image can be visually observed;
the signal-to-noise ratio is aimed at retaining the signal while
suppressing how much noise; the mean square error is suit-
able for expressing the sharpness of a picture.

3.2.1. SNR (Signal-to-Noise Ratio). SNR (signal-to-noise
ratio) is one of the more traditional methods for measuring
the amount of noise in a signal [34, 35]. It is often used as
an indicator for denoising effect evaluation. The unit is deci-
bel (dB), which is defined as

SNR = 10 lg
1/MNð Þ∑M−1

i=0 ∑N−1
j=0 f 2i,j

MSE

 !
: ð14Þ

We can know that the larger SNR is after denoising, the
better the denoising effect will be.

3.2.2. MSE (Mean Square Error). The MSE (mean square
error) shows the sharpness of the image [36] and the root
mean square error between the original signal A and the
denoised estimated signal B is defined as

MSE =
1

MN
〠
M−1

i=0
〠
N−1

j=0
f i,j − f i,j
� 2

: ð15Þ

We can know that the smaller MSE is after denoising, the
better the denoising effect will be.

3.3. Generation of Rician Noise. Rician noise is not additive,
but data dependent. First, a noiseless MR image A is defined
on a discrete grid I, A = fai ∣ i ∈ Ig, and a set of random num-
bers is used as the brightness of image A. Taking σ as the
standard deviation of Gaussian noise, two sets of Gaussian
random numbers X = fxi ∣ i ∈ Ig and Y = fyi ∣ i ∈ Ig are
formed, and the average of the two sets of numbers is 0 and
has the same standard deviation σ. Then, the following M
= fmi ∣ i ∈ Ig is the Rician distribution:

mi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai + xið Þ2 + y2i

q
: ð16Þ

3.4. Simulation Experiment Process and Result Analysis

3.4.1. Simulation Experiment Process. Three methods of
Gaussian filtering and wavelet transform (traditional hard
threshold, traditional soft threshold denoising, and adaptive
threshold denoising based on Bayesian estimation) are used
to denoise the signals with different standard deviations σ
of Rician noise. By observing the simulation results, the
advantages and disadvantages of Gaussian filtering and tradi-
tional wavelet threshold denoising were compared and veri-
fied, as well as the advantages and feasibility of the new

Figure 4: Original image and noisy image.

Figure 5: MRI image after Gaussian filtering.

5Oxidative Medicine and Cellular Longevity



Bayesian estimation adaptive threshold wavelet denoising in
MRI image signal denoising.

3.4.2. Generation of Rician Noise

(1) Load the Original MRI Signal. A signal containing Rician
noise is generated using MATLAB simulation software, as
shown in Figure 4. The left picture shows the original fMRI
signal image, and the right picture shows the noisy signal
image with Rician noise. And the standard deviation of noise
is 0.009. It can be observed that the noisy image is slightly
blurred. Since the standard deviation of noise is small, no
obvious blur phenomenon is observed.

(2) Denoising Using Gaussian Filtering. The noise image is
denoised by Gaussian filtering, which uses a two-
dimensional operator of size 5 ∗ 5. The image after denoising
by Gaussian filtering is shown in Figure 5.

(3) Denoising Using Traditional Wavelet Hard and Soft
Thresholds. In the MATLAB simulation program, the origi-
nal signal is decomposed by the “haar” wavelet function,
and the signal is denoised by the soft threshold and the hard
threshold, respectively. The result is shown in Figure 6.

(4) Signal Processing Using the New Bayesian Estimation
Adaptive Threshold Wavelet Denoising.

(5) Calculation of SNR and MSE. The formulas of the SNR
and the MSE are as shown in (14) and (15), and the SNR
and MSE of the denoised image are calculated according to
the formula.

3.4.3. Analysis of Results. Firstly, by observing the noise
reduction comparison diagram of Gaussian filtering and
three kinds of wavelet transform (Figures 5–7), it can be seen
that the signals obtained after noise reduction by wavelet
transform have better similarity and smoothness. Compared
with the traditional Gaussian filter denoising method, the sig-
nal denoising method based on wavelet transform can
remove the noise in the signal more effectively.

The comparison of the advantages and disadvantages of
each denoising method is shown in Tables 1 and 2:

Tables 1 and 2 show the SNR and root mean square error
of the original signal after denoising the image with different
standard deviation noises by Gauss filtering, traditional
wavelet threshold transform, and new Bayesian estimation

(a) (b)

Figure 6: (a) Soft threshold denoised image. (b) Hard threshold denoised image.

Figure 7: The new Bayesian estimation of adaptive threshold
wavelet denoising image.

Table 1: SNR comparison of image signals after noise reduction.

Soft-SNR Hard-SNR Bayes-SNR Gausse-SNR

σ = 0:001 41.2198 43.2875 44.4607 39.6104

σ = 0:002 40.7725 40.6271 41.3334 38.5229

σ = 0:003 38.4023 39.1372 39.6665 37.7407

σ = 0:004 37.7854 37.9235 38.4900 36.8859

σ = 0:005 36.5943 37.1237 37.3624 36.2954

σ = 0:006 35.8307 36.2856 36.8062 35.7564

σ = 0:007 35.3401 35.6654 36.1744 35.3158

σ = 0:008 34.6803 35.1072 35.5330 34.8268

σ = 0:009 34.3478 34.6372 35.0086 34.4037

Table 2: MSE comparison of image signals after noise reduction.

Soft-MSE Hard-MSE Bayes-MSE Gausse-MSE

σ = 0:001 0.0246 0.0207 0.0192 0.0243

σ = 0:002 0.0275 0.0263 0.0253 0.0267

σ = 0:003 0.0270 0.0256 0.0263 0.0287

σ = 0:004 0.0300 0.0288 0.0292 0.0312

σ = 0:005 0.0322 0.0312 0.0325 0.0330

σ = 0:006 0.0347 0.0339 0.0349 0.0348

σ = 0:007 0.0365 0.0362 0.0362 0.0364

σ = 0:008 0.0390 0.0382 0.0388 0.0383

σ = 0:009 0.0404 0.0400 0.0400 0.0400
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Figure 9: Comparison of MSE results of four denoising methods.

Table 3: Comparison of OEF results before and after optimization.

1 2 3 4 5 6

Before 0:324 ± 0:035 0:325 ± 0:033 0:306 ± 0:043 0:317 ± 0:028 0:273 ± 0:023 0:303 ± 0:025

After 0:331 ± 0:049 0:329 ± 0:044 0:311 ± 0:044 0:325 ± 0:049 0:286 ± 0:036 0:324 ± 0:051
7 8 9 10 11 12

Before 0:316 ± 0:0348 0:299 ± 0:022 0:282 ± 0:023 0:326 ± 0:028 0:283 ± 0:027 0:298 ± 0:044

After 0:330 ± 0:0518 0:332 ± 0:048 0:304 ± 0:074 0:337 ± 0:047 0:296 ± 0:050 0:329 ± 0:057
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Figure 8: Comparison of SNR results of four denoising methods.
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adaptive threshold wavelet transform. According to the eval-
uation criteria of denoising performance, the signal-to-noise
ratio of the denoised signal by wavelet transform is higher
than that of the denoised signal by Gaussian filter, and the
root mean square error is lower. The data show that the
denoised signal by wavelet transform has better similarity
with the original signal, and the denoised signal by wavelet
transform retains more energy of the original signal.

In order to make a more intuitive comparison, this paper
makes a broken line chart based on the table data, as shown
in Figures 8 and 9.

It can be concluded that Bayesian estimation of adaptive
wavelet denoising is superior to other denoising methods,
and its application to fMRI image denoising can improve
the degree of signal noise separation and retain useful signals
to the maximum extent.

3.5. Simulation Experiment. The new adaptive threshold
wavelet denoising method based on Bayesian estimation
was applied to the actual experiment to try to optimize the
results of mathematical modeling and measurement of OEF
[15]. Firstly, the original postprocessing program was used
to analyze the experimental data of 12 groups of volunteers,
and the OEF results were obtained. Then, the optimized post-
processing program was used to analyze the experimental
data of the volunteers to obtain new results. According to
the gold standard measured by PET [37, 38], the two groups
of results were compared and analyzed, as shown in Table 3
and Figure 10.

4. Conclusions

In the postprocessing process of OEF mathematical model-
ing, the adaptive threshold wavelet denoising method based
on Bayesian estimation retained more useful signals than
the original Gaussian filter. The 12 groups of optimized
OEF results in the experiment all have a certain degree of
increase compared to the OEF values before optimization,
making the results closer to the gold standard value of 35%

in PET measurement. The experiment preliminarily verified
the feasibility and superiority of applying the adaptive
threshold wavelet denoising method based on Bayesian esti-
mation to fMRI signal processing and analysis.
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