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Berbamine (BBM), one of the bioactive ingredients extracted from Berberis plants, has attracted intensive attention because of its
significant antitumor activity against various malignancies. However, the exact role and potential molecular mechanism of
berbamine in bladder cancer (BCa) remain unclear. In the present study, our results showed that berbamine inhibited cell
viability, colony formation, and proliferation. Additionally, berbamine induced cell cycle arrest at S phase by a synergistic
mechanism involving stimulation of P21 and P27 protein expression as well as downregulation of CyclinD, CyclinA2, and
CDK2 protein expression. In addition to suppressing epithelial-mesenchymal transition (EMT), berbamine rearranged the
cytoskeleton to inhibit cell metastasis. Mechanistically, the expression of P65, P-P65, and P-IκBα was decreased upon berbamine
treatment, yet P65 overexpression abrogated the effects of berbamine on the proliferative and metastatic potential of BCa cells,
which indicated that berbamine attenuated the malignant biological activities of BCa cells by inhibiting the NF-κB pathway.
More importantly, berbamine increased the intracellular reactive oxygen species (ROS) level through the downregulation of
antioxidative genes such as Nrf2, HO-1, SOD2, and GPX-1. Following ROS accumulation, the intrinsic apoptotic pathway was
triggered by an increase in the ratio of Bax/Bcl-2. Furthermore, berbamine-mediated ROS accumulation negatively regulated the
NF-κB pathway to a certain degree. Consistent with our in vitro results, berbamine successfully inhibited tumor growth and
blocked the NF-κB pathway in our xenograft model. To summarize, our data demonstrated that berbamine exerts antitumor
effects via the ROS/NF-κB signaling axis in bladder cancer, which provides a basis for further comprehensive study and presents
a potential candidate for clinical treatment strategies against bladder cancer.

1. Introduction

Bladder cancer is the 7th most common malignancy in males
and remains the leading cause of urinary disease-related
death [1]. An estimated 549,000 new cases diagnosed as blad-
der cancer and 200,000 deaths occurred worldwide in 2018
[2]. In terms of clinical and pathological aspects, urothelial

carcinoma, which accounts for 90% of primary bladder
malignant tumors, is the major histological subtype. Among
those bladder cancer patients, non-muscle-invasive bladder
cancer (NMIBC) accounts for 70% of diagnoses. Moreover,
as many as 40% of NMIBCs eventually develop into
muscle-invasive bladder cancer (MIBC), which is extremely
aggressive and has overall 5-year and 10-year survival rates
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of 50% and 36%, respectively [3, 4]. To date, therapeutics
such as surgical resection and chemotherapy, mainly based
on the tumor’s clinical stage, have made certain progress.
However, some hurdles, including adverse side effects, drug
resistance, and the high recurrence rate, restrict sustainable
clinical benefits. Therefore, it is highly necessary to screen
more effective alternatives with low toxicity and determine
their underlying mechanisms for patients with BCa.

Chinese traditional herbs have a wide range of pharma-
cological effects for clinical applications, such as anti-inflam-
matory, lipid modulation, antivirus, and antitumor [5, 6].
Berbamine, initially identified as an effective antileukemic
agent extracted from the herbal medicine Berberis, garnered
much attention [7]. A large number of research achievements
further corroborate the antitumor properties of berbamine
and its derivatives in various carcinomas, such as colon can-
cer, ovarian cancer, prostate cancer, and liver cancer [8–11].
Nonetheless, there have been no reports so far involving the
effects of berbamine on the biological activities of bladder
cancer.

ROS are a class of highly reactive, oxygen-containing
molecules, mainly including superoxide anion, hydrogen
peroxide, hydroxyl radicals, and singlet oxygen [12, 13]. Reg-
ulation of the ROS signaling network is a complex process.
Under physiological conditions, a moderate level of ROS
guaranteed by redox balance is crucial to a series of biological
processes. However, compared with normal cells, cancer cells
inherently exhibit aberrantly higher ROS levels due to their
high metabolic rate, which profoundly facilitates the onset
and deterioration of various human cancers by mediating
oxidative damage to DNA, proteins, and lipids. Due to their
dualistic nature, ROS can exert opposite biological effects.
Once the extremely high ROS level exceeds intracellular tol-
erance, it can induce mitochondrial dysfunction and destroy
cellular homeostasis, ultimately eliciting apoptosis, which
provides possible insights into cancer treatment [14].

The process of tumor progression is synergistic, involving
various intracellular proteins and complex signal transduc-
tion. Emerging evidence has demonstrated that abnormal
upregulation of the inducible transcription factor NF-κB is
closely associated with unfavorable prognosis in patients
with MIBC [15–17]. In general, inactive P65 and P50 hetero-
dimers were bound to the inhibitor IκBα in the cytoplasm.
For NF-κB to be activated, IκBα must undergo phosphoryla-
tion, ubiquitination, and degradation; then, free P65 is phos-
phorylated for nuclear translocation and binds to DNA
sequences at the promoter region of downstream target genes
to regulate cellular processes [18]. In cancer cells, NF-κB acti-
vation initiates the transcription of proliferative, metastatic,
and angiogenic genes, all of which contribute to carcinogen-
esis [19]. Therefore, targeting the NF-κB pathway has
emerged as an effective strategy for cancer therapeutics.

We aimed to investigate the broad-spectrum effects of
berbamine on bladder cancer in vitro and in vivo and eluci-
date its underlying mechanism. Cell phenotype experiments
have revealed that berbamine could inhibit bladder cancer
cell survival, proliferation, and metastasis by suppressing
the NF-κB pathway. Moreover, berbamine could induce cell
cycle arrest at S phase accompanied by alteration of P21,

P27, CyclinD, CyclinA2, and CDK2 proteins. We further
established that berbamine downregulated the expression of
several key antioxidative genes and subsequently elicited
mitochondrial ROS generation that ultimately mediated cell
apoptosis and negatively regulated the NF-κB pathway to a
certain degree. Collectively, these findings indicated that ber-
bamine could attenuate the multiple biological properties of
bladder cancer by modulating the ROS/NF-κB axis. This
study improves our understanding of the antitumor mecha-
nism of berbamine against bladder cancer, thereby providing
a basis for further comprehensive studies.

2. Materials and Methods

2.1. Cell Lines and Culture Conditions. Bladder cancer cell
lines (5637 and T24 cells) were purchased from the Chinese
Academy of Sciences (Shanghai, China). The above cells were
cultured at 37°C in a humidified incubator containing 5%
CO2 in RPMI-1640 medium (Gibco, China) supplemented
with 10% fetal bovine serum (Gibco, USA) and 1% penicillin
(Sigma-Aldrich, Italy) and streptomycin (Sigma-Aldrich,
Italy).

2.2. Cell Counting Kit-8 Assay (CCK-8). The CCK-8 assay was
applied to evaluate the viability of bladder cancer cell lines
(Dojindo, Japan). Appropriate 5637 and T24 cells were cul-
tured in 96-well plates overnight and treated at the indicated
doses. Following a certain period, the supernatant solution
was replaced by 110μl fresh medium containing 10μl
CCK-8 solution; then, the cells were incubated for 2 h at
37°C. The absorbance of each well was measured with a
microplate reader at a wavelength of 450 nm.

2.3. Colony Formation Assay. 5637 and T24 cells were uni-
formly dispersed in 6-well culture plates at an approximate
density of 1000/well. Cells were cultured with the indicated
berbamine for 48 h, and the medium was renewed every three
days. After a two-week cultivation, the colonies were fixed in
4% paraformaldehyde, stained with hematoxylin (Solarbio),
and counted using ImageJ.

2.4. Wound Healing Assay. Exponentially growing cells were
seeded in 6-well culture plates and allowed to reach approx-
imately 95% confluence in complete medium. A sterile
pipette tip was applied to scratch the cell layer to create a
wound. Subsequently, the cells were cultured in serum-free
medium containing a specified berbamine concentration.
The images of wound closure were captured using an
inverted microscope, and the healing rate was assessed by
Image J.

2.5. Transwell Assay. Appropriate 5637 and T24 cells resus-
pended in serum-free medium (200μl) with a specific con-
centration of berbamine were placed in the Transwell
chamber (24-well, 8μm pore membrane, Corning Incorpo-
rated, NY, USA). For cell invasion, the upper chamber mem-
brane was precoated with Matrigel (Corning Incorporated,
NY), not for cell migration. Subsequently, 500μl of medium
containing 20% FBS was presented in the lower chamber.
After incubation at 37°C for 48 h, the cells on the upper
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surface of the membrane were wiped with a cotton swab, and
then migrated or invaded cells were fixed in 4% paraformal-
dehyde and stained with hematoxylin (Solarbio, China). The
images were taken in five randomly selected fields by a
microscope (Leica Microsystems, GmbH).

2.6. Cell Cycle Analysis. 5637 and T24 cells were cultured for
starvation overnight and then pretreated with berbamine for
48 h. Subsequently, the collected cells were resuspended and
fixed with precooled 75% ethanol at 4°C overnight. Following
incubation with 1mg/ml RNase A at 37°C for 30min, the
cells were stained with the propidium iodide (PI) solution
for 20 minutes in the dark. Ultimately, the distribution of
the cell cycle phase was analyzed through flow cytometry
using a BD FACSArray (BD Biosciences, USA).

2.7. Cell Apoptosis Analysis. The collected cells were resus-
pended in 100μl 1x binding buffer supplemented with 5μl
Annexin V-FITC and 5μl propionate (BD.559763), followed
by incubation at room temperature in the dark for 15
minutes. After staining, the cell apoptosis rate was calculated
using flow cytometry (BD Biosciences, USA) and FlowJo
7.6.2 software. At least 10000 cells were guaranteed before
analysis.

2.8. 5-Ethynyl-2′-Deoxyuridine (EdU) Assay. 5637 and T24
cells were seeded in 24-well plates with berbamine treatment
for 48 h and incubated with medium supplemented with
50μM EdU. Two hours later, the cells were fixed with 4%
paraformaldehyde at room temperature for 20 minutes,
permeabilized in 0.5% Triton X-100 for 10 minutes, and
stained with Apollo staining solution and Hoechst reagent.
Finally, images were taken using fluorescence microscopy
(Olympus, Tokyo, Japan).

2.9. Phalloidin Staining. After berbamine treatment for 48 h,
5637 and T24 cells were fixed with cooled carbinol and incu-
bated with 50μg/ml FITC-phalloidin (Sigma-Aldrich) at
room temperature in the dark for 1 h. Next, the cells were
counterstained with DAPI (Sigma-Aldrich, USA). Finally,
cell morphology was observed under a fluorescence micro-
scope (Olympus, Japan).

2.10. Cell Transfection. pcDNA3.1-P65 and the empty vector
were obtained from Genomeditech (Shanghai, China). When
the cell confluence was approximately 50% in 6-well plates,
the OV-P65 plasmid and the empty vector were transfected
into 5637 and T24 cells with Lipofectamine 3000 Reagent
(Invitrogen, USA). After 48 h of transfection, the cells were
collected for subsequent experiments.

2.11. Mitochondrial ROS Measurement. Briefly, berbamine-
treated cells were incubated with 5μM MitoSOX reagent
working solution at room temperature in the dark for 10
minutes. Then, the cells were fixed in 4% paraformaldehyde
and stained with DAPI. Finally, images were captured using
a fluorescence microscope (Olympus, Japan).

2.12. Immunofluorescence. Cells were fixed with 4% parafor-
maldehyde for 20 minutes and permeabilized in 0.5% Triton
X-100 for 10 minutes. Next, the cells were blocked with nor-

mal goat serum for 1 h and incubated overnight with the pri-
mary antibody at 4°C, followed by incubation with the Alexa
Fluor 488-conjugated secondary antibody in the dark for 2 h.
Finally, the cell nuclei were counterstained with DAPI, and
images were captured using a fluorescence microscope
(Olympus, Japan).

2.13. Quantitative Real-Time PCR (qRT-PCR). The total
RNA was extracted from 5637 and T24 cells by using the
TRIzol Reagent (Takara, China) and was subsequently
reverse-transcribed into cDNA with the PrimeScript™ RT
Reagent Kit (Takara) according to the manufacturer’s
instructions. qRT-PCR analysis was carried out using the
TB Green™ Premix Ex Taq™ II (Takara). The primer
sequences were as follows: GAPDH (forward: 5′-GCACCG
TCAAGGCTGAGAAC-3′; reverse: 5′-TGGTGAAGACG
CCAGTGGA-3′) and P65 (forward: 5′-GACGCATTGCT
GTGCCTTC-3′; reverse: 5′-TTGATGGTGCTCAGGG
ATGAC-3′). The GAPDH gene was regarded as an internal
reference for P65 mRNA. The relative expression levels were
calculated by the 2−ΔΔCt method. All trials were conducted in
triplicate (3 wells).

2.14. Western Blotting. Total protein was extracted from
bladder cancer cells using RIPA lysis buffer (CST, USA) with
1% phosphatase inhibitors and 1% protease inhibitors on ice,
and then quantified with the bicinchoninic acid (BCA)
method (Solarbio). Each sample (25μg) was separated by
10% SDS-PAGE, transferred to a polyvinylidene fluoride
(PVDF) membrane, blocked with 5% skim milk powder,
and incubated with the primary antibody overnight at 4°C.
The next day, the membrane was incubated with the HRP-
conjugated secondary antibody for 1 h and finally visualized
using an enhanced chemiluminescence kit.

2.15. Xenografts. The animal protocol was approved by the
Institutional Animal Care and Use Committee of Shandong
University. A suspension containing 5 × 106 T24 cells was
injected subcutaneously into the right axilla of nude mice
(specific-pathogen-free (SPF) grade, 4 weeks old) that were
randomly divided into the control group and BBM group
(n = 5 for each group). When the tumor volume in each nude
mouse was greater than 100mm3, the mice in the treatment
group were intraperitoneally injected with berbamine at
35mg/kg body weight every three days until the completion
of the experiment. Simultaneously, the mice in the control
group were exposed to the same concentration of DMSO.
At the termination of the experiment, the mice were sacri-
ficed by cervical dislocation, and solid tumors were removed
for evaluation. In addition, a portion of tumor tissues were
embedded in paraffin for immunohistochemistry (IHC).

2.16. IHC. Tumor tissues were fixed with 4% paraformalde-
hyde and embedded in paraffin for slicing. Subsequently,
the samples were deparaffinized, rehydrated, and washed
with PBS. These samples were immersed in the antigen
retrieval solutions with 10nM citrate buffer (pH6.0) for 3
minutes and incubated with the Ki-67 antibody and P65 anti-
body at 4°C overnight. The next day, the sections were
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incubated with the biotin-conjugated secondary antibody for
1 h. According to the manufacturer’s procedures, protein
staining was carried out with the DAB enzyme (Abcam,
ab64238), and the nuclei were stained with hematoxylin
(Abcam, ab143166). The stained slides were observed under
a microscope.

2.17. Statistical Analysis. All values are expressed as the
mean ± SD. Prism software (GraphPad, USA) was used to
do statistical analysis. Statistical significance was determined
using two-tailed Student’s t-test or one-way ANOVA. Differ-
ences with p values less than 0.05 were considered statistically
significant.

3. Results

3.1. Berbamine Suppressed the Growth of Bladder Cancer
Cells In Vitro. The chemical structure of berbamine is dis-
played in Figure 1(a). The CCK-8 assay was first performed
to delve into the cytotoxic effects of berbamine. Briefly, cells
were treated with a range of concentrations of berbamine
(8, 16, 24, 32, and 40μM) for 24 h or 48h, and cell survival
was calculated in comparison with that of untreated cells.
According to Figure 1(b), berbamine significantly suppressed
the viability of both 5637 and T24 cells in a concentration-
and time-dependent manner. The 50% inhibitory concentra-
tion (IC50) values of berbamine for 5637 and T24 cells at 48 h
were 15:58 ± 2:489 and 19:09 ± 0:68μmol/l, respectively.
Therefore, we applied suitable concentrations (8μM and
16μM) of berbamine to subsequent experiments. As shown
in Figures 1(c) and 1(d), berbamine treatment significantly
decreased the number of colonies compared to that in the
control group. Additionally, the EdU assay visually suggested
an antiproliferative activity of berbamine, as it disturbed
DNA replication. Following berbamine treatment, the per-
centages of EdU-positive 5637 and T24 cells were markedly
reduced (Figure 1(e)). Consistent with the EdU assay, immu-
nofluorescence assays indicated that the level of Ki-67, a vital
marker of cell proliferation, was notably decreased in both
cell lines in response to berbamine (Figure 1(f)). In conclu-
sion, the above outcomes illustrated that berbamine strongly
restrained bladder cancer cell growth in vitro.

3.2. Berbamine Induced Cell Cycle Arrest at S Phase in
Bladder Cancer Cells. Cell cycle perturbation underlies aber-
rant cell proliferation, which characterizes a malignant phe-
notype [20]. Given that berbamine, a cycle-specific drug,
could suppress tumor cell growth by disturbing cell cycle
progression [8, 21], we measured the cycle ratio of 5637
and T24 cells with berbamine treatment by PI staining. As
expected, berbamine increased the percentage of cells in S
phase and exhibited a dose-dependent trend, but the propor-
tion of cells in G0/G1 phase and G2/M phase did not change
significantly (Figures 2(a) and 2(b)).

To clarify the molecular mechanism of how berbamine
arrests the cell cycle, we assessed the levels of P21, P27,
CyclinD, CyclinA2, and CDK2 proteins that are responsible
for S-phase regulation [22]. As illustrated in Figures 2(c)
and 2(d)), the expression of cyclin-dependent kinase inhibi-

tors p21 and p27 was clearly upregulated upon berbamine
treatment. In contrast, berbamine dramatically downregu-
lated the expression of CyclinD, CyclinA2, and CDK2. In
summary, berbamine induced S-phase arrest by targeting
and altering the expression of checkpoint regulators, thus
suppressing the growth of bladder cancer cells.

3.3. Berbamine Suppressed the Migration and Invasion
Activities of Bladder Cancer Cells. Considering that the
metastasis of cancer cells is a vital factor in tumor progres-
sion, we performed a wound healing assay and a Transwell
assay to assess the influences of berbamine on the metastatic
potency of bladder cancer cells. As shown in Figure 3(a),
berbamine retarded wound closure in a dose-dependent
manner, indicating that berbamine apparently curbed the
migratory capacity of bladder cancer cells. Consistently, a
similar result was obtained in the Transwell assay
(Figure 3(b)). After treatment for 48 h, berbamine induced
significant decreases in the numbers of migrated cells.
Besides, the Transwell invasion assay revealed that the
number of cells that invaded the lower chamber through
extracellular matrix (ECM) gels was remarkably reduced fol-
lowing berbamine treatment, which suggested that berba-
mine restricted the invasive capacity of bladder cancer cells.

The above experiments confirmed the antimetastatic
effects of berbamine on BCa cells (Figure 3(c)). Given that
the EMT process has been verified to engage in the migration
and invasion of cancer cells, we investigated the levels of
select markers involved in EMT following berbamine treat-
ment. Data in Figures 3(d) and 3(e) show that berbamine
augmented E-cadherin expression and concomitantly
decreased the levels of N-cadherin, vimentin, and MMP-9
in both cell lines. Therefore, the outcomes validated that ber-
bamine attenuated cell metastasis by repressing the EMT
process.

The remodeling of the actin cytoskeleton also plays a vital
role in metastasis [23]. Filopodia are actin-based protrusions
that mainly arise on the ventral surface of the cell membrane
to assimilated signals like chemokines, nutrients, and che-
moattractants [24, 25]. We next stained the cytoskeleton
and pseudopodia with fluorescein-conjugated phalloidin.
An interesting observation showed that 5637 and T24 cells
without berbamine treatment maintained the spindle- and
fibroblast-like appearance with lamellipodia at the cell
perimeter. However, the treated cells exhibited a
cobblestone-like morphology (Figure 3(f)), which was a fea-
ture of epithelial cells. Furthermore, there were few cellular
protrusions and contact surfaces between cancer cells. In
summary, it seemed clear that the inhibitory effects of berba-
mine on metastasis were also associated with cytoskeletal
rearrangement.

3.4. Berbamine Inhibited the Biological Activities of Bladder
Cancer Cells by Suppressing the NF-κB Pathway. The excep-
tional NF-κB pathway is known as a crucial participant in cell
proliferation and EMT in bladder cancer, and blockade of the
NF-κB pathway could inhibit tumorigenesis and the progres-
sion of malignancies [26–28]. Previous studies have indeed
identified berbamine as a novel inhibitor of the NF-κB
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Figure 1: Inhibitory effects of berbamine on the proliferation of bladder cancer cells in vitro. (a) The chemical structure of berbamine was
depicted. (b) A CCK-8 assay was conducted to evaluate the viability of 5637 and T24 cells treated with different concentrations of
berbamine. (c, d) Representative images of colony formation assays and quantitative analysis of the numbers of colonies. (e) EdU assay:
cell nuclear dye Hoechst (blue) and red fluorescence stands for DNA synthesis; percentage of EdU-positive cells of each group was
calculated using a fluorescence microscope. (f) Representative images of the Ki-67 level in 5637 and T24 cells treated with berbamine.
Green indicates Ki-67 intensity, and DAPI staining is for nuclei visualization. Values are represented (all dates are expressed) as the mean
± SD. The experiment was repeated at least three times. Statistical significance was determined using two-tailed Student’st-test or one-way
ANOVA. ∗p < 0:5; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 2: Berbamine induced S-phase arrest in bladder cancer cells. (a, b) Representative images and quantitative cell cycle distribution was
detected by flow cytometry. (c, d) The protein levels of a cell cycle regulator involving P21, P27, CyclinD, CyclinA2, and CDK2 were examined
by western blotting, and ImageJ analyzed relative expression levels. Values are represented (all dates are expressed) as the mean ± SD. The
experiment was repeated at least three times. Statistical significance was determined using two-tailed Student’st-test or one-way ANOVA.
∗p < 0:5; ∗∗p < 0:01; ∗∗∗p < 0:001.
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pathway with antitumor activity [29–31]. Thus, we hypothe-
sized that the inhibition of NF-κB activation is a potential
mechanism by which berbamine interferes with the biologi-
cal activities of bladder cancer. We measured the expression
of the critical genes involved in the NF-κB signaling pathway.
As predicted, the levels of total P65, P-P65, and P-IκBα were
significantly decreased in the presence of berbamine
(Figures 4(a) and 4(b)). To determine whether inactivation
of the NF-κB pathway caused by berbamine was responsible
for the reduction in proliferation and metastasis, we initially
chose the pathway-specific inhibitor BAY-11-7082 and then
assessed cell viability by CCK-8 assay. Our results proved
that BAY-11-7082 alone exhibited superior inhibitory activ-
ity and exacerbated cytotoxicity mediated by berbamine
(Figure 4(c)). On the other hand, the pcDNA3.1-P65 plasmid
was constructed and subsequently transfected into 5637 and
T24 cells. As shown in Figures 4(d) and 4(g), the level of P65
dramatically increased, suggesting successful transfection. As
expected, P65 overexpression partially abolished the inhibi-
tory effect of berbamine on cell proliferation and metastasis
in the rescue experiments (Figures 4(h) and 4(i)), which indi-
cated that the antitumor action of berbamine against bladder
cancer cells was mediated, at least in part, by inhibiting the
activity of the NF-κB signaling pathway.

3.5. Berbamine Triggered ROS Generation and Cell Apoptosis
in Bladder Cancer.Mitochondria are vital sources of intracel-
lular ROS involved in the regulation of diverse pathophysio-

logic processes [32]. In addition, fluctuations in ROS levels
could regulate the proliferation and apoptosis of cancer cells
in response to multiple stimuli [33]. Due to their short half-
lives, we evaluated the changes in ROS levels of 5637 and
T24 cells incubated with 16μM and 32μM berbamine for
24 h. MitoSOX images (Figures 5(a) and 5(b)) showed that
red fluorescence intensity was remarkably elevated, indicat-
ing that berbamine directly accelerated the generation of
mitochondrial superoxide. In most cells, the level of ROS
strictly depends on the dynamic equilibrium between ROS
generation and antioxidant systems. Next, we detected the
expression levels of a few antioxidative genes of bladder can-
cer cells following berbamine treatment. The Nrf2, HO-1,
SOD2, and GPX-1 genes were substantially downregulated
(Figures 5(c) and 5(d)), which explained that the ROS accu-
mulation mediated by berbamine is associated with the defi-
ciency of antioxidant defense.

We further used the Annexin V-FITC/PI double-staining
method with flow cytometry to elucidate the cytotoxic effect
of berbamine on BCa cells in more detail. As shown in
Figures 5(e) and 5(f), an obvious increase in the apoptosis
rate was found upon treatment with a higher concentration
of berbamine. To understand the molecular evidence of
berbamine-induced apoptosis, we analyzed the expression
levels of Bcl-2 family proteins that are master regulators of
mitochondrial apoptosis. Western blotting results showed
that berbamine dose-dependently increased the expression
of the proapoptotic Bax protein while significantly inhibiting
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Figure 3: Berbamine inhibited migration and invasion of bladder cancer cell lines. 5637 and T24 cells were treated with the indicated
concentrations of berbamine for 48 h. (a) Wound-healing assays were performed to evaluate the migration capacity. (b) Transwell assays
with or without Matrigel were performed to evaluate the migration and invasion capacity. (c) The results of wound-healing assays
and Transwell assays were analyzed using ImageJ. (d, e) The expression of EMT-related biomarkers was examined by western
blotting. (f) Phalloidin dyeing of the F-actin cytoskeleton was performed to display morphological changes. The images were
captured under inverted fluorescent microscopy. Values are represented (all dates are expressed) as the mean ± SD. The experiment
was repeated at least three times. Statistical significance was determined using two-tailed Student’st-test or one-way ANOVA. ∗p < 0:5;
∗∗p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001.
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the level of the antiapoptotic Bcl-2 protein in both cell lines
(Figures 5(g) and 5(h)). Overall, berbamine increased the
Bax/Bcl-2 ratio, which is critical for the initiation of the
intrinsic apoptosis pathway.

3.6. Berbamine Exerted Antitumor Activity against Bladder
Cancer Cells by Modulating the ROS/NF-κB Axis. It is well
known that numerous anticancer drugs trigger cell apoptosis
via a ROS-dependent pathway [34, 35]. Accordingly, we fur-
ther explored whether cell apoptosis caused by berbamine is
directly relevant to ROS accumulation. To confirm this
hypothesis, we applied N-acetylcysteine (NAC), a ROS scav-
enger, to the berbamine-treated group in advance. As shown
in Figures 6(a) and 6(b), pretreatment with NAC partially
prevented berbamine-mediated mitochondrial ROS genera-
tion, followed by a decrease in bladder cancer cell apoptosis
(Figures 6(c) and 6(d)). Consistent with the flow cytometry
assay results, western blotting analysis showed that NAC par-
tially reversed the effects of berbamine on the protein levels
of Bcl-2 and Bax (Figures 6(e) and 6(f)). Numerous articles
have demonstrated that ROS can modify cell-signaling pro-

teins to mediate multiple pathways. We further explored
the correlation between ROS and NF-κB. We observed that
the ROS inhibitor counteracted the NF-κB pathway suppres-
sion mediated by berbamine to a certain degree (Figures 6(g)
and 6(h)). Taken together, these observations indicated that
the ROS/NF-κB axis plays a vital role in the antitumor activ-
ity of berbamine against bladder cancer.

3.7. Antitumor Effect of Berbamine In Vivo. To further vali-
date the antitumor effect of berbamine in vivo, we established
a human-T24 subcutaneous xenograft in nude mice and
recorded mouse weight and tumor weight throughout the
experiment. As exhibited in Figures 7(a) and 7(b), berbamine
exerted apparent cytotoxicity against cancer cells in vivo. The
tumor volume and weight of the berbamine-treated group
grew much more slowly than those of the control group
(Figures 7(c) and 7(d)); however, there was no significant dif-
ference in the average weight of mice between the control
group and the berbamine-treated group (Figure 7(e)), sug-
gesting that berbamine possibly had no evident adverse
effects in vivo.
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Figure 4: Berbamine inhibited the NF-κB pathway in bladder cancer cell lines. (a, b) Western blotting experiments were performed to detect
the expression levels of NF-κB P65, P-P65, and P-IκBα in both 5637 and T24 cells following berbamine treatment for 48 h. (c) A CCK-8 assay
evaluated cell viability via a comparison between group exposures to 16 μM berbamine and in the presence or absence of 10μM BAY-11-
7082. (d, e) To detect the effectiveness of transfection, qRT-PCR and western blotting were performed to measure the expression of P65 at
48 h posttransfection. (f, g) Western blotting was performed to detect the expression of P65 and P-P65 in 5637 and T24 cells after
berbamine treatment with or without pcDNA3.1-P65. (h) In rescue experiments, the invasive potency of 5637 and T24 cells was evaluated
by Transwell assays with Matrigel following berbamine treatment with or without pcDNA3.1-P65. (i) EdU assays were performed to
detect the proliferative ability of 5637 and T24 cells following berbamine treatment with or without pcDNA3.1-P65. Values are
represented (all dates are expressed) as the mean ± SD. The experiment was repeated at least three times. Statistical significance was
determined using two-tailed Student’st-test or one-way ANOVA. ∗p < 0:5; ∗∗p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001; #p < 0:5; ##p < 0:01.
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IHC analysis showed that the positive rate of Ki-67 and
P65 in the tumor tissue of the berbamine-treated group was
significantly lower than that in the control group
(Figures 7(f) and 7(g)), which is consistent with our in vitro
results. Overall, our results suggested that berbamine reduces
tumor growth and suppresses NF-κB signaling in vivo.

4. Discussion

Bladder cancer is the most common malignant tumor of the
urinary system, with high incidence and recurrence. Thus far,
studies have extensively reported the pathogenesis and cur-
rent therapeutic strategies of bladder cancer, consisting of
surgical resection, immune checkpoint inhibition, and a
combination of chemotherapy drugs. However, there are
few studies on Chinese traditional medicine applications in
clinical cancer therapy, which is possibly due to a lack of a
comprehensive understanding of their mechanisms and
safety. Berbamine is one of the active ingredients extracted
from the herbal medicine Berberis and possesses multiple
biological activities, including immunomodulatory, antihy-
pertensive, and cardioprotective properties [36–38].

Natural compounds and their derivatives extracted from
traditional Chinese herbs can be considered as ideal alterna-
tive anticancer agents owing to their lower cost, stronger
effectiveness, and minimal side effects [11, 39]. Berbamine
has exhibited favorable antitumor potential in previous stud-
ies, as it modulates various molecular targets and has low
cytotoxicity in normal cells. For instance, berbamine sup-
pressed cell growth and invasion ability while inducing
G0/G1 cell cycle arrest and apoptosis by inhibiting Wnt/β-
catenin signaling in ovarian cancer [9]. Additionally, berba-
mine exerted antitumor effects in vitro and in vivo through
apoptosis induction partially relevant to the activation of
the p53 gene in colorectal cancer [8]. Moreover, berbamine
enhanced the efficacy of gefitinib in pancreatic cancer cells

and radiosensitivity for head and neck squamous cell carci-
noma by inhibiting the STAT3 pathway [40, 41]. Herein,
we attempted to unambiguously investigate the effects and
potential mechanisms of berbamine in bladder cancer
in vitro and in vivo.

Cancer-cell-based experiments manifested that berba-
mine inhibited cell viability and impaired the colony forma-
tion ability of bladder cancer cells. Also, the EdU and Ki-67
immunofluorescence assay collectively revealed the antipro-
liferative effect of berbamine on bladder cancer.

Cell cycle deregulation leads to infinite cell proliferation,
which is an elementary characteristic directly related to
tumor progression. Thus, targeting the cell cycle pathway is
emerging as a fundamental strategy to arrest neoplastic pro-
cesses [33, 42]. The data of the present study demonstrated
that berbamine induced significant S-phase arrest in bladder
cancer cells. Regulations of the cell cycle are tightly depen-
dent on the coordinated activity of protein kinase complexes
that consist of cyclins, cyclin-dependent kinases (CDKs), and
endogenous inhibitor proteins (CKIs). Progression through
G1 phase is driven by activation of the CyclinA-CDK2 com-
plex, and CyclinA is required for DNA replication through-
out the S phase [43, 44]. To our knowledge, P21 and P27,
inhibitors of CDKs, bind to these Cyclin-CDK complexes
and induce their inactivation, thus halting cell cycle progres-
sion [45]. Concurrently, we observed that berbamine
dramatically downregulated the expression of CyclinD,
CyclinA2, and CDK2 and upregulated the levels of P21 and
P27, which indicated that berbamine-induced S-phase arrest
was mainly driven by enhanced initiation of S phase and con-
comitant suppression of S-phase progression.

Metastasis, the property that enables individual cancer
cells to spread into local or distant tissues [46], remains a
stumbling block limiting the effective therapy of bladder can-
cer and is also the leading cause of cancer mortality. EMT is a
critical process responsible for the acquisition of malignant

5637 T24

1.5

1.0

Re
lat

iv
e e

xp
re

ss
io

n 
(/

G
A

PD
H

)

0.5

0.0
Bax

⁎⁎⁎⁎
1.5

1.0

Re
lat

iv
e e

xp
re

ss
io

n 
(/

G
A

PD
H

)

0.5

0.0
Bcl-2

⁎⁎
⁎⁎

1.5

1.0

Re
lat

iv
e e

xp
re

ss
io

n 
(/

G
A

PD
H

)

0.5

0.0
Bax

⁎⁎

⁎⁎ 1.5

1.0

Re
lat

iv
e e

xp
re

ss
io

n 
(/

G
A

PD
H

)

0.5

0.0
Bcl-2

⁎⁎

⁎⁎

NC

8 𝜇m
32 𝜇m

(h)

Figure 5: Berbamine-mediated ROS generation and apoptosis in bladder cancer cells. 5637 and T24 cells were incubated with 16 μM and
32μM berbamine for 24 h. (a, b) MitoSOX fluorescence was performed to detect ROS generation. As a live-cell permeant fluorogenic dye,
MitoSOX gets oxidized by mitochondrial superoxide to exhibit red fluorescence. Relative fluorescence intensity was analyzed by ImageJ.
(c, d) The effects of berbamine on the levels of several antioxidant genes. (e, f) Flow cytometry was performed to determine the apoptotic
percentage. (g, h) The effect of berbamine on the expression of Bcl-2 and Bax proteins. Values are represented (all dates are expressed) as
the mean ± SD. The experiment was repeated at least three times. Statistical significance was determined using two-tailed Student’st-test or
one-way ANOVA. ∗p < 0:5; ∗∗p < 0:01; ∗∗∗p < 0:001.
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phenotypes in epithelial tumor cells [47]. In this process, can-
cer cells could lose cell adhesion attributes and acquire cyto-
skeletal activation [48]. Furthermore, EMT can endow tumor
cells with stem cell characteristics, thus resulting in a poor
prognosis for cancer patients [49]. Activation of NF-κB is
correlated with the induction of a well-defined set of tran-
scription factors involved in EMT, such as Snail, Slug, Twist,
and ZEB1/ZEB2 [50]. It was reported that NF-κB P65, as a
transcriptional activator, facilitated Snail transcription by
directly binding to the promoter [51]. MMP-9 plays a crucial
role in the invasive process of various solid tumors by
degrading the extracellular matrix barrier [52]. The promoter
of MMP-9 has been characterized as having a series of func-
tional enhancer element-binding sites, such as NF-κB and
activator proteins (AP-1) [50]. Therefore, the inactivation
of NF-κB could decrease the basal transcriptional activity of
the MMP-9 promoter, thus inhibiting the expression of the
MMP-9 protein. Interestingly, we observed that berbamine
could remarkably dampen the migration and invasion
capacity of both cell lines. Western blotting revealed that
berbamine increased E-cadherin expression while decreasing
N-cadherin, vimentin, and MMP-9 expression. In our rescue
experiment, P65 overexpression increased the number of
invasive cells among those treated with berbamine. Thus,
we postulated that berbamine might suppress the metastatic
ability of bladder cancer cells through reversal of NF-κB-
mediated EMT. Moreover, berbamine impaired the cytoskel-
etal organization of 5637 and T24 cells. The cytoskeleton
changed into an epithelial morphology upon exposure to
berbamine, which could facilitate tight adhesion to avoid cell
metastasis.

Apoptosis, also known as type I genetically programmed
cell death, is a normal physiological process that accom-
panies morphological and biochemical changes involving
DNA fragmentation, chromatin condensation, and mem-
brane blebbing. To the best of our knowledge, apoptosis
can be activated by either the extrinsic pathway initiated
by the death receptor or intrinsic pathway through the
mitochondria to prevent tumor formation. In our results

presented here, berbamine elevates bladder cancer cell apo-
ptosis in a dose-dependent manner. Previous studies con-
firmed that members of the Bcl-2 family, as key regulatory
factors of the mitochondrial-mediated pathway, play an
essential role in the antiapoptosis response [53–55]. Both
Bax and Bcl-2 belong to the Bcl-2 family, and the ratio of
Bax/Bcl-2 is relevant to the sensitivity or resistance of cancer
cells to apoptotic stimuli and therapeutic drugs [56]. Western
blotting revealed that berbamine reduced the level of the Bcl-
2 protein but increased the level of the Bax protein. In a word,
berbamine activates the mitochondrial-dependent apoptotic
pathway by targeting the Bcl-2 family to exert a cytotoxic
effect on bladder cancer cells.

Strict control of ROS levels is vital to regulate cell repair,
survival, and differentiation [57]. Several lines of evidence
highlight that once the redox status deviates to oxidation,
the increased ROS function as redox messengers to accelerate
the early events involving tumorigenesis and tumor progres-
sion. Mechanistically, as an upstream factor, ROS mediate
DNA mutations and modulate various cellular signaling
pathways, thus affecting several cancer hallmarks of meta-
bolic reprogramming, angiogenesis, metastasis, and drug
resistance development [58]. However, when the continued
increase in ROS levels overwhelms intracellular antioxidant
capacity, it can stimulate cell cycle arrest and cellular apopto-
sis [59]. Compared to normal cells, tumor cells are more
sensitive to fluctuations in ROS levels, and excessive ROS
induction is a common mechanism by which various antitu-
mor agents scavenge cancer cells [60, 61]. ROS-mediated
apoptosis is known to open the permeable transition pore
of the mitochondrial membrane with the release of cyto-
chrome c by regulating Bcl-2 family genes [62]. Representa-
tive MitoSOX images initially demonstrated that berbamine
dose-dependently accumulated mitochondrial ROS in both
cell lines. Not surprisingly, previous studies reported that
berbamine, as a prooxidant, effectively induced intracellular
ROS generation, thus enhancing the sensitivity of glioma
cells to paclitaxel therapy [63]. It indicated that berbamine
might modulate ROS levels to influence the biological
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Figure 6: Berbamine exerted antitumor activity against bladder cancer cells by modulating the ROS/NF-κB axis. 5637 and T24 cells were
treated with 32 μM berbamine in the presence or absence of 10mM NAC. (a, b) Representative images of the ROS generation level were
captured using a fluorescence microscope. (c, d) Flow cytometry was performed to measure cell apoptosis. (e, f) The levels of Bcl-2 and
Bax proteins were measured by western blotting. (g, h) The levels of P65 and P-P65 proteins were measured by western blotting. Values
are represented (all dates are expressed) as the mean ± SD. The experiment was repeated at least three times. Statistical significance was
determined using two-tailed Student’st-test or one-way ANOVA. ∗p < 0:5; ∗∗p < 0:01; ∗∗∗p < 0:001; #p < 0:5; ##p < 0:01.

16 Oxidative Medicine and Cellular Longevity



behaviors of cancer cells. To further explore the mechanism
underlying ROS generation, we measured the expression of
a few crucial antioxidative genes. Western blotting results
suggested that the levels of the Nrf2, HO-1, SOD2, and
GPX-1 genes were downregulated following berbamine treat-
ment, which implies that berbamine impaired the functions
of the antioxidant system, followed by ROS production.
Intriguingly, the apoptosis caused by berbamine was miti-
gated following the use of the antioxidant NAC, along with
the reversal of Bcl-2 and Bax expression. As stated previously,
excessive ROS generation upon the tolerable threshold plays
a crucial role in the proapoptotic effect of berbamine on blad-
der cancer.

In response to multiple stimuli, aberrant activation of the
NF-κB signaling pathway participates in multiple malignant

transformation processes by mediating the downstream
oncogenic genes. However, earlier research confirmed that
the NF-κB pathway is constitutively activated in bladder
cancer and is associated with muscle-invasive clinical fea-
tures [64]. Herein, western blot analysis showed that berba-
mine negatively regulated the expression of P65, P-P65, and
P-IκBα, which indicated that berbamine blocked the NF-κB
signaling pathway. However, it remains unclear whether
inactivation of the NF-κB signaling pathway is sufficient to
influence the progression of BCa cells. Suppression of
NF-κB activity by the specific inhibitor BAY-11-7082 dra-
matically inhibited cell viability in both cell lines assessed.
Meanwhile, our rescue experiment revealed that cell prolifer-
ation was reversed following P65 overexpression. In addition,
the activity of NF-κB function can be regulated by ROS in
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Figure 7: Berbamine inhibited the growth of the T24 xenograft tumor in vivo. Nude mice were treated with 35mg/kg berbamine and the
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Statistical significance was determined using two-tailed Student’st-test or one-way ANOVA. ∗∗p < 0:01; ∗∗∗p < 0:001.
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different contexts [65]. NF-κB activation is associated with
ROS-mediated oxidation and activation of inhibitors of
NF-κB (IκB) kinases, which negatively control the stability
of IκB. On the other hand, ROS inhibit NF-κB transcrip-
tional activity by interfering with NF-κB DNA binding
owing to the presence of oxidizable cysteines in the
DNA-binding region [66]. In this paper, we identified a
relationship in which ROS generated by berbamine acted
as an upstream molecule to partially inhibit the NF-κB
pathway, which implies the indispensable role of the
ROS/NF-κB axis in berbamine-mediated antitumor activi-
ties against BCa cells.

Finally, a xenograft mouse model was established to fur-
ther determine the inhibitory growth effects of berbamine
in vivo. Consistent with the promising results in vitro, berba-
mine could reduce the tumor volume and weight. However,
there was no significant difference in the average weight of
mice between the control group and the berbamine-treated
group, indicating that berbamine probably has no evident
side effects in vivo. The results of human pharmacokinetic
studies revealed that the half-life of berbamine was 39.25 h
in the body, indicating that the compound’s elimination
was slow [67]. Thus, berbamine could be accumulated to an
efficient concentration in vivo, although lower-dose drugs

are administered. Further clinical studies are needed to
explore a better dosage regimen. As indicated by IHC, the
positive staining rate of Ki-67 and P65 frequently declined
in the tumor tissue after berbamine treatment, which sug-
gests that berbamine suppresses tumor growth and NF-κB
signaling in vivo.

5. Conclusion

We elucidated for the first time that berbamine could exert
antitumor activities in bladder cancer by inhibiting cell pro-
liferation and metastasis and inducing cell cycle arrest at S
phase in vitro. Further analysis highlighted that berbamine
suppresses the aberrantly active NF-κB signaling pathway
to interfere with the progression of bladder cancer. In addi-
tion, ROS accumulation induced by berbamine contributes
to the intrinsic apoptosis of bladder cancer cells and inhibits
the NF-κB pathway to some extent (Figure 8). Finally, our
in vivo experiments corroborate our in vitro findings. Based
on the above results, it can be concluded that berbamine
has potential clinical applications for patients with bladder
cancer. Future studies are encouraged to ensure its drug
safety and clarify its broader mechanisms.
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