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Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although
many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear;
however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2β in the
pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary
position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common
pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of
cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic
interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These
indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide
an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by
potential preventive strategies.

1. Introduction

Over the past two decades, there have been significant
improvements in the early detection and pharmacological
treatment of cancer, leading to a dramatic increase in survi-
vorship [1] [2]. However, this improvement in the life expec-
tancy of cancer patients has also led to an increase in the pool
of patients at risk of experiencing long-term chemotherapy-
related side effects. Chemotherapy-induced cardiotoxicity is
a common complication of many cancer therapeutics and a
frequent cause of morbidity and mortality in cancer survi-
vors. Amongst cancer therapeutics, anthracycline com-
pounds contribute to a significant proportion of the
cardiovascular disease burden.

Anthracyclines are specific cytostatic antibiotics, and
they represent one of the most used chemotherapeutic agents
to treat many solid cancer tumors and hematological malig-
nancies [3]. Its clinical use has, however, been limited by
the development of cardiotoxicity in a cumulative dose-
dependent manner [4]. This side effect impacts the long-
term prognosis of patients treated successfully from an onco-
logical point of view [5]. The effects of anthracycline-induced
cardiotoxicity (AIC) have become more apparent for several
reasons, including a stricter clinical follow-up and improve-
ments in cardiovascular diagnostic methods [6].

A meta-analysis by Lotrionte et al. evaluated the late inci-
dence of AIC after a median of 9 years follow-up, finding an
occurrence of clinically evident cardiotoxicity in 6% and
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subclinical cardiotoxicity in 18% [7]. More recently, Cardi-
nale et al. prospectively followed adult patients treated with
anthracyclines and found an incidence of AIC of 9%. AIC
was detected within the first year after completion of treat-
ment in 98% of cases [8]. An important finding was that close
monitoring of cardiac function during this period allowed
early detection and treatment of cardiotoxicity, with signifi-
cant left ventricular ejection fraction (LVEF) recovery in
most cases [8]. Current clinical interventions are focused
on prompt detection of subclinical damage through cardiac
imaging and biomarker techniques; however, these interven-
tions are focused on damage control rather than a preventa-
tive approach. Unfortunately, despite decades of research
efforts to improve clinical strategies of primary prevention
of AIC, there is still no satisfactory therapy to avoid this com-
plication. Therefore, a better understanding of the mecha-
nisms of cardiotoxicity could offer new opportunities to
provide optimal primary prevention strategies.

The objective of this review is to provide an update on the
accumulated knowledge regarding the early and critical role
of oxidative stress in the damage mechanisms of AIC and dis-
cuss the potential benefits of preventive strategies that reduce
oxidative stress damage through lifestyle changes, physical
exercise, and pharmacological therapies to reduce risk factors
and environmental stressors.

2. Mechanisms of Anthracycline-
Induced Cardiotoxicity

Anthracyclines tend to accumulate in the mitochondria,
which partly explains their tendency to accumulate in myo-
cardial tissue, which is characterized by a high mitochondrial
density due to its high energetic demand [9]. Specifically, in
the heart, cardiomyocytes have classically been considered
the primary cellular target of the toxic anthracycline effect.
However, other cell types such as cardiac progenitor cells,
cardiac fibroblasts, and endothelial cells have also been rec-
ognized as potential anthracycline targets, which through
paracrine effects mediated by microRNA (miRNA) and other
cells signals could also be involved in cardiomyocyte injury
[10, 11]. Several pathways have been proposed to explain
the development of AIC, such as the potential generation of
oxidative stress, inhibition of topoisomerase 2β (Top2β),
changes in iron metabolism, and Ca2+ signaling [10]. How-
ever, the precise reason as to why only some patients develop
AIC remains unclear, suggesting a multifactorial origin that
could comprise complex interactions between the different
involved pathways [12].

2.1. Anthracycline Accumulation in the Heart. One of the
most significant determinants of the development of AIC is
the cumulative dose of anthracyclines in cardiac tissue [13],
which is also related to the magnitude of redox imbalance.
For this reason, the cumulative dose remains the leading risk
factor for AIC [7]. Furthermore, anthracyclines are more
retained within cardiomyocytes than in cells of other noncar-
diac tissues [14]. The primary process that determines heart
accumulation is the liver biotransformation to secondary
alcohol metabolites. These metabolites are more polar than

original compounds and exhibit a higher entry rate and
reduced elimination rate from cardiac tissue [15, 16]. Doxor-
ubicinol, the most crucial alcohol metabolite of doxorubicin,
has been implicated in the cardiotoxicity observed in
doxorubicin-treated patients [17, 18]. The NADPH-
dependent reduction of doxorubicin to doxorubicinol is cat-
alyzed by carbonyl reductase 1 (CBR1), a well-characterized
monomeric enzyme present at high basal levels in the liver
[19] and carbonyl reductase 3 (CBR3) less characterized,
present in the liver at low basal levels [20]. Animal models
have shown that high metabolizer mice develop an acceler-
ated cardiotoxicity course through an increased heart accu-
mulation of secondary alcohol metabolites [21]. Therefore,
hepatic biotransformation of anthracyclines represents a
potential research focus to establish higher risk groups and
new targets for pharmacological interventions. At a subcellu-
lar level, the accumulation of anthracycline secondary alco-
hol metabolites in cardiomyocytes is especially pronounced
in the mitochondria, affecting the mitochondrial transmem-
brane potential, and inhibiting the complex I respiratory
chain, which causes an impairment of mitochondrial metab-
olism and subsequent mitochondrial dysfunction [22].

2.2. Convergence of “Redox Cycling” and “Topoisomerase 2β”
Hypotheses: ROS Generation and AIC. Despite the multiple
mechanisms of AIC described, there is consensus in consid-
ering “Redox Cycling” and the “Top2β inhibition” as the
two main mechanisms. Several preclinical and clinical trials,
as well as genetic studies, have shown that oxidative stress
generated by reactive oxygen species (ROS) accumulation is
the crucial step in the development and progression of AIC
[23–26]. Initially, it was suggested that early ROS would be
produced by a direct anthracycline interaction with the mito-
chondrial electron transport chain [9] [27]. The enzymatic
antioxidant defences are lower in the cardiac tissue compared
with other organs (liver and kidney); this can make the heart
particularly vulnerable to free radical damage [12].

Later studies suggested that interaction with topoisomer-
ase 2β (Top2β) would be the initiating trigger for cardiotoxi-
city [24]. Top2β is an enzyme involved in nuclear and
mitochondrial DNA replication, which plays a crucial role in
AIC for the formation of anthracycline–DNA-topoisomerase
2β complexes [24]. Some mechanisms studied as possible
mediators of Top2β-dependent cardiotoxicity include p53
activation, modulation of peroxisome proliferator-activated
receptor γ coactivator-1α (PGC-1α) and -1β (PGC-1β), and
modulation of antioxidant enzyme gene transcription [24].
Both PGC-1α and PGC-1β are highly expressed in the heart,
playing a critical role in mitochondrial biogenesis regulating
oxidative metabolism [28, 29]. They have also been associated
with heart failure pathogenesis [30, 31]. Top2β inactivation by
anthracycline accumulation heavily reduced the expression of
PGC-1α and PGC-1β in rat cardiomyocytes [24]. Neverthe-
less, the same data also indicate that anthracycline interaction
with Top2β leads to mitochondrial dysfunction with the sub-
sequent generation of ROS-mediated oxidative stress [24].
This triggers a progressive disruption in Ca+2 homeostasis,
inflammation, and the inhibition of ATP generation [32],
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which in turn promotes apoptosis and cardiac remodeling,
critical events in the development of AIC [24, 33].

According to the time of presentation, AIC was previ-
ously classified as acute, subacute, or chronic. Recent findings
challenge this old classification, suggesting that AIC is a con-
tinuous phenomenon, starting at the myocardial subcellular
level, followed by a progressive functional decline, which
could lead to overt heart failure [10]. In all patients who
develop AIC, the damage associated with oxidative stress
starts very early at the molecular level, which causes subcellu-
lar dysfunction through various mechanisms [34]. If antiox-
idant defences are rapidly overwhelmed, prompt damage
could occur, leading to a rare short-term event of acute AIC
[34]. These acute AIC events are infrequent but associated
with high mortality risk, and their manifestations may
include pericarditis, arrhythmias, and left ventricular systolic
dysfunction (LVSD) [35] [13]. However, it should be noted
that the majority of patients with AIC do not manifest a clin-
ically evident acute cardiotoxicity; they are usually asymp-
tomatic and present some signs of acute subclinical
cardiotoxicity evidenced exclusively by functional alterations
in the left ventricle (changes in longitudinal strain or LVEF)
or by an increase in cardiac biomarkers [36, 37].

2.3. - Mediators of Increased Susceptibility to Oxidative Stress
Injury and AIC

2.3.1. Overview of Oxidative Stress in the Cardiovascular
System. Since oxidative stress plays a crucial role in AIC, it
is important to understand how ROS are generated and
countered in the cardiovascular system. Oxidative stress can
be defined as an imbalance between the generation and
detoxification of ROS [38]. At physiological levels, a slight
increase in reactive oxygen species (ROS) could induce pro-
tective effects through triggering redox signaling, for exam-
ple, via improving adaptive antioxidative response by
activating of Keap1/Nrf2/ARE pathway. If the ROS genera-
tion outweighs the antioxidative capacity, then at higher
ROS levels, cell damage and endothelial dysfunction arise
contributing to the development of atherosclerosis and heart
injury [39].

Aging, genetic predisposition, traditional cardiovascular
risk factors, and environmental factors can induce oxidative
stress, particularly in the heart and vessels [39]. At the cardiac
cellular level, enzymatic sources for ROS, such as the nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidases
(NOX), uncoupled nitric oxide (NO) synthase, and mito-
chondria, are all considered relevant sources of ROS that
contribute to the development of vascular and cardiac dys-
function [38, 39]. Importantly, mitochondria amplify ROS
derived from NOX and may thereby function as a “redox
hub” in cardiac pathophysiology [40]. ROS determines myo-
cardial calcium (Ca2+) overload, an event that plays a causal
role in contractile dysfunction, arrhythmias, and the mal-
adaptive cardiac remodeling process by inducing hypertro-
phic signaling, apoptosis, necrosis, and autophagy [41].

2.3.2. Cardiovascular Risk Factors Are Associated with a
Significant Susceptibility to Oxidative Stress Injury. The path-

ophysiological effects of traditional cardiovascular risk fac-
tors on the cardiovascular system are driven by oxidative
stress. Therefore, it is not surprising that many of the risk fac-
tors for AIC such as age > 65 years, valvular heart disease,
baseline left ventricular dysfunction, arterial hypertension,
African-American ancestry, renal failure, concomitant expo-
sure to radiation and/or trastuzumab, iron overload, and
genetic factors [3] [42] have oxidative stress as a common
element. Abdel-Qadir et al. developed and validated a multi-
variable risk prediction model for major adverse cardiovas-
cular events (MACE) in patients with early-stage breast
cancer, where age, hypertension, diabetes, ischemic heart dis-
ease, atrial fibrillation, HF, cerebrovascular disease, periph-
eral vascular disease, chronic obstructive pulmonary
disease, and chronic kidney disease were significantly associ-
ated with MACE [43]. Again, many of the risk factors for
MACE in this study have oxidative stress as a common path-
ophysiological mechanism for cardiovascular disease and
hence increase susceptibility to AIC.

2.3.3. Genetic Susceptibility to Oxidative Stress Injury. Suscep-
tibility due to inherited genetic, variation could partially
explain the high interindividual variability in risk of AIC
[44, 45]. In this sense, a genetic approach has been used to
identify patients at increased risk. Several polymorphisms
in candidate genes have been proposed, some of them relate
to the accumulation or biotransformation of anthracyclines,
but most of them related to redox balance, either associated
with antioxidant defence or ROS generation [44]. Some of
these candidate genes are CBR1 and 3, NAD(P)H quinone
oxidoreductase, which have been the most described and
are discussed in more detail below, and also glutathione S-
transferase and multidrug resistance proteins 1 and 2 [46].

(1) Carbonyl Reductase 1 and 3. As previously described,
CBR1 and CBR3 catalyze the NADPH-dependent reduction
of doxorubicin to doxorubicinol. Therefore, polymorphisms
that contribute to higher levels of hepatic transformation
result in a greater accumulation of toxic metabolites within
the heart [21, 47]. Preliminary epidemiological data have
shown that the human CBR3 polymorphisms, but not
CBR1, are associated with differential cardiac outcomes in
doxorubicin-treated patients [47, 48]. For example, in child-
hood cancer patients treated with doxorubicin, a relatively
common polymorphism in the CBR3 gene (present in 30%
of Caucasians) that encodes for a nonsynonymous amino
acid change (V244M) was associated with a decreased risk
of developing cardiomyopathy [47]. Furthermore, another
CBR3 variant (11G > A) has been shown to influence the rel-
ative expression of CBR3—and subsequent doxorubicinol
formation—in a cohort of Southeast Asian breast cancer
patients [48].

(2) NADPH Oxidase (NOX). NOX has been suggested as one
of the most important sources of ROS in the cardiovascular
system. Five NOX isoforms have been identified; in particu-
lar, NOX2 and NOX4 play a significant role in the heart sig-
naling, as they are bound to the sarcolemma of the
cardiomyocytes [49]. Due to the importance of NOX in
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ROS generation, a possible association of some of their poly-
morphisms with the development of AIC has been studied.
Thus, individuals with less active genetic variants of NOX
might be protected from heart damage and fibrosis induced
by anthracyclines [49].

This hypothesis has been supported by a case-control
clinical study of doxorubicin-induced cardiotoxicity, show-
ing that NADPH genetic variations can modulate the risk
for acute and chronic cardiac events [50]. Also, another study
confirmed the predictive value of the three NADPH oxidase
polymorphisms (rs1883112, rs4673, and rs13058338),
although only one of them (rs1883112) was significant in
the multivariable analysis [51]. Finally, the role for the
genetic variants in the generation of cardiac lesions was dem-
onstrated in a retrospective case-control study that evaluated
cardiac histological lesions and three different NADPH geno-
types (rs1883112, rs4673, and rs13058338) in 97 consecutive
decedent patients with cancer diagnosis (48 treated with
anthracyclines) [52]. One polymorphism of the subunit
p40phox of NADPH oxidase was strongly associated with
increased myocardial interstitial fibrosis, which could be
explained by the higher level of the regulatory subunit p40
in NOX2. On the other hand, other polymorphisms were
associated with a lesser degree of oxidative stress, apoptosis,
and myocardial damage after anthracycline treatment, which
might be explained by lower activity or expression levels of
NOX2 and NOX4. Thus, the findings of this study provide
a possible mechanistic link between NADPH functional
SNPs and cardiac dysfunction [52].

(3) Other Candidate Genes. A meta-analysis assessed the role
of genetic polymorphisms in AIC based on 28 studies exam-
ining 84 different genes. This analysis revealed that polymor-
phisms in three genes were significantly associated with an
increased odds of cardiotoxicity in individuals treated with
anthracyclines, and two of them were associated with oxida-
tive stress: CYBA and RAC2 genes [53]. Genetic variants in
CYBA altered the NADH/NADPH oxidase activity and
may be associated with the excessive production of ROS
[54]. Rac2, encoded by the RAC2 gene, is a mitochondrial
protein that is required in the electron transfer reaction of
NADPH oxidase during the formation of ROS [55]. Alter-
ation of the RAC2 gene results in mitochondrial dysfunction
and, thus, an increase in ROS production [53]. Despite all the
existing data, we must emphasize that the individual risk pro-
vided by these candidate genes was only moderate, so new
prospective studies are still needed in order to validate these
genetic biomarkers for clinical application [53]. Therefore,
currently, the potential role of these genes for a pharmacoge-
nomic screening approach in routine clinical practice before
anthracyclines therapy remains limited.

2.4. Second-Hit Hypothesis. The second-hit hypothesis sug-
gests that the ability of the heart to adapt to new stress con-
ditions is impaired after exposure to anthracyclines [56].
This means that the cardiac tissue of patients previously
treated with anthracyclines, even with no previous evidence
of measurable subclinical damage, may have a decreased

resistance to new injuries, resulting in an increased risk of
developing heart failure [57]. Progenitor cell impairment
secondary to anthracyclines, concomitant or subsequent
treatments with other antineoplastic drugs, and genetic pre-
disposition may play a role in the mechanism to explain the
second-hit hypothesis [56]. However, the second-hit events
are more likely to relate to the development of new patho-
logical conditions, mainly cardiovascular risk factors that
are associated with an oxidative imbalance, for example,
hypertension, diabetes mellitus, obesity, or atrial fibrillation
[58]. Furthermore, the development of coronary artery dis-
ease has also been found to be related with the late develop-
ment of left ventricular dysfunction in patients treated with
anthracyclines [8].

From a clinical point of view, as cancer survivors are at
higher risk for other noncommunicable diseases [59],
second-hits will not be infrequent in anthracycline-treated
patients. It is important to highlight that cardiovascular risk
factors could contribute as much as a cancer treatment to
the development of diastolic and systolic dysfunction in
childhood cancer survivors [60]. For instance, survivors with
metabolic syndrome are more likely to have abnormal longi-
tudinal strain and diastolic dysfunction [61]. Survivors also
have a higher prevalence and a more premature presentation
of hypertension and dyslipidemia [62]. In fact, it has been
described that childhood cancer survivors are 15 times more
likely to develop congestive heart failure and 10 times more
likely to have coronary artery disease compared to their sib-
lings [63]. Cardiovascular risk factors are known to be more
frequent in survivors of breast, prostate, colorectal, and
gynaecologic cancers compared to age-matched individuals,
with a reported prevalence of overweight/obesity, diabetes,
and hypertension of 62%, 21%, and 55%, respectively [64].
A recent study showed that older age (>60 years) or preexist-
ing chronic diseases like hypertension and diabetes were
present in the majority of patients with heart failure hospital
presentations after the diagnosis of early-stage breast cancer
[65], again emphasizing the importance of concomitant car-
diovascular risk factors. Therefore, the development of ade-
quate surveillance follow-up programs in cancer survivors
to promote a healthy lifestyle and the early detection, assess-
ment, and management of cardiovascular risk factors are
essential [66].

3. Effects of Cardioprotective Strategies on the
Redox Balance for the Prevention of
Anthracycline-Induced Cardiotoxicity

3.1. Overview of Antioxidant Strategies in Cardiovascular
Diseases. For many decades, researchers have tried to eluci-
date the role of oxidative stress in cardiovascular disease,
establishing that a redox imbalance with subsequent oxida-
tive stress is essential for the development of many cardiovas-
cular diseases, including atherosclerosis, hypertension, and
congestive heart failure [67]. However, a wide variety of anti-
oxidant strategies to prevent cardiovascular disease has not
yielded positive results with respect to their clinical efficacy
[68–70].
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Multiple reasons could explain these poor results, such as
inadequate choice of drugs, dosage, and duration of antioxi-
dants interventions [67, 71–73]. All this could be summa-
rized by stating that the strategies that have been studied
may be too simple by trying to restore the redox balance, gen-
erally using antioxidants with direct effects [52–54] [48],
instead of strategies with indirect antioxidants, which have
better preclinical evidence of effectiveness [55]. To better
understand this, it is also essential to recognize that there
are two types of small-molecule antioxidants which provide
cellular protection against oxidative stress: (i) direct antioxi-
dants, which are redox-active, short-lived because they are
sacrificed during the process of their antioxidant actions
and need to be replenished or regenerated, and may evoke
prooxidant effects; and (ii) indirect antioxidants, which acti-
vate the Keap1/Nrf2/ARE pathway resulting in transcrip-
tional induction of a battery of phase 2 enzymes, that act
catalytically, are not consumed, have long half-lives, and are
unlikely to evoke prooxidant effects [74]. Another factor
could be the influence of the genetic factors previously
explained, which raises the possibility that only some clusters
of patients will benefit from antioxidant treatment [75].

3.2. Statins. 3-Hydroxy-3-methylglutaryl coenzyme A reduc-
tase (HMG-CoA reductase) inhibitors are well known for
their lipid-lowering capacity, but also their anti-
inflammatory and pleiotropic antioxidant effects. Treatment
with statins has been proposed as an option for primary pre-
vention in the setting of anthracycline-induced cardiomyop-
athy. In the clinical setting, a previous study that included 40
patients undergoing anthracycline therapy randomized them
to receive statin therapy versus placebo for six months. The
decrease in the mean left ventricular ejection fraction after
the completion of treatment was significant in the control
group as compared with the statin group, and the mean
increase in left ventricular end-diastolic diameter and left
ventricular end-systolic diameter was significantly lower in
the statin group as compared with controls [76]. An observa-
tional cohort study of breast cancer patients showed that
uninterrupted statin use during anthracycline chemotherapy
was associated with a significantly lower risk of incident heart
failure [77].

Previous studies in animal models have demonstrated the
cardioprotective effects of statins in anthracycline-induced
cardiomyopathy, and they have also allowed a better knowl-
edge of the intracellular pathways involved that explain this
effect [78].

From amechanistic point of view, statins have been shown
to reduce the doxorubicin-induced cardiac inflammatory
response and oxidative stress and to attenuate mitochondrial
apoptotic pathways in animal models [79, 80]. However, we
must consider that several of the pleiotropic effects of statins
to prevent AIC are mediated by a reduction of oxidative
injury. First, statins have been found to preserve mitochon-
drial membrane potential in response to oxidative stress. This
effect could be mediated by NO, activating mitochondrial
ATP-sensitive potassium channels (mitoKATP), which results
in cardioprotection [81]. Second, Riad et al. investigated the
cardioprotective effects of fluvastatin in doxorubicin-induced

cardiomyopathy in a mouse model. In this study, statin treat-
ment improved cardiac function, associated with an increase
of the expression of the antioxidative enzyme SOD2 and sec-
ondarily decreasing tumor necrosis factor α (TNF-α) levels,
suppressing doxorubicin-induced overexpression of the proa-
poptotic protein Bax, decreasing cardiac nitrotyrosine produc-
tion, and activated mitochondrial-located antioxidative and
antiapoptotic mechanisms [80].

Another mechanism by which statins have shown effi-
cacy in AIC prevention is through downstream inhibition
of Rac1 [79, 82]; however, this effect is also related to an anti-
oxidant effect. Cholesterol-independent cardioprotective
effects of statins have been traced back to the inhibition of
Rho GTPase Rac1 signaling [83]. At the same time, the
known antioxidative effects of statins [84] could be explained
by this inhibition of Rac1, which could lead to a reduced
intrinsic generation of ROS since Rac1 regulates the NADPH
oxidase complex [85].

Pharmacological characteristics of statins, such as a fixed
dosage and lack of hemodynamic effects, make them an
attractive option for primary cardiotoxicity prevention [86].
Ongoing prospective randomized studies are investigating
the potential role of statins in the primary prevention of
anthracycline-induced cardiomyopathy.

3.3. ACE Inhibitors and Aldosterone Antagonists. Angioten-
sin-converting enzyme inhibitors (ACEi) and angiotensin II
receptor blockers (ARBs) are part of the standard pharmaco-
logic therapy used in patients with heart failure and reduced
left ventricular ejection fraction (HFrEF) due to their well-
proven effect on cardiac remodeling and, consequently, mor-
tality reduction in this population [87, 88]. The potential
effect of ACE inhibitors in the treatment of AIC patients
was first demonstrated more than twenty years ago by Jensen
et al. in a small observational study of patients with AIC [89].
Subsequently, secondary prevention with ACE inhibitors is
now well established, with early detection and treatment of
cardiotoxicity results in at least partial LVEF recovery in
most cases [8].

The evidence for primary prevention of AIC with these
agents is mainly supported by small observational studies
and single-center randomized clinical trials [90]. ACE inhib-
itors are often used in combination with other interventions
(such as beta-blockers), and there are only a few clinical trials
specifically designed to study the use of an ACE inhibitor
alone (enalapril) for AIC prevention [91, 92]. Evaluation of
the evidence in two meta-analyses has suggested a potential
role as a prophylactic intervention [90], and that neurohor-
monal therapies in single or combination strategies are asso-
ciated with higher LVEF in follow-up, although absolute
changes in LVEF are small and could be within intertest var-
iability for the LVEF measurement [93]. However, recently, a
multicenter randomized trial (ICOS-One Trial) compared
two strategies for the prevention of AIC with enalapril: pri-
mary prevention versus a biomarker-guided strategy during
treatment with anthracyclines [94]. No differences were
found between primary prevention with enalapril versus
treatment with enalapril guided by early detection of tropo-
nin elevation [94]. These results suggest that primary
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prevention with enalapril would not be superior to early
treatment with enalapril when subclinical damage (elevation
of biomarkers) is detected [94].

Aldosterone antagonists act by blocking the final step of
the renin-angiotensin-aldosterone system in different organs.
Several in vitro, preclinical, and clinical studies have estab-
lished the importance of this target in heart failure and car-
diac remodeling [95–97]. In the original report, Jensen et al.
reported that spironolactone could enhance the effects of
ACE inhibitors in AIC treatment [89]. However, this study
encouraged the use of these two clinical interventions simul-
taneously to ensure the prevention of AIC [89]. The evidence
on using aldosterone antagonist alone (spironolactone and
eplerenone) is limited [10].

Considering the scarce evidence for aldosterone alone for
AIC prevention and that the most robust evidence among
ACE inhibitors is associated with enalapril [91, 92], which
has shown an in-vivo capacity to inhibit oxidative stress,
one could deduce that an antioxidant effect might be
involved beyond the block of the renin-angiotensin-
aldosterone axis [98, 99] [100]. From a redox point of view,
we could also hypothesize a potential synergistic mechanism
between enalapril and spironolactone, associated with two
independent potential antioxidant mechanisms more than
due to a specific receptor-mediated response. According to
basic and preclinical studies, the spironolactone antioxidant
effects have been associated with NADPH oxidase inhibition
[101, 102], and enalapril oxidative stress abrogation has been
associated with an enhancement of intracellular antioxidant
defences (glutathione GSH-dependent antioxidant defences)
[99, 100].

3.4. Beta-Blockers with Antioxidant Properties: Carvedilol
and Nebivolol. Beta-blockers promote autonomic and neuro-
hormonal regulation in the presence of cardiac dysfunction,
leading to a positive impact on the cardiac remodeling of
the left ventricle, resulting in reduced mortality from heart
failure [88, 103]. With respect to the properties of the differ-
ent beta-blockers, only carvedilol and nebivolol have antiox-
idant effects, potentially giving them some comparative
advantages over other beta-blockers.

3.4.1. Carvedilol.Although all beta-blockers could have a pre-
ventive effect in AIC, carvedilol has been one of the most
studied in this setting [93]. Its potent antioxidant property
distinguishes it from other β adrenergic receptor antagonists
[104]. In this sense, carvedilol is superior to atenolol (which
represents an antagonist of β adrenergic receptors, but with-
out antioxidant properties) in reducing the negative impact
induced by doxorubicin in systolic function, as well as the
increase in lipoperoxidation (a product of oxidative stress
injury in biological membranes) [105]. Carvedilol is a β-
blocker with unique ROS-suppressive properties, even at
subtherapeutic doses [106]. There is still uncertainty about
its clinical benefit in primary prevention of AIC, based on
mixed results from clinical [107–110] [111] and observa-
tional studies [112]. The CECCY trial, the most contempo-
rary clinical study, was a randomized, double-blind,
placebo-controlled protocol of carvedilol in 200

anthracycline-treated women with HER2 negative breast
cancer. This study failed to prevent a ≥10% reduction in
LVEF at six months. Nevertheless, in that protocol, carvedilol
was able to prevent other manifestations of cardiotoxicity,
reducing the number of patients experiencing increases in
serum Troponin I (TnI) levels and attenuating its peak levels.
There was also a trend towards a lower increase in left ven-
tricular diastolic diameter and a reduction in the percentage
of patients with diastolic dysfunction [111]. In vitro studies
in cardiomyocytes have suggested that the cardioprotective
effect of carvedilol is driven by its antioxidant properties
[113], which have also been suggested after some clinical tri-
als conducted [114], and as other β-blockers evaluated have
not shown such a significant attenuation of AIC in clinical
settings [115].

The variability of carvedilol in AIC prevention and its
magnitude between different studies could be explained by
intrinsic and extrinsic factors [93].

Carvedilol’s antioxidative properties could be associated
with its effects against mitochondrial dysfunction, which is
one of the mechanisms associated with AIC and is character-
ized by a secondary ROS generation [116]. The specific
mechanism to prevent mitochondrial dysfunction could be
mediated by the stimulation of mitochondrial biogenesis by
carvedilol, which results in a functional gain of the mitochon-
dria [116]. Finally, increased expression of PGC-1α and
mitochondrial biogenesis induced by carvedilol might sug-
gest a new mechanism of the therapeutic effects of carvedilol
in heart failure and AIC [116].

Therefore, it is currently unclear whether the potential
protective effect of carvedilol is due to its antioxidant activity
and reduction in lipid peroxidation or whether it is due to its
β-blocker properties [117].

Interestingly, antioxidants at standard oral doses are not
able to induce enough local heart effects to appreciate clinical
benefits in cardiac conditions associated with oxidative
stress. However, since carvedilol has an affinity for cardiac
tissue, it can show local effects that are impossible to appreci-
ate with generic antioxidants, but even this appears to be
insufficient to prevent AIC. Nonintrinsic carvedilol factors
could include a variable cumulative dose of anthracycline
within the different studies, high individual variability in
anthracyclines bioavailability [48], population heterogeneity,
differences in risk factors profiles [7], and variability of che-
motherapy protocols. These factors can determine the
expected AIC incidences for a particular study and, therefore,
determine a greater or lesser carvedilol efficacy in that proto-
col when compared to groups of patients with a standard
risk. It is expected that populations with higher incidences
of AIC are more prone to benefit from cardioprotective inter-
ventions than lower-risk populations.

3.4.2. Nebivolol. Nebivolol is a highly selective β1 receptor
beta-blocker drug, which is approximately 3.5 times more
β1-selective than bisoprolol [118]. Unlike other beta-
blockers with vasodilator effects (carvedilol and labetalol),
which are mediated by blocking alpha-adrenergic receptors,
nebivolol induces nitric oxide-dependent vasodilation, medi-
ated by its agonist effect on endothelial β3 receptors that
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stimulate the enzyme nitric oxide synthase [119–121] and
activate the NO/cGMP/PKG signaling pathway [122]. These
endothelium-dependent vasodilation properties have been
associated with a more significant blood pressure reduction
in mechanistic studies than other beta-blockers [117]. Nebi-
volol is also characterized by antiproliferative, anti-inflam-
matory, and antioxidant properties, which would give
additional value to its already indicated antihypertensive
and endothelial effect [123]. At the subcellular level, the
increase in nitric oxide formation following treatment with
nebivolol has shown to increase cytosolic free zinc at the car-
diomyocytes, with inhibition of intracellular and mitochon-
drial calcium overload and consequent protection against
the effects of ROS and lipid peroxidation involved in hyper-
tensive heart disease [124, 125].

With respect to the potential properties of nebivolol to
prevent AIC, experimental studies in rats have shown antia-
poptotic effects on cardiomyocytes and a reduction of ven-
tricular dysfunction [126]. An antioxidant reinforcing effect
would be involved as one of the protective mechanisms after
treatment with nebivolol, which would be explained by an
increase in the activities of glutathione peroxidase and Mn-
superoxide dismutase, in addition to a release of nitrite/ni-
trate in cardiac tissue, which has been evidenced in both
in vivo and ex vivo models [126, 127]. The antioxidant rein-
forcement at subcellular and cellular levels by the previously
mentioned mechanisms would achieve an attenuation of oxi-
dative stress injury secondary to anthracyclines. This was evi-
denced by a decrease in the production of mitochondrial
H2O2 and in the peroxidation of membrane lipids expressed
in lower concentrations of 8-isoprostanes in both the mito-
chondria as in cardiomyocyte membranes, which would also
be associated with a reduction in microscopic scarring and
tissue collagen [124, 125].

With respect to clinical evidence, a prospective study in
60 breast cancer patients on anthracyclines treatment
showed that nebivolol had cardioprotective effects in the
short term (6 months). The nebivolol group prevented dia-
stolic dysfunction and had a lower reduction in global longi-
tudinal strain compared with the control group [128, 129].
Therefore, basic and some clinical evidence supports a poten-
tial cardioprotective effect of nebivolol against AIC based on
its pleiotropic properties beyond its beta-blocker effects.

3.5. Dexrazoxane: Topoisomerase 2β Target and Iron
Chelators. Dexrazoxane is the only approved agent for the
AIC prevention and is used intravenously in conjunction
with the anthracycline to decrease the incidence of cardiomy-
opathy and congestive heart failure in a variety of cancer
types in children and adults [130, 131].

In 2013, a meta-analysis showed a significant decrease in
cardiac events for patients pretreated with dexrazoxane with
no prior history of heart failure [90]. More recently, another
new meta-analysis in patients with breast cancer treated with
anthracyclines evaluated the efficacy of dexrazoxane of nine
trials [132]. In this latter study, dexrazoxane reduced the risk
of clinical heart failure and cardiac events in patients with
anthracycline chemotherapy with or without trastuzumab
and did not significantly impact cancer outcomes. However,

the authors concluded that the quality of available evidence
remains low, and further new randomized trials are war-
ranted before a systematic implementation of this treatment
in clinical practice [132]. In this sense, dexrazoxane treat-
ment does not eliminate the risk of AIC, so it is necessary
to continue clinical and cardiac function monitoring before
and during therapy [130]. Moreover, dexrazoxane can be
responsible for different adverse effects such as a reversible
elevation of hepatic transaminases as well as somemyelotoxi-
city (neutropenia and thrombocytopenia), limiting the dose
given to the patient [133]. Dexrazoxane has two main mech-
anisms to ameliorate the AIC: (i) to chelate redox-active iron,
thereby decreasing the formation of anthracycline-iron com-
plexes preventing Fenton reaction and subsequently decreas-
ing the ROS generation, which is harmful to the surrounding
cardiac tissue [23, 130]; (ii) to act as a DNA topoisomerase II
inhibitor, which happens to be the same target of the DNA
Top2 anticancer agent (anthracyclines), antagonizing the
formation of the Top2 cleavage complex and also rapidly
degrading Top2β [134]. This does not induce harmful breaks
in the double-strands of DNA in the heart as the anthracy-
clines [135]. However, given that other iron chelators have
not shown a cardioprotective benefit after anthracycline
treatments, it is possible that the primary protective mecha-
nism would be through the inhibition of TOP 2β [23].

From the oxidative stress point of view, both mechanisms
decrease ROS generation; first, directly for inhibition of Fen-
ton reaction; second, indirectly because when it prevents the
binding between anthracyclines and Top2β, it stops the next
steps (mitochondrial dysfunction and ROS generation) [23,
130, 134].

Despite the plausible mechanisms and limited data, dex-
razoxane is still not used routinely in clinical practice and is
only FDA approved in the metastatic breast cancer popula-
tion. Initially, there were concerns that dexrazoxane could
attenuate the antitumor effects of anthracyclines and increase
the occurrence of secondary malignancies [10], given its inhi-
bition of Top2α, which is the anthracycline target in cancer
cells [136]. However, dexrazoxane is currently considered
not to be associated with a reduction in antitumor efficacy
or survival or a relevant increased risk of second primary
malignancies [132].

3.6. New Potential Interventions: Strategies Based on Non-
ischemic Pharmacological Preconditioning: Omega 3
LCPUFA (DHA/EPA). In recent years, other new strategies
to prevent AIC are being evaluated. Some of these strategies
proposed to prevent AIC are based on cardiac precondition-
ing, both ischemic and non-ischemic. Ischemic precondi-
tioning has a broad preclinical base in cardiology, but it is
usually complex to implement in cancer patients, and its effi-
cacy would probably be limited. To our knowledge, currently,
only one study (NCT02471885) is evaluating this type of
strategy in AIC prevention [137]. However, for non-
ischemic cardiac preconditioning, exercise has been pro-
posed, based on preclinical evidence [138–140]. This kind
of preconditioning can also be complex to apply in most can-
cer patients, but it is currently being tested by in a clinical
trial (NCT02471053) [141].
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Strategies based on non-ischemic pharmacological pre-
conditioning have not been previously reported in clinical
trials. However, a potential benefit of these interventions
has been recently suggested by Serini et al., who hypothesized
that n-3 Long-chain polyunsaturated fatty acids (LCPUFAs)
could serve as cardio-protectors in AIC based on several pre-
clinical models [142]. LCPUFAs have shown some evidence
of having a role in the prevention and control of some cardio-
vascular diseases [143]. Specifically, EPA plus DHA has been
shown to be efficacious in attenuating oxidative stress related
to supraventricular arrhythmias in clinical trials [144–146].
Even though these effects have been associated with classical
n-3 LCPUFAs properties, including anti-inflammatory activ-
ities, antiplatelet mechanisms, and biological membranes sta-
bilization [147], more recent data suggest that indirect
antioxidant properties could be more important [146]. It
has been proposed that a high integration of n-3 LCPUFA
into cardiomyocyte cell membranes would induce moderate
lipid peroxidation, too weak to generate deleterious oxidative
stress, but enough to activate the redox-sensitive transcrip-
tion factor Nrf2. The activation of this factor upregulates
antioxidant enzymes, thus, generating the pharmacological
nonhypoxic myocardial preconditioning [148]. The activa-
tion of the Nrf2 pathway through n-3 LCPUFA and subse-
quent induction of antioxidant enzymes in cardiomyocytes
have been described in both cellular [149] and preclinical
models [150]. Regarding AIC, preclinical studies suggest that
the Nrf2 pathway could play a role in physiological cardio-
protection [151], as well as in the ability of n-3 LCPUFA to
prevent doxorubicin-induced ROS production and the sub-
sequent mitochondrial damage [152, 153]. Previously, a ran-
domized controlled trial reported that n-3 LCPUFA
nonhypoxic cardiac preconditioning was able to prevent
postoperative atrial fibrillation trough enhancing endoge-
nous heart antioxidant capacity [146].

Regarding the safety of high doses of n-3 LCPUFA in
breast cancer patients treated with doxorubicin, there has
been no clinical evidence of any harm or negative interac-
tions. A randomized controlled trial reported no adverse
effects in metastatic patients exposed to 1800mg of DHA
used as chemotherapy adjuvant, starting with a loading dose
7-10 days before initiating the first cycle of doxorubicin, and
then maintaining the dose for five months [154]. Addition-
ally, a 3-arm pilot double-blind placebo-controlled protocol
was performed in patients with localized breast cancer
undergoing first-time doxorubicin chemotherapy without
finding any adverse effects in the n-3 LCPUFA arm [155].
In this arm, eleven patients were exposed to 2 g per day of
n-3 LCPUFA (EPA+DHA) from 7 days before to 7 days
after the first chemotherapy cycle, without any side effects
associated with these fatty acids. Interestingly, the n-3
LCPUFA inhibited the expected NT-ProBNP plasma eleva-
tion after doxorubicin chemotherapy (48 hours), suggesting
that the intervention was able to attenuate subclinical cardi-
otoxicity. Also, in the n-3 LCPUFA-treated group, there
was a nonsignificant but lower echocardiography measured
LVEF decline compared to double placebo patients at 10-12
months follow-up. The lack of statistical significance in this
outcome is likely due to the small sample size and the high

variability of echocardiography based LVEF measurements.
Interestingly, despite these limitations, in the third arm, the
eleven patients exposed to 12.5mg of carvedilol every 12
hours showed a significantly lower reduction in LVEF at
10-12 months, compared to the double placebo group. Unex-
pectedly, in this study arm, carvedilol did not impact the
levels of NT-ProBNP [155]. It is important to note that in
this study, the population had a high prevalence of cardiovas-
cular risk factors such as arterial hypertension (31%), dyslip-
idemia (22%), and smoking (42%) [155].

Currently, an ongoing clinical trial (CarDHA trial;
ISRCTN69560410) in breast cancer patients receiving
anthracyclines is designed to assess whether non-ischemic
preconditioning with DHA plus carvedilol a week before
the first chemotherapy cycle and, during 90 days after, would
have a better capacity to limit subclinical AIC, compared
with similar patients exposed to double placebo [156]. This
study will evaluate any subclinical AIC manifestation in bio-
markers, electrocardiographic alterations, LVEF by cardiac
magnetic resonance, and global longitudinal strain by 2D
echocardiography. Also, from a mechanistic point of view,
the CarDHA trial is evaluating as secondary endpoint bio-
markers of oxidative stress damage (plasma lipoperoxidation
levels), as well as parameters of antioxidant balance (Erythro-
cyte Thiol Index (GSH/GSSG)). Therefore, this study will
also enable the understanding of the impact of combined
interventions (using as target two unrelated antioxidant
pathways) on the inhibition or attenuation of the oxidative
stress damage associated with AIC [156].

3.7. Combined Strategies: Classical (ACEi/ARBs plus Beta-
Blockers) and New Combinations Targeting Different
Unrelated Antioxidant Pathways (Omega 3 LCPUFA
(DHA/EPA) plus Carvedilol). Combined strategies have been
previously poorly evaluated, and only two clinical trials have
used dual interventions [109] [157]. However, the patho-
physiological focus of these dual strategies has been the
blockade of neuroendocrine systems (sympathetic nervous
and the renin-angiotensin-aldosterone system) to try to
modulate the remodeling process that occurs following a
myocardial injury [109, 157].

In the OVERCOME (prevention of left-ventricular dys-
function with enalapril and carvedilol) trial, the combination
of enalapril and carvedilol vs. no treatment was tested in 90
patients diagnosed with malignant hemopathies treated with
anthracyclines. LVEF did not change in the intervention
group but decreased significantly in controls after six
months. Also, the intervention group had a lower incidence
of final LVEF of <45 and heart failure [109].

Also, a combined beta-adrenergic and angiotensin block-
ade approach had been evaluated in one of the arms of the
PRADA trial (Prevention of Cardiac Dysfunction during
Adjuvant Breast Cancer Therapy) using a 2 × 2 factorial trial
with metoprolol and candesartan during anthracyclines
treatment [157]. This study showed that candesartan, but
not metoprolol, can protect against an early decline in LVEF,
assessed with cardiac MRI. It is also important to note that in
this study they did not think there was a protective
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interaction between metoprolol and candesartan, due to
combination was not better [157].

Unlike what was previously shown, new insights into the
redox mechanism of damage in AIC allow consideration of
new combined strategies. These new strategies with com-
bined interventions based on the inhibition or attenuation
of the oxidative stress injury associated with AIC by two
unrelated antioxidant pathways could be more efficient than
the potential for attenuation through treatments based on
either one of the pathways alone.

An ongoing prospective randomized study by Carrasco
et al. is investigating the potential role of a strategy based
on two interventions with a focus on two different redox
pathways for primary prevention of AIC [156].

Unlike other primary prevention protocols of AIC based
on carvedilol alone, the CarDHA trial (ISRCTN69560410) is
the first designed cardio-oncology study, based on using the
antioxidant carvedilol properties associated with another
antioxidant intervention as part of a dual therapeutic strategy

focusing on attenuating the oxidative stress damage [156].
This clinical trial uses a sequential regimen. First, a DHA
treatment is started one week before the anthracyclines to
increase the antioxidant enzymatic activity in the myocar-
dium, and then when the anthracycline is started, carvedilol
is added, which provides direct antioxidant effects [156].

4. Conclusions

The multiple mechanisms proposed for anthracycline cardi-
otoxicity could be grouped under the umbrella of a unifying
downstream mechanism: “oxidative stress” (Figure 1).
Therefore, most of the interventions that could be beneficial
in the primary prevention of AIC have potential antioxidant
effects as a common theme (Figure 2).

Due to this crucial role of oxidative stress in AIC, the
screening of cardiovascular risk factors associated with oxi-
dative imbalance is essential to identify the subgroup of
patients that could benefit the most from a primary

ANTHRACYCLINES

Genetic predisposition for ROS damage

Cardiovascular risk factors associated with redox imbalance

Heart drug accumulation: Biotransformation to secondary alcohol metabolites

“Redox cycling” in
mitochondrial electron

transport chain Topoisomerase (Top) 2𝛽 dysfunction

Direct generation of ROS Activation
NADPH
oxidase

ROS damage

Mitochondrial dysfunction

“Second-Hit” Stress in the
DOX-Treated Hearts

Myeloperoxidase (MPO) activity
Fibrocytes activity (mesenchymal progenitor cells invloved in the tissue’s response to ROS injury)

Expression
antioxidants enzymes

(SOD, GSH-Px)

Rac1 PGC1 𝛼/𝛽

Interstitial myocardial fibrosis

Cardiac extracellular matrix remodeling

Anthracycline-induced
cardiotoxicity

Figure 1: Mechanisms of anthracycline-induced cardiotoxicity and the role of oxidative stress. DOX: doxorubicin; GSH-Px: glutathione
peroxidase; MPO: myeloperoxidase; PGC1 α/β: peroxisome proliferator-activated receptor-γ coactivator 1-α and 1-β; Rac1: a subunit of
NADPH oxidase; ROS: reactive oxygen species; SOD: superoxide dismutase.

9Oxidative Medicine and Cellular Longevity

https://doi.org/10.1186/ISRCTN69560410


prevention strategy with antioxidants interventions. Also, the
development of a genetic approach to identify some poly-
morphisms in genes related to anthracyclines biotransforma-
tion, antioxidant defences, or ROS generation could help to
find patients with an increased risk of AIC.

Although in the future, it may be attractive to develop
new preventive strategies for AIC, focused on targets such
as topoisomerase 2β or the biotransformation of anthracy-
clines, the imperative need to have preventive interventions
for AIC in the short term promotes continuing the evaluation

of strategies that reduce oxidative stress through the use of
drugs already available. The therapeutic interventions that
have been clinically evaluated, such as ACE inhibitors, aldo-
sterone antagonists, carvedilol, and nebivolol, contribute to
decrease the severity of redox imbalance by different mecha-
nisms and could also have a role in reducing the impact
caused by “second hits” (Figure 2). New strategies involving
non-ischemic cardiac preconditioning are being evaluated
as preventative options for AIC due to their capacity of atten-
uating oxidative stress. Also, the role of dual strategies based
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on combined interventions targeting different redox path-
ways for the primary prevention of AIC is being evaluated
by new clinical trials.

This review also has some limitations. First, the evidence
for most antioxidant interventions is still limited, and mostly
all studies have small sample sizes. Second, although some
interventions could theoretically prevent AIC through their
antioxidant properties (such as carvedilol), most of the stud-
ies only evaluated clinical endpoints but not oxidative stress
parameters to provide better mechanistic evidence.

Finally, despite the multiple new advances in knowledge
of anthracycline-induced cardiotoxicity, oxidative stress
remains one of the main therapeutic targets for cardioprotec-
tion. Therefore, further studies are needed with clinical inter-
ventions focused on the reduction of oxidative stress.
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