
Review Article
Relationship between Apelin/APJ Signaling, Oxidative Stress,
and Diseases

Shuangyu Lv ,1 Yu Feng,1 Qiying Jiang,1 Xinrui Lv ,2 and Yanjie Yang 1

1Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
2The Department of Physiology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China

Correspondence should be addressed to Xinrui Lv; lvxinrui@126.com and Yanjie Yang; yangyj@henu.edu.cn

Received 17 September 2020; Revised 23 December 2020; Accepted 15 January 2021; Published 27 January 2021

Academic Editor: Giuseppe Cirillo

Copyright © 2021 Shuangyu Lv et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Apelin, a peptide hormone, is an endogenous ligand for G protein-coupled receptor and has been shown to be widely expressed in
human and animal tissues, such as the central nervous system and adipose tissue. Recent studies indicate that the apelin/APJ system
is involved in the regulation of multiple physiological and pathological processes, and it is associated with cardiovascular diseases,
metabolic disorders, neurological diseases, ischemia-reperfusion injury, aging, eclampsia, deafness, and tumors. The occurrence
and development of these diseases are closely related to the local inflammatory response. Oxidative stress is that the balance
between oxidation and antioxidant is broken, and reactive oxygen species are produced in large quantities, causing cell or
molecular damage, which leads to vascular damage and a series of inflammatory reactions. Hence, this article reviewed recent
advances in the relationship between apelin/APJ and oxidative stress, and inflammation-related diseases, and highlights them as
potential therapeutic targets for oxidative stress-related inflammatory diseases.

1. Introduction

Apelin (APLN), a bioactive neuropeptide derived from 77
amino acids [1], is an endogenous ligand for APJ receptors
(APLNR) [2], first acquired from bovine gastric tissue [3].
The prepeptide of APLN was cleaved and processed by pro-
tease to form various derived molecular forms, such as ape-
lin-36, apelin-26, pyr-apelin-13, and apelin-12, and the
most active form is apelin-13 [3]. Apelin is a novel adipocy-
tokine [4] that acts on G protein-coupled receptors (APJ)
through APJ signaling [5].

Receptor protein APJ is an intron-free gene in the coding
region, mainly binding to apelin-13 specificity, and the
sequence is similar to the angiotensin receptor type 1 (AT1)
gene [2, 6]. APJ can be detected in a variety of organs and tis-
sues other than APLN, including the brain, heart, skin, reti-
nal endothelium, adipose tissue, blood vessels, and
cardiovascular system [7]. As we all know, the apelin/APJ
system plays a key physiological role in cardiovascular action,
neovascularization [8], energy metabolism [9], glucose
metabolism [10], and pain [11, 12] and is involved in cardio-

vascular disease, metabolic syndrome, and diabetes [13–15].
Evidence suggests that the antioxidant activity of APLN is
significant in some areas.

Oxidative stress (OS) refers to a state in which in vivo
oxidation is out of balance with antioxidant action, which
tends to be oxidized, leading to neutrophil inflammatory
infiltration and an increase of protease secretion, resulting
in a large number of oxidative intermediates. OS occurs
when free radicals produce more than the ability of the
antioxidant protective system [16] and is considered to be
an important factor leading to aging and disease. The
prooxidants produce reactive oxygen species (ROS) during
normal metabolism, such as superoxide anion (O2-) and
hydrogen peroxide (H2O2), most of which are cleared by
antioxidants such as superoxide dismutase (SOD), glutathi-
one reductase, and vitamin E in vivo, and a small fraction
of the ROS plays an important role in maintaining vascular
tension and participating in membrane receptor-mediated
signal transduction [17].

Increased ROS can lead to tissue and molecular damage,
such as damage to proteins, lipids, amino acids, and nucleic
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acids [18, 19], and even the DNA damage and apoptosis of
cardiomyocytes [20, 21]. Therefore, high-efficiency antioxi-
dants can be used to inhibit ROS accumulation and oxidative
damage. The antioxidant enzymes neutralize highly reactive
free radicals and thus prevent uncontrolled production of
ROS [22]. A recent study demonstrates that APLN reduces
the production and release of ROS in adipocytes by APJ
receptors. This suggests APLNmakes an important contribu-
tion to the reduction of OS in adipocytes and stress in other
tissues stimulated by ROS [23].

A number of studies have shown that APLN have
anti-inflammatory and antioxidant effects [23–26]. There-
fore, we systematically summarize the relationship
between apelin/APJ, OS, and inflammation-related dis-
eases, as well as the related pathological processes
involved in APLN. This article reviewed the recent
advances in the role of the apelin/APJ system in related
diseases caused by OS.

1.1. Apelin in Cardiovascular Disease. Apelin/APJ system
plays an important role in the cardiovascular system, includ-
ing enhancing myocardial contractility, lowering blood pres-
sure, inhibiting cardiomyocyte hypertrophy, and reducing
atherosclerosis. APLN can regulate blood pressure and
angiogenesis through different mechanisms. APLN mitigates
hypertension by modulating nitric oxide (NO) signaling
pathways and renin-angiotensin-aldosterone system
(RAAS). Vascular NO bioavailability and OS imbalance can
cause hypertension and vascular injury [27, 28]. The applica-
tion of intravenous injection to male Wistar rats with apelin-
13 produced antihypertensive effect [29], which was mainly
through the release of endothelial nitric-oxide synthase
(eNOS) phosphorylation to promote endothelium-
dependent vasodilation; thus, achieving the goal of lowering
blood pressure [24]. Zhou et al. showed that apelin-12 exhib-
ited the most significant antihypertensive effect after intra-
peritoneal injection of apelin-12, apelin-13, and apelin-36
in anesthetized rats [24]. Nevertheless, there was no signifi-
cant change in blood pressure in APJ-deficient mice injected
with APLN, suggesting that vasodilation function and lower-
ing blood pressure can only be developed by binding to intact
endothelial APJ. Altogether, APLN can inhibit oxidative
stress associated with hypertension via the eNOS/NO path-
way [24, 30].

Furthermore, APLN has also been shown to induce
hypertension by oxidative stress. The renin-angiotensin sys-
tem (RAS) main active metabolites Angiotensin (Ang) II
commonly contribute to hypertension, vascular injury, and
heart and kidney failure by activating AT1 receptor-
mediated effects [31]. The angiotensin-converting enzyme 2
(ACE2)/Ang-(1-7)/Mas receptor axis has been shown to
reduce hypertension and improve vascular damage by
increasing NO bioavailability and reducing ROS production
[32]. It was known that apelin-13 promotes an increase of
NOX4 expression [33]. Nevertheless, under physiological
and pathological conditions, apelin/APJ has a completely
opposite effect on RAS function and antagonizes Ang II, sug-
gesting that APLN can induce hypertension by regulating the
NOX4-Ang II pathways [34, 35].

Apelin abrogates the development of atherosclerosis via
increasing the NO bioavailability and inhibiting Ang II cellu-
lar signaling [36]. Nevertheless, Zhou et al. and Hashimoto
et al. demonstrate that the apelin/APJ system promoted
OS-induced atherosclerosis, which was mediated by the
phosphatidylinositol 3-kinase (P13K)/(protein kinase B)
Akt/extracellular-regulated kinase 1/2 (ERK1/2) pathway
and APLN-induced nuclear factor-κB (NF-κB)/c-Jun N-
terminal kinase (JNK) expression, implying that the develop-
ment of stable APJ receptor antagonists may provide new
therapeutic tools for cardiovascular disease [24, 37]. It was
reported that apelin could reduce OS induced by 5-
hydroxytryptamine or hydrogen peroxide (H2O2) and pro-
tect mice from ventricular hypertrophy through a reduction
in ROS generation [38]. Apelin-13 promoted the expression
of cardiac myosin and β-MHC (β-myosin heavy chain)
mRNA 15 days after chronic infusion into the paraventricu-
lar nucleus of normal blood pressure rats, indicating that
apelin-13 could induce cardiac hypertrophy [39]. Moreover,
endoplasmic reticulum stress leads to the dysregulation of
intracellular Ca2+ and activation of calcineurin-nuclear fac-
tor of activated T cell 3 (NFAT3) signaling pathway, leading
to cardiac hypertrophy. Ceylan-Isik et al. found that endo-
plasmic reticulum stress was significantly attenuated by the
application of APLN [40]. Apelin-13 improved the cardiac
dysfunction, impaired cardiac hemodynamics, and attenu-
ated fibrosis of cardiac fibroblasts, which was presented as
reducing the levels of collagen I, collagen III, α-smooth mus-
cle actin (SMA), and transforming growth factor-β (TGF-β)
induced by Ang II via inhibiting the PI3K/Akt signaling
pathway to inhibit OS [41].

Moreover, APLN has been shown to alleviate cardiotoxi-
city. Zhang et al. reported that apelin-13 pretreatment effec-
tively attenuated the cisplatin-induced ROS and superoxide
anion generation, inhibited DNA damage, and suppressed
the poly ADP-ribose polymerase (PARP) cleavage and cas-
pases activation, and participated in the regulation of
mitogen-activated protein kinase (MAPKs) and PI3K/Akt
signaling pathways, thus significantly reducing cisplatin-
induced cardiac toxicity in vivo [42].

The role of APLN in the regulation of OS-induced car-
diovascular disease is inconsistent. It may be due to different
inducements of OS injury, animal species, forms of apelin,
animal models, etc. The main molecular mechanisms of ape-
lin/APJ in regulating oxidative stress-induced cardiovascular
system diseases are associated with NO, Ang II, and
P13K/Akt. Apelin/APJ has been extensively studied in ani-
mal models of OS injury-induced cardiovascular disease.
However, further studies are needed in the different APLN
subtypes and their associated functions or their antioxidant
role in cardiovascular disease. Apelin/APJ systems can be
developed as novel drugs to treat cardiovascular diseases.

1.2. Apelin in Metabolic Disorders. Apelin is adipokines with
insulinomimetic activity that are produced and released by
adipose tissue [43, 44]. APLN not only inhibited the produc-
tion and release of ROS but also attenuates oxidative stress-
induced cellular dysfunctions in adipocytes [23]. Recently,
Aung et al. reported that APLN increased the AMPK, Akt,
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and ERK1/2 activation (phosphorylation) in adipocytes in a
dose-dependent manner and stimulated mitochondrial bio-
genesis [23]. Apelin had recently been shown to rescue
defects in insulin resistance by regulating AMPK signals
[45, 46]. Tissue inhibitor of metalloproteinases 3 (TIMP3)
deficiency leads to OS response, sphingolipid pathway, and
lipid metabolism disorder, and injection APLN restores lipid
oxidative defects [47].

Improving diet and exercise to lose weight can reduce OS
and increase NO production. Therefore, increasing the avail-
ability of NO after weight loss surgery was a beneficial effect
of weight loss. Roux-en-Y gastric bypass in diet-induced
obese rats improved the NO bioavailability resulting from
higher endothelial Akt/NO synthase activation, reduced
JNK phosphorylation, and reduced OS. Exogenous ghrelin
might be a candidate for therapeutic treatment of diabetes.
OS was the main cause of gastrointestinal damage, and diabe-
tes was associated with an increased production of ROS [48,
49]. Ghrelin had antioxidant effects on systemic OS and
showed gastroprotective effects [49]. Ghrelin supplementa-
tion might help prevent some complications in diabetic rats.

1.3. Apelin in Neurological Diseases. The distribution of ape-
lin in the central nervous system (CNS) suggests that the
expression levels of APLN in the CNS changes significantly
with nervous system injury caused by various neurological
diseases [50]. Studies had shown that apelin inhibited the
activation of NF-κB [51] and thus protected nerve cells.
Recently, Xu et al. reported that exogenous apelin-13 binding
to APJ improved the neurological functions and attenuated
early brain injury after subarachnoid hemorrhage (SAH) by
reducing ER stress-mediated OS and neuroinflammation,
which was at least partly mediated by the AMPK/TX-
NIP/NLRP3 signaling pathway. Therefore, apelin-13/APJ
system could be a promising therapeutic target in the treat-
ment of SAH [52].

Parkinson’s disease is a common human neurodegenera-
tive disease consisting mainly of aberrant aggregation and
posttranslationally modified α-synuclein, while OS has been
shown to form nitrated α-synuclein that can lead to the pro-
gressive death of dopaminergic neurons [53, 54]. It was
reported that apelin-36 produced a neuroprotective effect
against Parkinson’s disease caused by the 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) injury. Zhu et al.
showed that the neuroprotective mechanism of apelin-36
against MPTP-induced neurotoxicity in mice might be
related to decreasing the aggregation of nitrated α-synuclein
and alleviating OS as well as promoting autophagy and inhi-
biting ASK1/JNK/caspase-3 apoptotic pathway [55]. Meth-
amphetamine (METH) is a potent psychomotor stimulant
with neurotoxicity, especially in dopaminergic neurons.
Long-lasting exposure to METH increases the risk of Parkin-
son’s disease. In METH-induced PC12 cells, apelin-13 could
potentially alleviate METH-induced neurotoxicity via the
reduction of oxidative damages, apoptotic, and autophagy
cell death [56].

Apelin-13 has been reported to show neuroprotective
effects on cortical neurons by modulating serum deprivation-
(SD-) induced OS and apoptosis [57]. Moreover, APLN

inhibited the excitotoxicity mediated by N-methyl-D-aspartic
acid (NMDA) receptor in the hippocampus of rats (O’Don-
nell et al., 2007). Apelin may be beneficial to inhibit Alzhei-
mer’s disease (AD) pathology by inhibiting the role of Ang
II and regulating the PI3K/AKT/GSK-3β signaling pathways
to inhibit hyperphosphorylation [58]. The disruption of Ca2+

homeostasis may be involved in the pathology of neurode-
generative diseases. APLN shows an inhibitory effect on the
development of neurodegenerative diseases by reducing the
Ca2+ concentration caused by increased sarco(endo)plasmic
reticulum Ca2+-ATPase (SERCA) activity, suggesting that
APLNmay be a potential target for the treatment of neurode-
generative diseases [58]. It was reported that epilepsy is asso-
ciated with increased OS, which may increase susceptibility
to attention deficit hyperactivity disorder (ADHD) [16].

1.4. Apelin in Ischemia-Reperfusion Injury. The key factor in
cardiac ischemia-reperfusion (I/R) injury is mitochondria-
derived OS. It was demonstrated that structural analogs of
adipocyte-derived peptide apelin-12 have potential effects
on mitochondrial ROS generation, cardiomyocyte apoptosis,
and metabolic and functional recovery from myocardial I/R
injury, attenuating excess mitochondrial ROS production in
myocardial I/R injury and maintaining myocardial metabolic
status [59].

Recent studies demonstrated that apelin-13 protected the
brain from I/R injury by the activation of ERK1/2 and
PI3K/Akt signaling pathways [60]. Moreover, apelin-13 was
showed to protect the heart against I/R injury through the
RISK-GSK-3β-mPTP pathway [61]. Even apelin-13 may
improve the survival rate of casual flaps to some extent
[62]. Apelin/APJ signaling may protect vascular reduction
and tissue damage by inhibiting OS, thereby inhibiting skin
I/R injury-induced pressure ulcer (pU) formation, and exog-
enous applications of APLN or MM07 (APJ biased agonists)
may have therapeutic potential against pU development [63].
These results suggest that apelin alleviated I/R injury by reg-
ulating OS and thus exerted myocardial protection.

1.5. Apelin in Aging, Apoptosis, and Autophagy. Recent stud-
ies indicated that apelin is associated with aging. APLN defi-
ciency leads to multiple organ aging [64]. Apelin alleviates
OS which contributes to the development of aging. Increas-
ing evidence showed APLN was involved in the autophagy
process, and activation of autophagy protects cells from apo-
ptosis [65, 66], which contributed to antiaging and alleviated
OS [67, 68].

Apelin increased the glycosaminoglycan (GAG) content
of nucleus pulposus (NP) cells and mRNA/protein expres-
sions of NP matrix macromolecules (collagen II and Aggre-
can) and promoted autophagic flux (LC3II/I increased and
p62 decreased) under OS [69]. More importantly, obesity,
diabetes, and cardiovascular disease, discussed above, are
closely related to aging. In addition, Ca2+ dysregulation is
reported to be related to aging [70].

1.6. Apelin in Women’s Diseases. The APLN receptor system
is known to have potential therapeutic target in preeclamp-
sia. Recently, Wang et al. reported that APLN treatment
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significantly improved the symptoms of preeclampsia,
mitigated impaired eNOS/NO signaling, and attenuated
OS activation in uterine perfusion pressure (RUPP) rats
[71]. In preeclampsia rat models, infusion of (Pyr)-ape-
lin-13 not only reduced OS markers but also improved
renal pathology, suggesting that (Pyr)-apelin-13 may have
renal protection in preeclampsia [5]. At the same time,
hemodynamic response and kidney injury could be
improved after APLN treatment, and there was no fetal
toxicity, indicating that APLN plays a role in regulating
the prognosis of preeclampsia [5]. However, Incebiyik
et al. had shown there were significantly higher APLN
levels in premenstrual syndrome (PMS) patients than in
healthy women [72].

1.7. Others. The apelin/APJ system plays a role in hearing
loss. Pretreatment of hair cell-like cell-derived MSCS (as a
model for OS-induced hearing loss) with apelin-13 could
reduce the Bax/Bcl-2 ratio and caspase-3 protein expression
and improve their survival under OS conditions [73] and
protected against OS-induced hair cell damage. Apelin
played a role in the pathophysiology of idiopathic tinnitus
and may reduce OS in the future [72]. Kartal et al. found that
apelin-13 could aggravate the decrease of erythrocyte
deformability in rats with diabetes and IR injury [74].

With the continuous progress in relevant research, the
roles of APLN and OS in tumors were emerged. Apelin has
the effect of inhibiting the production of ROS, which indi-
cated that APLN inhibited tumorigenesis by regulating OS.
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Figure 1: The association between apelin/APJ system and oxidative stress in various diseases.
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However, Sorli et al. first reported that hypoxia induced by
tumor cells could promote the expression level of APLN
[75]. The increased ROS level induces hypoxia-inducible fac-
tor (HIF) expression in tumor stem cells (CSCs) in hypoxic
environments [76]. Hence, it is speculated that ROS-
induced OS is closely related to tumorigenesis and may be
regulated by APLN. According to reports, APLN had been
demonstrated to play a role in lymph node metastasis and
lymphangiogenesis, activating ERK and PI3K pathways,
leading to cell proliferation, migration, and cell survival [77].

2. Conclusion

In summary, the apelin/APJ system is closely related to OS,
which can not only significantly reduce the production of
ROS but also inhibit the oxidative stress response
(Figure 1). In this review, we introduce APLN, outline the
close correlation between APLN and OS, and discuss the
underlying mechanisms by which apelin could improve OS
injury in various ways. Therefore, recent reports reveal that
APLN plays an important role in OS injury and can provide
a reference direction for future research on the treatment of
diseases in OS injury.
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