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Nonalcoholic fatty liver disease (NAFLD) is one of the most commonly occurring diseases within western dietary patterns. Usually
untreated, it may lead to type 2 diabetes mellitus (T2DM), steatohepatitis (NASH), and hepatocellular carcinoma (HCC). Besides
its severe aftermath, up to now, there is no known therapeutic approach to this disease in everyday clinical practice. Most NAFLD
patients are encouraged to do physical activities or diet change and remain without pharmacological treatment. In this study, we
present phloroglucinol (PHG) as a novel and promising compound in NAFLD treatment. PHG significantly increased the level
of enzymatic and nonenzymatic antioxidants both in palmitate and hydrogen peroxide-induced oxidative stress models.
Strengthened antioxidative defense reduced the oxidative/nitrosative damage to cell proteins, lipids, and carbohydrates.
Furthermore, PHG treatment reduced hepatic steatosis; lowered inflammatory markers, such as NF-κB or HIF-1α; and inhibited
cell apoptosis. Moreover, PHG had a more comprehensive effect than other commonly used antioxidants: N-acetylcysteine
(NAC) and α-lipoic acid (ALA), suggesting its clinical usability. Therefore, our paper supports the benefits of natural
compounds as a therapeutical approach to NAFLD.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a chronic medi-
cal condition associated with the excessive accumulation of
free fatty acids, diglycerides, and triglycerides in the liver
[1]. NAFLD’s leading cause has been attributed to excessive
high fat intake referred to as “western dietary pattern.” It is
estimated that around 25% of the world’s population might
be affected, whereas, in western countries, prevalence is
higher [2]. The lipid overload state present in NAFLD results
in a dysregulation of hepatocytes’ metabolic activity, leading
to inflammatory response and liver tissue injury [3]. The

most common aftermath of liver steatosis in NAFLD is insu-
lin resistance, leading to type 2 diabetes mellitus (T2DM) [4–
6]. Additionally, patients affected by NAFLD are also more
likely to develop systemic hypertension, while frequent vas-
cular complications increase the rate of cardiac incidents
[7–9]. What is more, long-lasting steatosis induces oxidative
stress and inflammation which results in the development of
nonalcoholic steatohepatitis (NASH). It remains the leading
cause of hepatocellular carcinoma (HCC) in western coun-
tries [1–3].

Oxidative stress plays a critical role in the progression of
NAFLD [10, 11]. Generally, oxidative stress refers to the
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imbalance between the formation of oxygen/nitrogen free
radicals and the efficiency of mechanisms responsible for
their elimination. Under physiological conditions, reactive
oxygen species (ROS) formed in metabolic processes are
effectively scavenged by enzymatic and nonenzymatic anti-
oxidants. However, under pathology, redox imbalance occurs
in favor of oxidation reactions, and as a consequence, over-
production of ROS causes oxidative damage to biomolecules
and cell structures [12]. The oxidative damage may manifest
as both protein and lipid oxidation and the creation of
advanced glycation end products (AGEs). Increased produc-
tion of ROS in NAFLD relates to blockage of β-oxidation,
which triggers an impairment of the mitochondrial electron
transport chain [13]. What is more, the incomplete oxidation
of acyl-carnitine causes aggregation of lipotoxic intermedi-
ates, which can be an indirect source of ROS [14]. Addition-
ally, recent studies showed the possible role of cytochrome
CYP2E1 as a source of ROS in the liver tissue [15]. Since
there is no approved medication for NAFLD, whereas mild
to moderate lifestyle changes do not bring significant benefits
to NAFLD patients, it is crucial to investigate potentially
effective drug treatment [16]. Current therapeutic
approaches focus their efforts on the reduction of oxidative
stress. As for now, silymarin, vitamins E and D, polyunsatu-
rated fatty acids of the omega-3 series, coenzyme Q10, ber-
berine, and curcumin are considered to exert moderate
effects after prolonged use [17]. Out of the presented sub-
stances, the effects of vitamin E seem to be best documented.
However, there are some concerns about the safety of vitamin
E supplementation. It has been reported that oral vitamin E
supplementation among healthy men increases prostate can-
cer risk and risk for hemorrhagic stroke in the general popu-
lation and heart failure in patients with left ventricular
dysfunction [18–20]. Based on the above information, we
chose phloroglucinol (PHG), a phenolic compound of natu-
ral origin, mainly known for its nonspecific antispasmodic
properties in gastric tract disorders. Phloroglucinol is safe
to use and constitutes an active ingredient in various anti-
spasmodic compositions [21]. Indeed, it has been proven that
PHG may have anti-inflammatory and antioxidant capabili-
ties in different medical conditions [22, 23]. Some studies
even report its anticancer potential [24, 25]. Nevertheless, it
has never been assessed as a potential drug counteracting
NAFLD and preventing its progress towards NASH.

In our study, we developed a HepG2 cell line to assess
their response to the changes in oxidative balance caused by
NAFLD and the feasibility of alleviating these effects using
PHG. Furthermore, we compared the effectiveness of PHG
with two other compounds of renowned antioxidative prop-
erties: N-acetylcysteine (NAC) and α-lipoic acid (ALA). The
oxidative stress was generated in two models: hydrogen per-
oxide or palmitic acid-induced steatosis.

2. Results

2.1. Cell Viability. PHG showed a dose-dependent decrease of
cell viability which was statistically significant in concentra-
tions above 100μM (200μM: -33.6% p < 0:05; 400μM:
-47.3% p < 0:01; 1000μM: -82.7% p < 0:001). H2O2 also

decreased cell viability in a dose-dependent manner, which
was significant in concentrations above 1mM (2mM:
-20.4% p < 0:01; 5mM: -35.8% p < 0:0001; 10mM: -59.7% p
< 0:0001). With the addition of PHG to 10mM H2O2, the
medium did not affect cell viability in concentrations below
200μM of PHG. Basing on the cell viability, we choose the
PHG concentration of 100μM and 10mM concentration of
H2O2 for further experiments (Figure 1).

2.2. Antioxidant Defense. Antioxidants are substances that, in
low concentrations, protect against oxidation or delay the
oxidation of cell components. In our study, we used both
enzymatic (catalase, CAT; glutathione peroxidase, GSH-Px;
glutathione reductase, GR; superoxide dismutase, SOD) and
nonenzymatic (reduced glutathione, GSH) antioxidants to
assess the antioxidant barrier.

2.2.1. NAFLD Model. PHG lowered cellular total glutathione
content (PHG: -25.1% p < 0:05) and GSH concentration
(PHG: -45.4%; NAFLD: -65.7% p < 0:0001; NAFLD+PHG:
-18.8%, NAFLD+NAC: +0.9%, NAFLD+ALA: +10.3%). All
the analyzed antioxidants decreased PA-induced GSSG
(NAFLD:+38.8% p < 0:01; NAFLD+PHG: -3.9% p < 0:01;
NAFLD+NAC: -14% p < 0:001; NAFLD+ALA: -19.9% p <
0:0001), and some of them normalised the GSH/GSSG ratio
(NAFLD+NAC: -23.6% p < 0:05; NAFLD+ALA: -59.3% p <
0:001). Moreover, the activity of GSH-Px was markedly ele-
vated in the NAFLD+PHG-treated group while being signif-
icantly lower in the group treated with NAFLD alone (PHG:-
10.3%; NAFLD: -57.2% p < 0:0001; NAFLD+PHG: +33.5%
p < 0:001; NAFLD+NAC: -5.8%; NAFLD+ALA: +15.5%).
The activity of CAT was increased in all but one (PHG) of
the experimental groups (PHG: +35.1%; NAFLD: +171.7%
p < 0:01; NAFLD+PHG: +364% p < 0:0001; NAFLD+NAC:
+244.7% p < 0:0001; NAFLD+ALA: +246.4% p < 0:0001)
when compared to the control and significantly higher in
NAFLD+PHG when compared to other groups. Addition-
ally, PHG together with NAFLD elevated GR activity com-
pared to all groups except NAFLD+ALA (PHG: +6.9%;
NAFLD: -19.9%; NAFLD+PHG: +57.1% p < 0:0001;
NAFLD+NAC: +13.7%, NAFLD+ALA: +26.3%). PHG had
no substantial impact on SOD activity (PHG: -12%; NAFLD:
-64.5% p < 0:0001; NAFLD+PHG: +15.2%, NAFLD+NAC:
-18.2%, NAFLD+ALA:-7.2%) (Figure 2).

2.2.2. H2O2 Model. Total glutathione was slightly decreased
in the H2O2+PHG group (-27.8% p < 0:05). Both PHG and
H2O2 alone depleted GSH with no significant differences to
control in other groups (PHG: -45.3% p < 0:01; H2O2: -70%
p < 0:0001) However, NAC and ALA normalised H2O2-
induced GSH drop (H2O2+NAC: -5.5%; H2O2+ALA: -3.3%
p < 0:0001). In contrast, H2O2 decreased GSH-Px activity
with nonsignificant elevation in the group treated with
H2O2+PHG (PHG: -10.3%; H2O2: -55.8% p < 0:001; H2O2
+PHG: +30.7%; H2O2+NAC: +2.6%; H2O2+ALA: +15.4%).
H2O2 significantly increased the GSSG concentration which
was normalised by all analyzed antioxidants (H2O2: +52.8%
p < 0:001; H2O2+PHG: -18.7%; H2O2+NAC: -37.9%; H2O2
+ALA: -13.5% p < 0:0001). GSH/GSSG ratio was decreased
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by H2O2 and normalised by NAC and ALA (H2O2: -94.1%
p < 0:05; H2O2+NAC: +58.3% p < 0:0001; H2O2+ALA: +6%
p < 0:01). The H2O2+PHG group generated a rise of GR
activity, in opposition to the group with H2O2 only, in which
we noted low activity of GR (PHG:+6.9%; H2O2: -43.1% p
< 0:05; H2O2+PHG: +61.7% p < 0:01; H2O2+NAC: +2.1%;
H2O2+ALA: +38.7%). CAT activity was significantly
increased only by incubation with H2O2 (PHG: +35.1%;
H2O2: +61% p < 0:05; H2O2+PHG: +30.6%; H2O2+NAC:
+54.5%; H2O2+ALA: +49.3%). PHG, NAC, and ALA
together with H2O2 decreased the SOD level (PHG: -12%;

H2O2: -2%; H2O2: +PHG: -31.4% p < 0:01; H2O2+NAC:
-38% p < 0:0001; H2O2+ALA: -46.1% p < 0:0001)
(Figure 3).

2.3. ROS Production and Nitrosative Stress. For the evaluation
of ROS production rate, we determined the NADPH oxidase
activity (NOX), which is the main prooxidative enzyme
responsible for the formation of free radicals in the cell. For
the assessment of nitrosative stress, we used both nitric oxide
(NO) and peroxynitrite (the most reactive form of RNS
(reactive nitrogen species)).
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Figure 1: The effect of PHG on cell viability and steatosis. (a, c) PHG was nontoxic, both referring to the control and H2O2 in concentrations
below 200 μM and dose-dependently lowered cell viability in concentrations above 200 μM. (b) H2O2 showed a dose-dependent effect on cell
viability with GI50 around 10mM. (d) Immunofluorescence staining of active Caspase 3 (A: control group; B: NAFLD; C: PHG; D: NAFLD
+PHG). (e) Oil Red O staining of HepG2 cells (A: control group; B: NAFLD; C: PHG; D: NAFLD+PHG).
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2.3.1. NAFLD Model. Both NOX and peroxynitrite were
markedly elevated in the NAFLD group (PHG: -26.2%;
NAFLD: +103.6% p < 0:0001; NAFLD+PHG: +13.8%;
NAFLD+NAC: -5.4%; NAFLD+ALA: -3.1%) (PHG: +22%;

NAFLD: +98.3% p < 0:0001; NAFLD+PHG: +39.4%;
NAFLD+NAC: +14.2%; NAFLD+ALA: +17.4%) as com-
pared to the control. NO level was significantly lower in the
NAFLD and NAFLD+PHG groups (PHG: -4.3%; NAFLD:
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Figure 2: Antioxidant defense in the NAFLD model. The activity of the enzymatic and nonenzymatic antioxidants in HepG2 cell cultures
incubated with phloroglucinol (PHG), palmitate (NAFLD), both PHG and NAFLD, and palmitate with other known antioxidants: N-
acetylcysteine (NAFLD+NAC) and alpha-lipoic acid (NAFLD+ALA). (a) Phloroglucinol alone decreased the concentration of total
glutathione; however, no effect was observed in the group incubated with palmitate and PHG together. (b–d) PHG similarly to other
antioxidants normalised the level of reduced and oxidized glutathione but not the GSH/GSSG ratio. (e) The intensity of glutathione
peroxidase activity (GSH-Px) was markedly elevated in the NAFLD+PHG group. (f) The activity of catalase (CAT) was significantly
higher in the NAFLD+PHG group compared to other groups. (g) PHG increased the activity of glutathione reductase (GR) in lipid
overload state (NAFLD+PHG). (h) PHG exerted no effect on superoxide dismutase compared with the control; however, the difference
was significant between the NAFLD, PHG, and NAFLD+PHG groups.
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-46.7% p < 0:0001; NAFLD+PHG: -37.5% p < 0:001)
(Figure 4).

2.3.2. H2O2 Model. Incubation with H2O2 resulted in sub-
stantially increased creation of peroxynitrite (PHG: -26.2%;
H2O2: +161.2% p < 0:0001; H2O2+PHG: +40.7% p < 0:01;
H2O2+NAC: +27%; H2O2+ALA: +10.5%) as well as elevated
activity of NOX (PHG: +22%; H2O2: +150.6% p < 0:0001;

H2O2+PHG: +67.8%; H2O2+NAC: +48.8%; H2O2+ALA:
+36.7%). Concentration of NO was lowered in groups incu-
bated with H2O2, H2O2+PHG, and H2O2+NAC (PHG:
-4.3%; H2O2: -28.3% p < 0:05; H2O2+PHG: -30.8% p < 0:01;
H2O2+NAC -36.8% p < 0:001) (Figure 4).

2.4. Protein Glycooxidative Damage. For the evaluation of
protein glycooxidation products, we used oxidative modified
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Figure 3: Antioxidant defense in the H2O2 model. The activity of the enzymatic and nonenzymatic antioxidants in HepG2 cell cultures
incubated with phloroglucinol (PHG), hydrogen peroxide (H2O2), both PHG and H2O2, and hydrogen peroxide with other known
antioxidants: N-acetylcysteine (H2O2+NAC) alpha-lipoic acid (H2O2+ALA). (a) The concentration of total glutathione (GSH) was slightly
lowered only in the H2O2+PHG group. (b–d) PHG similar to other antioxidants normalised the level of reduced and oxidized glutathione
but not the GSH/GSSG ratio. (e, f) Phloroglucinol significantly increased the activity of glutathione peroxidase (GSH-Px) decreased by
H2O2. The exposure to H2O2 stimulated the activity of catalase (CAT). (g) The activity of glutathione reductase (GR) was intensified by
phloroglucinol in the NAFLD+PHG group. (h) Phloroglucinol and other antioxidants decreased the activity of superoxide dismutase in
NAFLD conditions.
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amino acids (dityrosine, kynurenine, N-formylkynurenine,
and tryptophan) and advanced oxidation protein products
(AOPP), as well as beta-amyloid formation.

2.4.1. NAFLD Model. Incubation with PA resulted in signifi-
cantly higher dityrosine (PHG: +12.2%; NAFLD: +126.5% p
< 0:0001; NAFLD+PHG: +47.8% p < 0:01, NAFLD+NAC:
+9%; NAFLD+ALA: +17.1%), kyneurenine (PHG: -25.3%;
NAFLD: +29.8% p < 0:05; NAFLD+PHG: +10.5%, NAFLD
+NAC: -7.6%; NAFLD+ALA: -40.9% p < 0:001), N-
formylkynurenine (PHG: -34.2% p < 0:01; NAFLD: +60.8%
p < 0:0001; NAFLD+PHG: +27.8% p < 0:05; NAFLD+NAC:

+17.1%, NAFLD+ALA: +46.3% p < 0:001), AOPP (PHG:
-13.7%; NAFLD: +58.6% p < 0:0001; NAFLD+PHG: +9.5%;
NAFLD+NAC: +2.8%, NAFLD+ALA: +5.7%), and amyloid
cross structure formation (PHG: -4.3%; NAFLD: +65.8%
p < 0:0001; NAFLD+PHG: +279.5%; NAFLD+NAC:
+28.6%, NAFLD+ALA: +42.5% p < 0:01). Additionally,
formation of dityrosine and AOPP was significantly higher
in the NAFLD group than in other groups. Tryptophan
levels were found to be lower in the NAFLD-treated group
(PHG: +7%; NAFLD: -29.4% p < 0:05; NAFLD+PHG:
-12.2%; NAFLD+NAC: -8.8%, NAFLD+ALA: -1%)
(Figure 5).
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Figure 4: Concentration of the nitrosative stress products in HepG2. Cell cultures incubated with (first row) phloroglucinol (PHG), palmitate
(NAFLD), both PHG and NAFLD, or palmitate with other known antioxidants: N-acetylcysteine (NAFLD+NAC) and alpha-lipoic acid (NA-
FLD+ALA); (second row) phloroglucinol (PHG), hydrogen peroxide (H2O2), both PHG and H2O2, and hydrogen peroxide with other known
antioxidants: N-acetylcysteine (H2O2+NAC) alpha-lipoic acid (H2O2+ALA). (a, c, d, f) The concentration of NADPH oxidase (NOX) and
peroxynitrite was elevated significantly in NAFLD and H2O2 groups, respectively. (b, e) The concentration of nitric oxide was lower in the
NAFLD and H2O2 groups.
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2.4.2. H2O2 Model. Levels of dityrosine (PHG: +12.2%; H2O2:
+133.2% p < 0:0001; H2O2+PHG: +42.4%; H2O2+NAC:
+4.7%; H2O2+ALA: +27.1%) and AOPP (PHG: -13.7%;
H2O2: +95.4% p < 0:0001; H2O2+PHG: +45.8% p < 0:01;
H2O2+NAC: +37% p < 0:05; H2O2+ALA: +43.6% p < 0:01)
were substantially elevated in the group exposed to H2O2.
By comparison, concentration of tryptophan in the same
group was moderately but significantly lower compared to
that in the control (PHG: +7%; H2O2: -31.4% p < 0:05;
H2O2+PHG: -10.5%; H2O2+NAC: -11.6%; H2O2+ALA:
-15.2%). N-formylkynurenine level was decreased in the
PHG group and significantly elevated in other examined
groups (PHG: -34.2% p < 0:01; H2O2: +70.4% p < 0:0001;
H2O2+PHG: +50.4% p < 0:0001; H2O2+NAC: +37.9% p <
0:01; H2O2+ALA: +45.5% p < 0:001). There was no effect
on the amyloid cross structure observed (PHG: -4.3%;
H2O2: +11.8%; H2O2+PHG: +16.1%; H2O2+NAC: -15.2%;
H2O2+ALA: -4.7%) (Figure 6).

2.5. Lipid and Carbonyl Damage. We assessed the oxidative
damage to lipids by evaluating the concentration of malon-
dialdehyde (MDA) and lipid hydroperoxides (LOOH). To
assess carbonyl stress, we used advanced glycation end prod-
ucts (AGE).

2.5.1. NAFLD Model. It was revealed that LOOH and MDA
levels were substantially increased in the group exposed to
PA (PHG: -17.6%; NAFLD: +66.8% p < 0:0001; NAFLD
+PHG: -6.7%, NAFLD+NAC: -11.3%, NAFLD+ALA:
-3.8%) (PHG: +6.5%; NAFLD: +64.7% p < 0:0001; NAFLD
+PHG: +15.7%, NAFLD+NAC: +5.7%, NAFLD
+ALA:+1.7%) whereas AGE levels rose in NAFLD, NAFLD
+PHG, NAFLD+NAC, and NAFLD+ALA groups (PHG:
-1.2%; NAFLD: +144.8% p < 0:0001; NAFLD+PHG:
+71.7% p < 0:0001; NAFLD+NAC: +55.3% p < 0:01;
NAFLD+ALA: +67.2% p < 0:001) as compared to the control
(Figure 7).

2.5.2. H2O2 Model. In comparison to the control, LOOH and
MDA levels were increased significantly in the group treated
with H2O2, H2O2+PHG, H2O2+NAC, and H2O2+ALA
(PHG: -17.6%; H2O2: +123.2% p < 0:0001; H2O2+PHG:
+51.4% p < 0:01; H2O2+NAC: +39.7% p < 0:05; H2O2
+ALA: +56.2% p < 0:01) (PHG: +6.5%; H2O2: +122.8% p <
0:0001; H2O2+PHG: +71% p < 0:0001; H2O2+NAC: +72.5%
p < 0:0001; H2O2+ALA: +69.9% p < 0:001) while significant
growth in AGE levels was registered in H2O2, H2O2+NAC,
and H2O2+ALA sets (PHG: -1.2%; H2O2: +199.1% p <
0:0001; H2O2+PHG: +39.8%; H2O2+NAC: +71.7% p < 0:05;
H2O2+ALA: +79.5% p < 0:01) (Figure 7).

2.6. Inflammation, Hypoxia, and Apoptosis. The expression
of proteins involved in the inflammatory and apoptotic path-
ways was assessed only in the main experimental and
NAFLD model. PHG, both alone and combined with PA,
decreased significantly the HIF-1α level compared to the
control (PHG: -57.8%, PA+PHG: -28.3%; p < 0:05). What is
more, we found that PA incubation increased NF-κB expres-
sion (PA: +80%; p < 0:05), which was normalised when PHG
was added to the steatotic medium (PA+PHG: -100.4%; p

< 0:01). PHG also selectively inhibited COX-1 (PHG:
-66.8%; p < 0:01) but did not significantly affect COX-2
(Figure 8). Furthermore, both PHG and PA increased TNFα
levels in the incubation media (PA: +9.4%; PHG: +12.8%, PA
+PHG: +24.2%; p < 0:05). PHG significantly lowered PA
induced elevation of Il-1β (PA: +32.4%, p < 0:0001; PA
+PHG: +10.3%, p < 0:001) and Il-6 (PA: +23.2%, p < 0:01;
PA+PHG: +5.2%, p < 0:05) (Figure 9). It was revealed that
PA activated Caspase 9 (PA: +59.4%; p < 0:01) and Caspase
3 (PA: +83.7%; p < 0:0001), which was normalised when
PHG was added to the incubation media (PA+PHG:
-25.5%; p < 0:05) (Figure 8).

3. Discussion

This is the first study to assess the effect of PHG on redox
homeostasis and oxidative/nitrosative damage in HepG2
cells treated with palmitic acid and hydrogen peroxide. We
have shown that PHG strengthens the enzymatic and nonen-
zymatic antioxidant barrier and prevents oxidative/nitrosa-
tive stress comparable to other commonly used
antioxidants. Additionally, PHG reduces inflammation and
apoptosis in the NAFLD model (Figure 10).

NAFLD is one of the most underestimated diseases in the
XXI century. Despite its severe aftermaths, such as T2DM,
obesity, liver cirrhosis, and HCC, commonly occurring in
the developed countries, it still does not have an acknowl-
edged and efficient treatment method [26, 27]. What is more,
NAFLD, as a root cause of liver cirrhosis and HCC, became
one of the main reasons for liver transplantation in countries
with western dietary pattern [28]. NAFLD’s clinical signifi-
cance in creating its long-term effects may be explained by
the “two-hit” theory [29]. Following this theory, the first hit
is related to excessive lipid accumulation in the liver, mostly
due to an unbalanced diet and overnutrition, resulting in
hepatocyte steatosis. The second hit is represented by the
lipotoxicity of accumulated lipids, leading to increased oxida-
tive stress, impaired metabolic function, inflammatory pro-
cess, and NASH development [30]. Indeed, the critical role
of redox imbalance in the pathogenesis of fibrosis and steato-
sis in NAFLD patients has recently been highlighted [31].
Interestingly, there is a significant overproduction of hepatic
hydrogen peroxide and progressive depletion of glutathione
reserves in NAFLD patients, leading to enhanced protein
and lipid oxidative injury. That is why finding new
approaches to fight NAFLD and introducing them into clin-
ical practice seems to be crucial to prevent the development
of liver steatosis aftermath. So far, numerous compounds,
such as resveratrol, quercetin, enterolactone, vitamin E,
ALA, or NAC, have been tested for that purpose [27, 32–
36]. However, despite promising results in vitro, most of
the polyphenols have very poor bioavailability in humans,
and some have numerous side effects that limit their clinical
usability. Thus, in our study, we focused on PHG, a phenolic
antioxidant characterized by excellent pharmacokinetics,
which may be found in seaweeds such as Ecklonia cava or
Cystoseira discors [22, 37, 38]. PHG was discovered in 1855,
yet it was not used in applications other than as an antispas-
modic drug. It has a similar structure to resveratrol, and as we
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show herewith, similar to it, PHG decreases liver steatosis,
strengthens antioxidative barriers, and reduces inflamma-
tion. In the following study, we assessed properties of PHG
both in NAFLD and in hydrogen peroxide model and com-
pared its effects with routinely used antioxidants—NAC
and ALA.

In NAFLD, the excesses of saturated fatty acids, especially
palmitic acid, accumulated in the liver inducing oxidative
stress due to impaired mitochondrial β-oxidation and the
generation of lipotoxic intermediates such as ceramides,
diacylglycerols, and lysophosphatidylcholine [30]. A signifi-

cant source of oxidative stress at NAFLD is the overproduc-
tion of hydrogen peroxide, so we decided on a second
experimental model in our study. 50% growth inhibition
(GI50) of H2O2 equal to around 10mM was obtained in the
MTT test. PHG was nontoxic to HepG2 cells in concentra-
tions below 200μM. It reduced visible lipid accumulation
and decreased the active form of Caspase 3 in the palmate-
induced steatosis model (Figure 1). Since overproduction of
ROS and reduced antioxidant defense are among the effects
of excessive lipid accumulation in the liver, we analyzed the
cellular content of enzymatic and nonenzymatic antioxidants
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Figure 5: Protein glycooxidation damage in the NAFLD model. The concentration of the protein damage products in HepG2 cell cultures
incubated with phloroglucinol (PHG), palmitate (NAFLD), both PHG and NAFLD, and palmitate with other known antioxidants: N-
acetylcysteine (NAFLD+NAC) and alpha-lipoic acid (NAFLD+ALA). (a, b, e, f) The content of dityrosine, kynurenine, advanced
oxidation protein products (AOPP), and the amyloid cross structure was increased significantly only in the NAFLD group. (c) The
concentration of N-formylkynurenine was significantly elevated in the NAFLD group with a slight increase in the NAFLD+PHG group
compared to the control (d). Concentration of tryptophan was decreased after incubation in NAFLD conditions compared with those of
the control and PHG groups.
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[13, 14]. The exposure to both palmitate and H2O2 resulted
in a decreased level of reduced glutathione (GSH), which is
the major nonenzymatic antioxidant in the liver [14, 39].
The addition of antioxidants is accompanied by an increase
of enzymes involved in the restoration of a reduced form of
glutathione (GR, GSH-Px) and other enzymatic antioxidants
such as SOD and CAT. These effects were observed in both
experimental models with a slight predominance of the
NAFLDmodel. Interestingly, within all analyzed compounds
(NAC, ALA, and PHG), PHG had the most decisive influ-
ence on the enzymatic antioxidant barrier (Figures 2 and
3). Only the increase in GSH level and redox ratio was signif-
icantly lower compared to NAC and ALA. However, this
should not come as a surprise because the latter are direct

precursors to glutathione biosynthesis. This is particularly
important because NAC and ALA have a proven therapeutic
effect in NAFLD therapy. However, their limited use is due to
the need to administer very high doses (up to 0.5 g per kg of
body weight), causing numerous side effects [35, 40].
Although it is difficult to predict the side effects of PHG with-
out human studies, we do not know any of the harmful
actions of this compound. As far as enzymatic and nonenzy-
matic antioxidants are concerned, our observations are con-
sistent with Quéguineur et al., who analyzed the dose-
dependent effects of PHG on tert-butyl hydroperoxide-
induced oxidative stress [41]. Despite the differences in used
concentrations and experimental models, this seems to con-
firm the beneficial role of PHG in strengthening the liver
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Figure 6: Protein glycooxidation damage in the H2O2 model. The concentration of the protein damage products in HepG2 cell cultures
incubated with phloroglucinol (PHG), hydrogen peroxide (H2O2), both PHG and H2O2, and hydrogen peroxide with other known
antioxidants: N-acetylcysteine (H2O2+NAC) alpha-lipoic acid (H2O2+ALA). (a–c, f) The content of dityrosine, kynurenine, N-
formylkynurenine, and advanced oxidation protein products (AOPP) was raised in the H2O2 group only. (d) The content of tryptophan
was significantly lower in the H2O2 group compared to the control and PHG. (e) No differences in the concentration of amyloid cross
structure between groups were observed.
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antioxidant defense. On the other hand, PHG, in contrast to
myricetin and pyrogallol, failed to increase antioxidant
defense in yeast Saccharomyces cerevisiae what might suggest
an animal-specific effect of PHG [42]. Although we did not
assess the rate of hydrogen peroxide production, probably,
the observed increase in GSH-Px and CAT activity does not
result from the adaptive reaction to the increased formation
of H2O2 by phloroglucinol. Previous studies showed that
PHG elevates CAT activity and its protein expression, while
CAT inhibitor abolished the protective effect of PHG from
H2O2-induced cellular damage [43].

In animals, the primary source of ROS generation in
physiological conditions is β-oxidation. However, in

NAFLD, lipotoxic intermediates created by the incomplete
oxidation of acyl-carnitine may also constitute an additional
source of ROS [14]. Liver steatosis and exposure to H2O2
may also activate membrane NADPH oxidase (NOX), which
catalase the process of superoxide anion formation [44].
Under these conditions, NO is also synthesized by inducible
NO synthase (iNOS). iNOS is present in the liver and may be
upregulated due to steatosis, cirrhosis, and liver cholestasis
[45, 46]. Interestingly, the interaction of superoxide anions
with NO results in highly reactive peroxynitrite, which might
explain lowered NO concentration in experimental models.
Indeed, peroxynitrite is one of the strongest prooxidizing fac-
tors in living organisms [47, 48]. Peroxynitrite and its
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Figure 7: Lipid and carbonyl damage. The concentration of the lipid and carbonyl damage products in HepG2 cell cultures incubated with
(first row) phloroglucinol (PHG), palmitate (NAFLD), both PHG and NAFLD, and palmitate with other known antioxidants: N-
acetylcysteine (NAFLD+NAC) and alpha-lipoic acid (NAFLD+ALA); (second row) phloroglucinol (PHG), hydrogen peroxide (H2O2),
both PHG and H2O2, and hydrogen peroxide with other known antioxidants: N-acetylcysteine (H2O2+NAC) alpha-lipoic acid (H2O2
+ALA). (a–f) Concentration of total hydroperoxides (LOOH), malondialdehyde (MDA), and advanced glycation end products (AGE) was
markedly elevated only in groups incubated in NAFLD and H2O2 conditions alone.
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derivatives react both with amino acids (including tyrosine,
cysteine, and tryptophan), lipids, and several antioxidants.
Peroxynitrite causes the formation of carbonyl groups,
dimerization, nitration, and nitrosylation of amino acids

and thiol compounds [48–50]. It was shown that nitrosative
stress plays a critical role in various pathological conditions
such as cardiovascular diseases, liver cirrhosis, diabetes, or
cancer [22, 51]. In our experiment, we observed that all
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Figure 8: Inflammation, hypoxia, and apoptosis. PHG significantly reduced HIF-1α level (a) and PA induced NF-κB activation (b) in HepG2
cells. Furthermore, it selectively inhibited COX-1 (c) with no effect on COX-2 (d). PHG stimulated Caspase 9 (e) and inhibited steatosis-
induced activation of Caspase 3, showing its antiapoptotic properties (f). The expression of proteins involved in the inflammatory process
assessed in Western blot (g). The band intensity was calculated as a % of control.
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analyzed antioxidants presented a similar ability to diminish
nitrosative stress both in the NAFLD and H2O2 models
(Figure 4).

Once we established the antioxidant status and the level
of the primary oxidative stress sources, we wanted to verify
if PHG could prevent the formation of oxidative damage
products. One of the most commonly used markers of overall
protein damage is AOPP, which is created in interaction with
chlorinated oxidants [52]. AOPP, similarly to MDA, CAT,
and serum lipids, have been used recently to create a multi-
marker test aimed at improving the early identification of
NAFLD and prediabetic patients [53]. As depicted in
Figures 5 and 6, all analyzed compounds were efficient in
decreasing AOPP. The increase of AOPP in experimental
models can correspond with the lowered cellular GSH level
(Figures 2 and 3) which suggests that protein oxidation in
the liver is a result of a diminished antioxidant barrier [54].
Other commonly used markers of ROS generated protein
damage are oxidized forms of tryptophan: N-
formylkynurenine and kynurenine. N-formylkynurenine
results from posttranslational oxidation of tryptophan, which
may be further converted into kynurenine [55]. ALA was the

most potent among tested antioxidants in diminishing
kynurenine, while PHG and NAC were more efficient in low-
ering the level of N-formylkynurenine (Figures 5 and 6). Fur-
thermore, we evaluated the level of dityrosine; a ROS-
modified amino acid responsible for amyloid cross-linking,
and the generation of Aβ plaques [56]. Both exposures to pal-
mitate and H2O2 resulted in a significant increase of dityro-
sine, which was normalised in the presence of antioxidants.
Interestingly, elevated amyloid cross structure content was
observed only in the NAFLD model and partly decreased
due to PHG and NAC action (Figures 5 and 6). Finally, we
assessed the lipid and carbonyl damage products. Similar to
proteins, both NAFLD and H2O2 caused a steep increase of
oxidized forms of lipids such as MDA or LOOH and the ele-
vation of glycation end products that were efficiently lowered
when PHG, NAC, or ALA were added to the incubation
media (Figure 7). Reducing the oxidation/nitrosylation of
liver proteins and lipids may slow down the progression of
NAFLD. It is well known that the increase in protein and
lipid glycation is responsible for the development of ischemia
and hepatic fibrosis, and thus, the progression of NAFL to
NASH [14–57]. The accumulation of AGE and AOPP in
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Figure 9: Proinflammatory cytokines. The TNFα concentration in the incubation media was slightly elevated in all the experimental groups
when comparing to the control (a). Cell steatosis significantly increased the media level of main proinflammatory interleukins: Il-1β and Il-6
which were normalised when PHG was added (b, c).
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the liver not only will increase the production of ROS
(through NOX induction in the positive feedback mecha-
nism) but also increases the expression of Fas ligand (protein
from tumor necrosis factor (TNF) family) and activates the
NF-κB transcription factor (nuclear factor kappa-light-
chain-enhancer of activated B cells), which stimulates neu-
trophil chemotaxis in the hepatocytes [31, 58] In our study,
PHG, by strengthening the antioxidant barrier, not only
reduces ROS production and oxidative/glycooxidation dam-
age to proteins and lipids but also prevents excessive nitrosy-
lation of the cell.

To assess the influence of PHG on inflammation and cell
survival, we analyzed the expression of key proteins involved
in apoptosis. As depicted in Figures 1 and 8, PHG revealed
antiapoptotic properties by inhibiting the caspase cascade
in the steatotic liver. The drop in Caspase 3 activity corre-
sponded to lowered HIF-1α which might explain increased
HepG2 survival. HIF-1α upregulates FOXO3, which is
responsible for promoting Bax over Bcl-2 signaling [59]. In
contrast to antiapoptotic Bcl-2, Bax opens voltage-
dependent anion channels and creates pores in the mito-
chondrial outer membrane that initiate apoptosis [60].
Another interesting observation was a PHG-induced down-
regulation of NF-κB, a key regulator of proinflammatory sig-
naling (Figure 8). As a result of its activation, NF-κB raises
the TNFα level and stimulates iNOS, and COX-2 leads to
proinflammatory prostaglandins and NO [61]. Despite the
lack of statistically significant changes in COX-2, PHG inhib-
ited COX-1 which may suggest its selectivity towards this iso-
zyme (Figure 8). Nevertheless, the increased NO synthesis
and inflammation results in oxidative/nitrosative stress and
the creation of ROS and RNS, which weakens the antioxida-
tive defense, and results in elevated protein accumulation,
lipid, and carbonyl damage products. Finally, NF-κB may
also induce HIF-1α expression as a downstream effect of
the PI3K-Akt-NF-κB signaling pathway [62].

Our study confirms previous reports on the antioxidant
properties of PHG. Indeed, it was shown that PHG protected
human HaCaT keratinocytes against ultraviolet B- (UVB-)
induced oxidative stress by scavenging intracellular ROS pro-
duction [63]. PHG also decreased serum glucose level and
formation of AGE in streptozotocin-induced diabetic rats
[64]. Reduced oxidative stress under the influence of PHG
was also noted in endothelial, neuronal, retinal, and neoplas-
tic cells, which indicates the possibility of PHG as a promis-
ing therapeutic agent in several diseases [65–68]. A good
pharmacokinetic profile and few PHG side effects are the
additional advantages of this compound. However, as the
mechanism of the antioxidant/antiglycation effect of PHG
is not yet exactly known, further research is needed.

Nevertheless, our manuscript also has some limitations.
We have evaluated the effect of PHG only on HepG2 cells,
so further studies on other cell lines are necessary. Further-
more, we have only assessed selected oxidative/nitrosative
stress biomarkers, so we cannot fully characterize the effect
of PHG on NAFLD redox homeostasis. The next step is also
to evaluate the therapeutic effect of PHG on the animal
model and choose the dose characterizing the maximum
therapeutic effect.

4. Conclusions

To sum up, our study showed that NAFLD and hydrogen
peroxide models are comparable and suitable for assessing
the oxidative/nitrosative stress in the liver. Although our
study does not fully explain the PHG action’s mechanism,
this compound may be considered a new nutraceutical in
counteracting NAFLD and preventing its severe molecular
and clinical aftermath. Its effectiveness is comparable with
other renowned antioxidants α-lipoic acid and N-acetylcys-
teine, which brings a promising perspective for the therapeu-
tical application of phloroglucinol. The potential mechanism
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underlying oxidative/nitrosative stress in NAFLD are
depicted on Figure 10.

5. Materials and Methods

5.1. Cell Culture. The study was conducted on HepG2 cells
obtained from ATCC (American Type Culture Collection).
The cells were incubated in DMEM (Dulbecco’s modified
Eagle’s medium) enriched with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin for five days at 37°C
in a humidified atmosphere containing 5% of CO2 until they
will reach a confluence of 70%. The media were changed
every 48 h preceded by rinsing in PBS. Subsequently, cells
were transferred to 6-well plates and cultured in the growth
medium until they achieved 90% of confluence. Then exper-
imental incubations were conducted. Subsequently, cells
were scrubbed in ice-cold RIPA buffer containing protease
and phosphatase inhibitors (Roche Diagnostics GmbH, Ger-
many) and ultrasonicated (Hielscher UP50H, Germany).

5.2. Experimental Models. To induce steatosis, cells were
serum-starved for five h in a medium deprived of glucose
and then incubated for 16h in media containing either
0.75mM palmitate alone or both PA and experimental com-
pounds: 100μM PHG or 100μM ALA or 10μM NAC.
Sodium palmitate was dissolved in absolute ethanol and
heated to 70°C before conjugation with 10% fatty acid-free
bovine serum albumin (BSA). Subsequently, the palmitic
acid solution was added to serum-free DMEM supplemented
with 10mM Hepes, similarly to previously described
methods [26, 27, 69]. The H2O2 model was prepared simply
by adding an appropriate amount of hydrogen peroxide to
the standard growth medium. Sigma-Aldrich, Poland, pro-
vided all the compounds.

5.3. Redox Homeostasis. The performed analyses included
determination of antioxidant enzymes [catalase (CAT), glu-
tathione peroxidase (GSH-Px), glutathione reductase (GR),
and superoxide dismutase (SOD)] and nonenzymatic antiox-
idants [GSH], determination of prooxidant enzymes
(NADPH oxidase, NOX), determination of oxidative damage
to proteins [advanced glycation end products (AGE) and
advanced oxidation protein products (AOPP)] and lipids
[malondialdehyde (MDA) and total lipid hydroperoxides
(LOOH)], and determination of protein glycooxidative prod-
ucts [dityrosine, kynurenine, N-formylkynurenine, and tryp-
tophan], as well as the determination of nitrosative stress
products [nitric oxide (NO) and peroxynitrite]. The absor-
bance/fluorescence was analyzed using the Infinite M200
PRO Microplate Reader (Tecan, Männedorf, Switzerland).
All results were standardized to mg of the total protein. In
the analysis of redox homeostasis and oxidative damage
products, we followed the methods of Maciejczyk et al. [70].

5.4. Enzymatic and Nonenzymatic Antioxidants. The activity
of catalase (CAT, EC 1.11.1.6) was estimated using the color-
imetric method by measuring hydrogen peroxide (H2O2)
decomposition at 240nm [71, 72]. One unit of CAT activity
was defined as the quantity of the enzyme catalyzing decom-
position of 1mmol H2O2 per 1min. The activity of glutathi-

one peroxidase (GSH-Px, EC 1.11.1.9) was analyzed
colorimetrically by measuring the NADPH oxidation at
340 nm [73]. One unit of GPx activity was defined as the
quantity of enzyme catalyzing the oxidation of 1mmol
NADPH per 1min. The activity of glutathione reductase
(GR, EC 1.8.1.7) was analyzed colorimetrically by measuring
the decrease in NADPH absorbance at 340nm [74]. One unit
of GR activity was defined as the amount of enzyme catalyz-
ing the oxidation of 1μmol NADPH per 1min. The activity
of superoxide dismutase (SOD, EC 1.15.1.1) was determined
colorimetrically by measuring the inhibition of adrenaline
oxidation at 480nm [71]. One unit of SOD activity was
defined as the quantity of enzyme inhibiting adrenaline oxi-
dation by 50%.

The level of total glutathione was measured based on an
enzymatic reaction with 5,5′-dithiobis-(2-nitrobenzoic acid)
(DTNB), NADPH, and GR [75]. Oxidized glutathione (disul-
fide glutathione, GSSG) was determined similarly to the assay
performed for total glutathione. However, prior to the deter-
mination, the samples had been thawed and neutralized to
pH6–7 using 1M chlorhydrol triethanolamine. Then, sam-
ples were incubated with 2-vinylpyridine. The level of
reduced glutathione (GSH) was calculated from the differ-
ence between the level of total glutathione and disulfide glu-
tathione [75]. Redox ratio was calculated using the formula
[GSH]2/[GSSG] [76].

5.5. ROS Production and Nitrosative Stress. NADPH oxidase
activity (NOX, EC 1.6.3.1) was analyzed by the luminescence
method using lucigenin as an electron acceptor [77, 78]. One
unit of NOX activity was defined as the quantity of enzyme
required to release 1 nmol of the superoxide anion per
1min. The cells used for ROS production measurements
were cultured in pyruvate and antibiotic-free media.

The concentration of nitric oxide (NO) was determined
using the Griess method based on the reaction of nitrates
with sulfanilamide and N-(1-naphthyl)-ethylenediamine
dihydrochloride [79, 80]. The absorbance was measured at
490 nm. The concentration of peroxynitrite was estimated
colorimetrically based on peroxynitrite-mediated nitration
of phenol to nitrophenol [81]. The absorbance was measured
at 320nm.

5.6. Protein Glycooxidation Products. The content of protein
glycooxidation products (dityrosine, kynurenine, N-for-
mylkynurenine, and tryptophan) was estimated fluorimetri-
cally by measuring fluorescence at 330/415 nm (dityrosine),
365/480 nm (kynurenine), 325/434 nm (N-formylkynure-
nine), and 95/340nm (tryptophan). Immediately before the
assay, cells were diluted in 0.1M H2SO4 (1 : 10, v/v). The
results were normalised to fluorescence of 0.1mg/mL quinine
sulfate in 0.1M H2SO4 [54]. The concentration of advanced
oxidation protein products (AOPP) was estimated colorimet-
rically by measuring the sample’s iodide ion oxidizing capac-
ity at 340 nm [10].

5.7. Lipid and Carbonyl Damage. The concentration of total
hydroperoxides (LOOH) was determined colorimetrically
based on the reaction of Fe3+ (resulting from Fe2+ after its
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oxidation by LOOH) with xylenol orange [82]. The absor-
bance of the resulting complex was measured at 560nm.
Immediately before the assay, cells were diluted in 0.02M
PBS, pH7.4 (1 : 5, v : v) [71]. The concentration of malondial-
dehyde (MDA) was determined colorimetrically using the
thiobarbituric acid reactive substances (TBARS) method.
The absorbance was measured at 535nm, and 1,3,3,3-tetra-
ethoxypropane was used as a standard [83]. The concentra-
tion of advanced glycation end products (AGE) was
detected fluorimetrically by measuring AGE-specific fluores-
cence at 350/440 nm [84]. Immediately before the assay, cells
were diluted in 0.02M phosphate-buffered saline (PBS)
pH7.4 (1 : 5, v : v) [83].

5.8. In Situ Immunofluorescence. Approximately 106 cells
were seeded on a 12-well plate and grown overnight. The
next day, cells were treated in the same manner as cells from
the main part of the experiment. At the end of 16h, experi-
mental incubation cells were rinsed with PBS and fixed in
3.7% paraformaldehyde for 15min, permeabilized with
0.1% Triton X-100 for 20min, and blocked with 2% FBS
1% BSA in PBS for 30min at room temperature. Subse-
quently, cells were incubated with the primary monoclonal
anticleaved Caspase 3 antibody (1 : 200, Abcam, UK) and
then with the secondary goat-anti-rabbit antibody conju-
gated with Alexa Fluor 488 (1 : 1000, Abcam, UK) both for
1 h at room temperature. Finally, cell nuclei were counter-
stained with DAPI (1 : 5000, Sigma-Aldrich). The images
were obtained with a fluorescent microscope (Leica DMi8,
Germany).

5.9. Oil Red O Staining. Approximately 106 cells were seeded
on a 12-well plate and grown overnight. The next day, cells
were treated in the same manner as cells from the main part
of the experiment. After experimental treatment, cells were
fixed in 3.7% paraformaldehyde for 15min and then stained
with 0.5%Oil Red O solution. The images were obtained with
a fluorescent microscope (Leica DMi8, Germany).

5.10. Western Blotting. Proteins of interest expression were
analyzed using the standardWestern blot technique. To stan-
dardize samples, total protein concentration was assessed
using the bicinchoninic acid method (BCA) with BSA as a
standard. Cell lysates were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to nitrocellulose membranes. Subsequently, they
were blocked with 5% nonfat dry milk and immunoblotted
with primary antibodies of interest and incubated with sec-
ondary antibodies labeled with horseradish peroxidase
(HRP). The protein bands were quantified densitometrically
using the ChemiDoc visualisation system (Bio-Rad, Poland).
Equal protein loading was controlled by Ponceau S staining.
All the proteins’ expression was standardized to the GAPDH
(Santa Cruz Biotechnology, USA) expression, and the control
was set as 100%.

5.11. ELISA. TNFα, IL-1, and IL-6 concentrations were ana-
lyzed using a standard ELISA kit purchased from Abcam,
UK (TNFα) and EIAab, China (IL-1 and IL-6). All the proce-
dures were made on cell culture media samples standardized

to protein concentration following the manufacturer’s
instructions. The assay was done in triplicate, and the results
were averaged.

5.12. Statistical Analysis. The results were expressed as
mean ± SD based on six independent repetitions. Statistical
significance was tested with one-way analyses of variance
(ANOVA) and Tukey HSD post hoc test using GraphPad
Prism 7 (GraphPad Software Inc., La Jolla, CA, USA). Multi-
plicity adjusted p value was also calculated. Results were con-
sidered statistically significant at p ≤ 0:05.
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