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Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic
strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting
events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore
some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase
pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas.
Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and
radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the
findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as
well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their
derivatives.
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1. Introduction

Globally, cancer is the major cause of mortality and morbid-
ity, which can affect almost every organ in the human body
[1]. According to the WHO, 1 out of 6 persons die due to
cancer. In 2040, it will rise up to 29.4 million cancer cases
globally per year [2]. Hepatocellular carcinoma (HCC) is
one of the most lethal cancers; in men, it is the fifth, and
in women, it is the eighth foremost cause of cancer death
worldwide [3, 4]. There are several ways to inhibit liver can-
cer such as antioxidant [5], antiproliferative [6], anti-
invasive [7], apoptotic [8], antimutagenic [9], anticarcino-
genic [10], antitumor [11], and cytotoxic activity [12].

Nature is the big source of natural medicine and com-
pounds derived from plants, animals, marines, and microbes
[13–18]. Among them, plants provide many novel antican-
cer compounds [19] such as alkaloids [20, 21], flavonoids
[22, 23], glycosides [24], saponins, tannins [25], and terpe-
noids [26] which are found from a plant having antioxidant
and anticancer properties in a various cancer cell line, espe-
cially in a liver cancer cell line. HCC development is a mul-
tistep process that may include the alteration in host gene
expression, DNA methylation, loss of heterozygosity, and
point mutation, but still, we are lacking to determine the rate
limiting step for initiation and progression of HCC [27].

As of late, improved information on oncogenic forms
and the signaling pathways that manage tumor cell multipli-
cation, differentiation, angiogenesis, invasion, and metastasis
has prompted the recognizable proof of a few potential
restorative focuses on that have driven the advancement of
molecularly focused on treatments [28]. These medications
which act straightforwardly on segments of the signaling
pathways can control tumorigenesis and have demonstrated
clinical advantage in patients with different tumor types.
Here, we reviewed significant molecular signaling pathways
embroiled in the pathogenesis of HCC and phytochemicals
that are involved in the treatments as of now being devel-
oped and endorsed for HCC [29].

2. Signaling Pathways Involved in HCC

HCC carcinogenesis is a complex multistep process that
involves a variety of signaling cascades at the molecular level.
The major signaling pathways include vascular endothelial
growth factor (VEGF) pathway, mitogen-activated protein
kinase (MAPK/ERK) pathway, Wnt/β-catenin pathway,
phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian tar-
get of rapamycin (mTOR) signaling pathway, fibroblast
growth factor (FGF) pathway, enzymes reactions generating
ROS in liver cancers, enzymatic cycle of P450, mitochondrial
dysfunction and signaling, and serine/threonine kinase
(AKT) pathway.

2.1. VEGF Signaling Pathway. VEGF is a critical growth fac-
tor for angiogenesis during hypervascular HCC cancer
development [30]. Deep located tumor cells are required to
locate 100-200μm to acquire oxygen and nutrients for sur-
vival and proliferation. Tumor size greater than 2mm3

required angiogenesis [31]. The major members of the fam-

ily are VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PIGF,
and their potential forms include VEGF-A121 and VEGF-
A165. VEGF has three main subtypes: VEGFR-1, VEGFR-
2, and VEGFR-3. They all are embedded in the cell mem-
brane; the extracellular region has a single TM seven immu-
noglobulins like domains and an intracellular region having
a split tyrosine kinase domain [32]. They get phosphorylated
after the ligand binding that activates PLC-γ, which leads to
activate the PKC leading to the MAPK signaling pathway
and activates endothelial NO that promotes cell proliferation
and vascular permeability (Figure 1). It also activates the
Rho GTPase [33, 34].

Out of all, VEGFR-2 seems to have a significant job in
interceding practically the entirety of the known cell reac-
tions to VEGFs [35]. The initiation of VEGFR-2 prompts
endothelial cells to bring about their multiplication, reloca-
tion, expanded endurance, and advances vascular penetra-
bility, whereas VEGFR-3 is significant for the
lymphangiogenesis [36]. The articulation of VEGF mRNA
in liver tumors was found in a larger part of HCC patients.
The rule course of HCC dispersal and metastasis is through
the entry vein in the liver, and VEGF mRNA level related
well with portal vein tumor thrombus (PVTT) development
of HCC. Immunohistochemical recognized high VEGF
articulation is very much separated from HCC just as
regions encompassing the HCC tissues [37]. The most
immediate proof supporting the job of the VEGF pathway
in HCC originated from late advancement in treatment hin-
dering this pathway.

Bevacizumab (anti-VEGF monoclonal antibodies) are
being tested for HCC [38], whereas sorafenib is capable of
targeting vascular endothelial growth factor receptor 2
(VEGFR-2) and other proteins to inhibit the tumor angio-
genesis [39]. In two significant clinical trials, it has been
reported that in the late stage, sorafenib was effective in
improving the outcomes of HCC patients.

2.2. Mitogen-Activated Protein Kinase Signaling Pathway.
The mammalian mitogen-activated protein kinase (MAPK)
family has three members, extracellular signal-regulated
kinase (ERK), c-Jun NH2-terminal a kinase (JNK), and p38
that are involved in a variety of cellular activities [40].
Among them, the ERK pathway is involved in promoting
cell proliferation, migration, survival, and tumor progres-
sion. In the ERK pathway ligand bind with receptor tyrosine
kinase (RTKs), this triggers the tyrosine kinase domain acti-
vation [41]. That acts as docking sites for GRB2 and SOS
proteins. This leads to an activation cascade of small GTPase
RAS, Ser/Thr kinase RAF, and MEK [42].

ERK activation can alter the various activities of tran-
scription factors and gene expression level which leads to
alteration in cell cycle progression [43]. The phosphorylated
ERK (ERK-P) can activate c-myc that regulates cell growth
and cell proliferation (Figure 2) [44, 45]. Moreover, it also
promotes the survival of cancer cells by regulating the BIM
and MCL1 apoptotic pathways [46, 47]. The role of the
ERK pathway in HCC is confirmed by AZD6244 (MEK
inhibitors) that block cell proliferation and promote pro-
grammed cell death in liver carcinoma [48, 49].
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Another MAPK signaling pathway includes JNK (JNK-1
and JNK-2) activated by MKK-4 and MKK-7, and down-
stream substrates include c-Jun [50]. There is strong evi-
dence that JNK-1 increased histone H3 lysine 4 and 9
trimethylations, tumor size that results in the upregulation
of cell growth promoting genes [51]. Unlike ERK/JNK path-
ways, p38 are induced by MKK-3, 4, and 6 and have a sup-
pressive role in HCC [52]. The mechanism behind the p38
activity is the suppression of JNK and the negative regula-
tion of cell proliferation [53].

2.3. Wnt/β-Catenin Signalling Pathway. Wnt ligands are cell
surface ligands that play a significant role in normal liver
function. They form complexes with Frizzled receptors and
LRP-5/LRP-6 coreceptors. β-Catenin forms a complex with
various tumor suppressor proteins like APC, axin, and
Ser/Thr kinase GSK3β in which APC and axin proteins
make structural changes in GSK3β to phosphorylate β-
catenin [54]. This leads to β-catenin destruction in the cyto-
sol. Upon Wnt binding with a ligand, axin is enlisted to the

film to LPR-5, and the β-catenin demolition complex is
then inactivated [55]. This permits the unphosphorylated
β-catenin to aggregate and to move into the nucleus
(Figure 3). This β-catenin then structures a complex with
a TCF-LEF group of DNA restricting record variables to ini-
tiate the TCF-LEF target gene [56]. A significant number of
the objective gene is engaged with cell multiplication, i.e.,
cyclin D1.

Phosphorylated β-catenin binds with E-cadherin and
performs cell to cell adhesion that is a significant process in
the development of tumor metastasis. The researcher found
strong evidence of Wnt/β-catenin’s role in liver carcinoma.
Inmostof theHCCcases, the level ofβ-catenin isoverexpressed
that leads to accumulation and results in cell proliferation
and inhibiting differentiation. There are likewise considered
partner β-catenin transformations or initiation with com-
pounded HCC result, i.e., bigger tumor size, expanded vas-
cular intrusion, and point mutation or deletion [57].

Such predominant addition of work transformations
normally happens at the N-terminal phosphorylation desti-
nations on β-catenin, including the locales phosphorylated
by GSK3β that control β-catenin debasement. Changes at
these positions disturb acknowledgment by GSK3β bringing
about increasingly stable β-catenin protein. In this manner,
different reasons for β-catenin aggregation may exist [58].

It has been demonstrated that the pharmacologic
restraint of β-catenin diminishes the endurance of hepatoma
cells. Inactivation of β-catenin silencer APC prompted the
unconstrained improvement of HCC in a mice model,
recommending the immediate commitment from actuated
Wnt motioning to hepatocarcinogenesis. In any case, parts
of the Wnt pathway may speak to potential restorative inter-
cession that focuses on rewarding HCC [59].

2.4. Phosphatidylinositol-3 Kinase (PI3K) Signaling Pathway.
A phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR) signaling pathway has a class
to the large group of related kinases that have two subunits,
i.e., catalytic and regulatory. It is an intracellular signal
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Figure 1: VEGF signalling mechanism. VEGF: vascular endothelial growth factor; PLC-γ: phospholipase C gamma; PKC: protein kinase C;
MAPK: mitogen-activated protein kinase; NO: nitric oxide.
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Figure 2: Mitogen-activated protein kinase signaling mechanism.
RTK: receptor tyrosine kinase; GRB-2: growth factor receptor
bound protein-2; SOS: Son of Sevenless; RAF: rapidly accelerated
fibrosarcoma; PLC: phospholipase C; PKC: protein kinase C.
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transducer enzyme that can phosphorylate the -OH group of
phosphatidyl-inositol. The p85 is a regulatory subunit of
PI3K that can interrelate with phosphor-tyrosines on acti-
vated RTKs that recruit the ligands to the plasma membrane
and initiates the enzymatic activities. The lipid second mes-
senger phosphatidyl-inositol-triphosphate (PIT) is activated
by PI3K in response to activating the PI3K. The downstream
ligand of PI3K is AKT kinase having domain on C terminus
that is pleckstrin homology (PH), which binds with PIT and
phosphorinositide-dependent kinase 1 (PKDK1) [60].

PDK1 activates the AKT kinase activity that phosphory-
lates various proteins and manages cellular activities. The
downstream effector of AKT is mTOR that belongs to the
PI3K family that contains FAT-FATC domains, FRB, and
catalytic kinase domains [61]. The AKT phosphorylates the
TSC1/TSC2 that activates the Rheb, a small G-protein that
finally activates the mTOR for its cellular activity protein
translation. Excessive protein translation generally results
in abnormal cell growth and tumorigenesis. The negative
regulator of this signaling pathway is PTEN that dephos-
phorylates the PIT [62].

In HCC pathogenesis, reduced PTEN expression has
been linked with high recurrence rate, tumor stage, and
low survival rate. In the treatment policy, the PI3K/AKT/m-
TOR signaling pathway is upregulated, and inhibitors could
play an important role. In addition, everolimus [Afinitor,
RAD-001 (40-O-(2-hydroxyethyl)- rapamycin)] is a rapa-

mycin analog (rapalog) mTOR inhibitor administered per
oral and has been approved by FDA that showed a signifi-
cant reduction in tumor growth rate by downregulating gene
expression which related to ribosomal protein S6 kinase
beta-1 (S6K1) and eIF4E-binding protein (4EBP) suppres-
sion and inhibits signaling downstream [63].

2.5. Fibroblast Growth Factor Pathway. Fibroblast growth
factor (FGF) ligand is a family of 20 different ligands that
consist of an extracellular transmembrane domain and
intracellular tyrosine kinase domain that is associated with
tumorigenesis [64]. Many studies suggested the significant
role of FGF in the progression of chronic hepatitis. The tyro-
sine kinase domains after dimerization can activate the dif-
ferent intracellular signaling pathways [65]. FGF-substrate-
2 (FRS-2) is an important adaptor of the FGF receptor that
can recruit various proteins like SOS and GRB2 after the
phosphorylation to activate RAS-GTPase which promotes
the different downstream signaling like Wnt, MAPK, and
PI3K/AKT pathways as shown in Figure 4 [66]. The down-
stream signaling of FGF leads to carcinogenesis via angio-
genesis. The overexpression of FGFR1 significantly
accelerates the growth of HCC in the mouse model [67].
FGF8, 17, and 18 increase the HCC cell survival, and sug-
gesting a role in the progression of HCC, likewise, FGF15
also promotes hepatocellular proliferation in mice that also
contribute towards the HCC development. In addition to
this, epithelial-to-mesenchymal transition is promoted by
FGFR19 that functions via the GSK3β signaling pathway
through FGFR4 stimulation [68].

2.6. Enzyme (P450) Reactions Generating ROS in Liver
Cancers. Human cytochrome P450s are one of the major
sources of ROS. It plays a very important role in maintaining
cellular redox species balance which is mandatory for cell
signaling and normal cellular functions like an immune
response [69]. Normal redox balance is very important for
normal organ functioning so that any malfunction cannot
lead to various ailments like oxidative stress, aging, and car-
cinogenesis. Likewise, ROS and RNS can also disrupt biolog-
ical functions, which lead to cellular damage and oxidative
stress [70]. In most cases, variations in structure patterns
of lipids, nucleic acids, and proteins are the main targets of
ROS. Oxygen radicals by some nonenzymatic oxidation of
arachidonic acid form F2-isoprostanes through lipid peroxi-
dation [71]. These F2-isoprostanes not only show their bio-
logical effects but are also used as alternate markers to
measure ROS levels and oxidative stress [72]. Human
CYP2E1 has known to produce ROS through the process
of lipid peroxidation, and their products interact with
DNA and cause DNA adducts [73], whereas protein modifi-
cations through ROS are also possible particularly amino
acid cysteine modification can cause downstream signaling
in toxic pathways leading to carcinogenesis especially HCC.

ROS are generated in the mitochondria, peroxisomes,
cytochrome p450, and other components of the cell [74,
75]. Initially, an electron is provided to O2

- that further dis-
mutases to H2O2. Here, superoxide dismutase converts O2 to
H2O2 which is a stable molecule and can cross membranes.
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Figure 3: Wnt/β-catenin signaling pathway. APC: adenomatous
polyposis coli; GSK3β: glycogen synthase kinase 3 beta.
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In the cytochrome chain, free radicals are formed when the
electrons, donated by FADH and NADH, react with oxygen
and other electron acceptors [76] as shown in Figure 5.

2.7. Enzymatic Cycle of P450. Human cytochrome P450s
(CYP) are a superfamily of monooxygenases that are pri-
marily known for the oxidation of the vast majority of xeno-
biotics in phase I metabolism helping in increasing substrate
polarity and helping in excretion [77]. CYP generates ROS
and how they contribute to an increase in oxidative stress.
In the very first step, the substrate (R-H) binds to the active
site of the CYP enzyme via ferric iron (Fe3+) of the heme
thiolate group (Figure 6). In the second step, the heme thio-
late group receives one electron from the NADPH regener-
ating system and CPR cytochrome peroxidase reductase
(redox partner of CYP enzyme) and gets reduced to Fe+2.
This is the time when molecular oxygen binds to O2 and
CPR, then donates the second electron and reduces the Fe2
+-O2 complex which activates oxygen in the complex (Fe2
+-O2

−). In the next step (H+), ions get into the active site
by some special ion channels and cleave the O-O bond and
release water. The complex (FeO2

+3) then removes a proton
in the step from the substrate and leaves an intermediate
RFe3+.OH−. In the last step, the –OH hydroxyl group is
transferred to the substrate radical and the oxidized sub-
strate is released at the end (Figure 7). The latest research
is underway to specifically highlight the role of intermediate
species in various types of CYP-mediated oxidation reac-
tions; these intermediate species are formed during steps of
the CYP 450 catalytic cycle [78]. Oxygen concentration
and pH are the two major factors that play an important role
in CYP-mediated coupling reactions [79].

In this way, the CYP-mediated ROS-generated reaction
through their catalytic cycle modifies the cellular compo-
nents which lead to various diseases. It is clear how CYP dur-

ing their catalytic cycle alters the redox reactions and disrupts
the normal P450 catalytic cycle, which results in oxidative
stress leading to development of various kinds of disease.

2.8. Mitochondrial Dysfunction and Signaling. Mitochondria
regulate the urea cycle, amino acid, iron, and fat metabolism
and produce energy required for the cell to perform all impor-
tant functions [80–82]. In cells, the major site for the produc-
tion of ROS is mitochondrion [83]. Increased levels of ROS
production act as a clear death threat to the cells because it
directly affects the defense mechanism, the most exclusive
autophagy, and plays their role as signaling molecules which
ultimately results in cell death either by autophagy or apopto-
tic pathway (Figure 8). In each case, mobilization of various
H2O2 sensitive pathways is initiated [84]. Moreover, in starved
conditions, autophagy process increases due to elevated ROS
production by mitochondria [85].

Similar studies in obese (ob/ob) mice have also shown
increased production of FFAs from glucose, elevated mt
ROS productions, and elevated levels of triglycerides [86],
higher oxidative stress due to increased lipid peroxidation
while decreased hepatic mitochondrial components of
MRC and decreased ATP levels [87]. All these mitochon-
drial changes require alterations in mitochondrial ROS
levels, changes in mitophagy, biogenesis, and relevant signal-
ing pathways of ROS.

It also requires changes in cholesterol and GSH levels in
mitochondria. Changes in FFAs, lipid peroxidation prod-
ucts, and TNF are observed as well [88]. Oxidative stress
causes ROS generation which results in the activation of cas-
cades involving PKCβ-dependent phosphorylation of
pp66shc and its movement to the matrix of mitochondria,
and these mitochondria are also the main target of ROS.

2.9. Serine/Threonine Kinase (AKT) Pathway. It is also known
as protein kinase B (PKB) play an important role in angiogen-
esis in pathological condition and tumor growth via different
Ser/Thr kinase family members like liver kinase B1 (LKB1),
calcium/calmodulin-dependent protein kinase IV (CAM-
KIV), and sulfatase (SULF2). LKB1 has multiple phenotypic
expressions for the regulation of cell polarity, metabolism,
proliferation, and apoptosis. In HCC, LKB1 phosphorylate
at Ser428 that phosphorylates AMP-activated protein kinase
(AMPK) microtubule affinity-regulating kinase (MARK)
phosphorylation leads to activation and localization of cofac-
tors like pseudokinase Ste20-related adaptor (STRADα) and
the scaffolding protein MO25. The STRADα andMO25 form
a complex that binds with the LKB1 and relocalize it from
nucleus to cytoplasm and stimulate its cell proliferation and
angiogenesis [89]. Calcium (Ca+2) regulates various biologi-
cal processes as a second messenger via a variety of signaling
pathways. It binds to downstream effector calmodulin
(CAM) and increases the affinity toward calmodulin-kinase
like Ca+2±/CAM-protein kinase-IV (CAMKIV). CAMKIV
expression is increased in HCC and shows cell proliferation
and cell cycle regulation [90].

Overexpression of calcium inHCC binds with the calmod-
ulin that forms a complex with upregulated Ca+2/CAM-
dependent protein kinase kinase-2 (CAMKK2). Further, this
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Figure 4: Fibroblast growth factor signaling pathway. GBR: growth
factor receptor-bound; SOS: Son of Sevenless; PLCγ: phospholipase
C gamma; MAPK: mitogen-activated protein kinase; ERK1/2:
extracellular signal-regulated kinase; PI3K: phospho-inositide-3-
kinase; AKT: protein kinase B; mTOR: mammalian target of
rapamycin; PKC-Ca2+: protein kinase C-Ca2+.
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complex stimulates the CAMKIV and AMPK that leads to
stimulate angiogenesis [91]. Sulfatase 2 (SULF2) is elevated in
HCC that is linked with increased tumor growth, hepatoblast
phenotype, and a higher rate of tumor recurrence. Dephos-
phorylation of SULF2 enzyme leads to 6-O-desulfurase that
acts on heparin sulfate proteoglycans (HSPGs) and releases
the cytokines and growth factors like inflammatory media-
tors. These mediators regulate the SULf2-directed tumorigen-
esis via different pathways like hedgehog (HH), WNT, and
TGFβ. These pathways transcripts the common pathway
GLI family zinc finger 1(GLI1). SULF2-GLI1 promotes tumor
growth via heterodimerization of STAT3 that work via the
JAK/STAT signaling pathway as shown in Figure 9 [92].
Many signaling pathway inhibitors have been approved by
the FDA or are in clinical trials (as shown in Table 1).

3. Antioxidant Effect of Medicinal Plants

Reactive oxygen species (ROS) is a class of reactive molecules,
which are generated from oxygen metabolism [105]. Further-
more, several damages occurred in cells and tissues, not only
during infections but also various degenerative disorders
including cardiovascular disease, aging, neurodegenerative
diseases, and cancer by ROS [106, 107]. For radical detoxifi-
cation, human cells have defense mechanisms. In these cells,
superoxide dismutase (SOD) transforms superoxide into
hydrogen peroxide and oxygen, then converted the H2O2
into water, and toxic ROS are scavenged by catalase (CAT),
glutathione peroxidase (GPx), and reduce oxygen-free radi-

cals in cells. Additionally, antioxidant enzymes (SOD, CAT,
and GPx), along with vitamin A, C, E play a provital role in
the antioxidant defense mechanisms [108–111]. In recent
years, researchers focused on the natural phytochemicals
found in berry crops, teas, herbs, oilseeds, beans, fruits, and
vegetables, which are the potential sources of antioxidant
compounds to treat several [19, 112–119].
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Table 1: Clinical trials and FDA approved molecules that exert inhibitory effect for each signaling pathway.

Compounds/
drugs

Chemical structure

Clinical
trial/
FDA

approved

Receptor/
target

Description Inhibitor References

Vatalanib
(PTK787/ZK
222584)

N
N

NH
N

Cl

Vatalanib

Phase
-III

VEGFR1,
VEGFR2,
VEGFR3,
PDGFR-β,

c-Kit

Small-molecule tyrosine
kinase receptor

inhibitor

VEGF
signaling
pathway

[93]

AE-941
(Neovastat®)

Structure not available
Phase
-III

VEGF–
VEGFR-
binding
MMP2,
MMP9

Shark-cartilage
component

VEGF
signaling
pathway

[93, 94]

Sorafenib

N

O

NH

O

NH

O

NH
CH3

Cl

F

F
F

Sorafenib 

Phase
-III

VEGFR-2,
PDGFR-β,
FLT3, c-Kit

Small-molecule Raf
kinase and tyrosine
kinase inhibitor

VEGF
signaling
pathway

[93]

Trametinib

Trametinib 

NH

O

N

CH3

N

NH

C H3

N OO

CH3

I

F

O

FDA
approved

BRAF
Allosteric, non-ATP
competitive small-
molecule inhibitors

MAPK
pathway

[95, 96]

Binimetinib

 

Binimetinib 

NH

NH

N

N

CH3

F

Br

F

O
OH

O

FDA
approved

BRAFV600E

or
BRAFV600K

Allosteric, non-ATP
competitive small-
molecule inhibitors

MAPK
pathway

[96]

Genistein
Phase I-

II
GSK3-β

Inactivate Wnt
signaling by

upregulating the
expression of GSK3-β

and E-cadherin

Wnt/β-
catenin
signalling
pathway

[97]
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Table 1: Continued.

Compounds/
drugs

Chemical structure

Clinical
trial/
FDA

approved

Receptor/
target

Description Inhibitor References

Genistein

O

O H
OO H

OH

PRI-724

PRI-724

N

N
N

N

NH

CH3

O

N
O

CH3

O

O

P

OH

OOH

Phase 1 β-Catenin

Blocks the interaction
between β-catenin and

its transcriptional
coactivator CREB-

binding protein (CBP)

Wnt/β-
catenin
signalling
pathway

[98, 99]

Idelalisib

Idelalisib

N

N

NH

C H3

N

N
NH

N

OF

USFDA
approved

PI3K-δ

Capable of inducing
apoptosis and inhibit
AKT phosphorylation

and downstream
effectors

PI3K
signaling
pathway

[100, 101]

Duvelisib

Duvelisib

N

C H3

NH N

N
NH

N

OCl

USFDA
approved

PI3K-γ and
PI3K-δ

Capable of inducing
apoptosis and inhibit
AKT phosphorylation

and downstream
effectors

PI3K
signaling
pathway

[101, 102]

Erdafitinib
USFDA
approved

FGFR1-4

Inhibits tumor cell
differentiation,
proliferation,
angiogenesis

Fibroblast
growth
factor

pathway

[103]
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4. Oxidative Stress Associated with HCC

Oxidative stress happens once there is an associate degree
imbalance between reactive chemical element species
(ROS) generation and attenuated by antioxidant enzymes
or compounds. Excessive production of ROS will cause aero-
philous harm to biomacromolecules leading to supermole-
cule peroxidation and carcinogenesis [120, 121].

Anticancer medication increases malondialdehyde
(MDA) level and decreases inhibitor enzymes like GPx,
GR, CAT, SOD, and GSH [122, 123]. They increase
(MDA) and XO level, cytokines TNF-α, IL-6, i-NOS, cyclo-
oxygenase-2, and P38-MAPK, NF-κB, and generation of
ROS and RNS (reactive nitrogen species) in a viscous cell
[124, 125]. In ethanol, the cytoplasm and mitochondria are
reborn aldehyde and acetate by vasoconstrictive, ALDH,
NAD+, and NADH, which may increase ROS generation
in the liver cell, cause DNA harm, mitochondrial pathology,
lipid peroxidation, supermolecule denaturation, and stimu-
late many viscous sicknesses as well as steatosis, fibrosis, cir-
rhosis, steatohepatitis, and carcinoma [126].

Ordinarily, ROS and RNS are generated by strongly
bound enzymes. Too much stimulation of NAD(P) H and
negatron transport chain results in the production of ROS,
which leads to stress and can injure the cell structures, lipids,
proteins, and DNA. The production of ROS by vegetative
cells was originally referred to as “the metabolism burst”
because of the redoubled consumption of chemical elements
by these cells. This method is catalyzed by NAD(P)H
enzyme and is important for the disinfectant action of
phagocytes [127]. The metabolism of organic compounds
(L-arginine) forms NO∙ free radicals. The gas synthase
(NOS) enzymes are catalyzing the process, and through 5
electron oxidization of a guanidine gas of L-arginine, it con-
verts L-arginine into L-citrulline and NO∙ radical [128].

5. Potential of Phytochemicals

5.1. Scavenging of ROS. In any kind of cancer, lethal effects
due to oxidative stress can be harmful. To counterbalance
this, antioxidant mechanisms in normal human cells should
be needed [129]. Besides, it can be considered as a significant
process that is taken by phytoconstituents to prevent cancer
(Table 2).

The scavenging process is done by different antioxidant
mechanisms so that they could not be able to cause any dis-
figurement. Some nonradical and radical ions that work as
ROS are hydrogen peroxide (H2O2), superoxide radical
(O2

−), hydroxyl radical (.OH), and peroxyl radical (ROO.).
Protein, DNA, and lipids are excessively harmed due to
these ions and also altered the regular cellular functioning
system. Some phytochemicals act as antioxidant or prooxi-
dant whose modulators are mainly guided by two factors,
one is the microenvironment and another is the concentra-
tion of ROS present within the cells. To keep a healthy bal-
anced metabolic activity, the proper quantity of ROS in
normal cells is necessary. Now, cells can be damaged
through oxidative stress, especially when ROS comes from
extrinsic sources. Normal cells can be injured by external
factors. In this case, phytoconstituents can play an important
role as antioxidants to protect those cells from damage [171].

5.2. Phytochemicals Evaluation in Clinical Trials. Phyto-
chemicals derived from medicinal herbs that are now clini-
cally tested and used in the treatment of liver fibrosis are
Inchin-ko-to (TJ-135), Yi Guan Jian, Fufang-Liu-Yue-Qing,
and DangguiBuxue Tang [172–175]. An enormous number
of anticancer compounds, which are now in progress, never-
theless lead to clinical studies in their initial phases. Through
various preclinical researches, the efficacy of different

Table 1: Continued.

Compounds/
drugs

Chemical structure

Clinical
trial/
FDA

approved

Receptor/
target

Description Inhibitor References

Erdafitinib

N

N

N

O
CH3

O

CH3

NHCH3

CH3
N

N

CH3

Netarsudil

Netarsudil

NO

NH

O

NH2

O

CH3CH3 USFDA
approved

ROCK1/2
nonreceptor

Inhibits the enzyme rho
kinase

Serine/
threonine
kinase
(AKT)
pathway

[104]
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phytochemicals has represented such as, andrographolide,
berberine, capsaicin, curcumin, genistein, ursolic acid, and
withaferin A.

Andrographolide restrains tumor development by
obstructing tumor adjustment to hypoxic conditions. The
detected effects of andrographolide (100mg/kg) were attrib-
uted to the restriction of the hypoxia-inducible figure (HIF)
[176]. The recovery rate of different myeloma patients has
made strides through the use of andrographolide in a clinical
trial [177, 178]. While investigations are undertaken via the
large quantity of information on preclinical efficacy, clinical
studies are limited in the evaluation of berberines and
andrographolide genuine potential as a carcinoma opera-
tor [179].

Capsaicin supplementation significantly reduced the
establishment of preneoplastic foci in a rat model of hepato-
carcinogenesis caused by diethylnitrosamine, HCC cell lines
were likewise stopped from proliferating, and apoptosis was
triggered on a dose-based manner [180, 181]. Furthermore,
HCC cells were shown to be more sensitive than normal
hepatocytes to capsaicin induced cytotoxicity suggesting that
it might have a chemotherapeutic effect [182].

Curcumin is a chemopreventive agent with a lot of opti-
mism. This has prompted clinical practices to investigate the
pharmacokinetics and effectiveness of curcumin in patients.
It was shown to be safe and nontoxic in phase I clinical stud-
ies, even at large dosages (8 g/day). However, it had limited
absorption individuals [183, 184]. Their clinical trials, either
alone or as anticancer agent combinations, demonstrated
efficacy, despite challenges to bioavailability, in several dis-
ease sites [185–187].

The medication with genistein (140mg/kg) is by pre-
venting aberrant nuclear β-catenin harvests and concealing
WNT signaling features [188]. Ursolic acid (UA) was rep-
resented to upgrade the restorative impacts of oxaliplatin
in the mouse model of CRC by restraining the tumor
and expanding the survival rate. Tumor shape is lessened
by the UA nanoparticles by focusing on caspases and
p53 with downregulation of Bcl-2 and cIAP, instigating
apoptosis and driving to cervical cancer cell distortion
[189], whereas the tumor development of human colorec-
tal carcinoma (HCT-116) cells which overexpress AKT
and microvessel arrangement is hindered through the ver-
bal organization of Withaferin A (5mg/kg) in a mouse
model [190].

5.3. Detoxification of Enzymes. Xenobiotic compounds are
responsible for putting impacts on humans affecting tis-
sues. To lessen that impact, there are several responses
or potentials [191]. Among them, the initialization of
some detoxifying enzymes is important, especially for the
liver [192]. Detoxified enzymes can be induced by antiox-
idative phytochemicals found in plants. These phytochem-
icals mainly target antioxidant response or electrophile
response elements (ARE/EpRE) to modulate the molecular
pathways. These pathways mainly depend on three main
components like ARE, nuclear factor erythroid 2 p45-
related factors 2 (Nrf2), and Kelchlike ECH-associated
protein 1 (Keap1) [193].

5.4. Modification of Genomic Stability. Phytochemicals tar-
gets both DNA repair and their damage mechanism, where
genomic stability within cells plays an important role.
Besides, this genomic stability also helps a lot when chemo-
preventive agents trigger a selective number of cancer cells
[194, 195]. There are some therapeutic agents which gener-
ate the DNA repair pathways in normal cells to modulate
the stress conditions within the cells. In a contradicting
way, DNA damage response can also be increased when can-
cer cells are exposed in a large number. As a result, apoptosis
can happen, and cells can be dead permanently [196].

5.5. Cancer Cell Metabolism. Cell metabolism in tumors
plays an important role in the stimulation process in proto-
oncogenes by involving ROS production [197, 198]. The sur-
vival and growth rate of tumor cells largely depend on their
metabolic requirements which are adjusted by themselves
[199]. Energy requirements are supplied by glucose, and
thus, it initiates tumor growth. Besides glucose, glutamine
also plays an important role in tumor growth by providing
nitrogen for the biosynthesis process. Phytochemicals can

Table 3: Medicinal plants and their bioactive compounds used in
radiotherapy and chemotherapy.

Plants as radioprotector/radiosensitizer in HCC

Amaranthus
paniculatus Linn.

Decreases the depleted level of endogenic
antioxidant enzymes during radiotherapy

of mice liver.

Coronopus didymus
(L.)

Enhance the level of antioxidant enzymes
in the liver of mice.

Grewia asiatica L.
Augmented the SOD, CAT, and GSH
levels in the liver of irradiated mice.

Glycyrrhiza glabra L.
It protected plasmid DNA and reduced
the liver microsomal LPO level in rat from

irradiation.

Hypericum
perforatum L.

In vitro and in vivo studies show the
increased level of SOD, CAT, GSH-Px,
and GSH during radiation therapy

Pilea microphylla (L.)
Liebm.

Increased level of endogenous antioxidant
enzyme levels in the liver of mice.

Rosmarinus officinalis
L.

Augmented the SOD, CAT, and GSH
levels in blood and liver of mice during

the radiation therapy.

Xylopia aethiopica
(Dunal) A.Rich.

Protect the liver of rat from γ-radiation

Bioactive phytomolecules as adjunct with chemotherapy

Curcumin
Used as an adjuvant with vinorelbine

chemotherapy and enhances the
antiproliferative effect of drugs.

Quercetin

Used as an adjunct in doxorubicin,
busulfan, and cisplatin chemotherapy. It
also increased cytotoxic effects of these
drugs and protect from drug-induced

nephrotoxicity.

Ginsenosides
Used as an adjunct with cisplatin and 5-

FU chemotherapy and enhanced
antiproliferative effect.
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obstruct basal transport of glucose [200], e.g., curcumin can
convert glucose to glutathione [201].

5.6. Chemotherapy and Radiotherapy Enhancers. Cancer and
complications that are associated with it are treated by che-
motherapy and radiotherapy for decades. Radiotherapy
began in the twentieth century before chemotherapy, as the
primary treatment of cancer. Approximately 8% of total can-
cer patients need radiotherapy, but unfortunately, it causes
acute toxicity even at low doses of radiation. To overcome
these side effects and prevention of resistance to chemother-
apy, a promising new approach is developed by the scientist
by using the medicinal plant-derived drugs like taxol to
combat against cancer; many researches is going on radio-
protectors and radiosensitizers [202]. Radioprotectors are
the compounds that are used to protect the normal cell dur-
ing radiotherapy sessions; on the other hand, radiosensiti-
zers are the molecule that is used to sensitize the tumor
cell and increases the efficiency of cancer therapy. Some
plants like Pilea microphylla act as a radioprotector and pre-
vent the depleting SOD, GSH, CAT, and thiol levels during
the radiotherapy in HCC. Table 3 shows the effect of medic-
inal plants and their bioactive compounds in chemotherapy
and radiotherapy [203–206].

6. Conclusion and Future Perspective

The scavenging property of plant-derived bioactive com-
pounds should be the pathway to treat HCC as they block
the propagation stage in oxidative chain reactions. Further-
more, these compounds inhibit cancer cell growth and act
as potent anticancer agents via different cellular and molec-
ular mechanisms. At present, a plethora of kinase inhibitors
against specific molecular targets are being investigated in
HCC, which initiate differential networks that consequently
result in HCC cell cycle promotion. It offers hope that other
effective therapies will eventually be developed.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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