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Geniposide (GEN) is a natural antioxidant and anti-inflammatory product and plays an important role in the treatment of
diabetes and diabetic complications. To explore the biological functions and mechanism of GEN in diabetic retinopathy (DR),
we constructed the in vitro and in vivo model of DR by using primary cultured mouse retinal Müller cells and C57BL/6 mice,
respectively. We found that GEN inhibited ROS accumulation, NF-κB activation, Müller cell activation, and inflammatory
cytokine secretion both in vitro and in vivo, which is probably mediated through the Nrf2 pathway. Exendin (9-39) (EX-9), an
antagonist of glucagon-like peptide-1 receptor (GLP-1R), abolished the protective effect of GEN on high glucose- (HG-)
induced Müller cells. Additionally, GEN decreased hyperglycemia-induced damage to Müller cells and blood-retinal barrier in
the retinas of mice with DR. We demonstrated that GEN was capable of protecting Müller cells and mice from HG-induced
oxidative stress and inflammation, which is mostly dependent on the Nrf2 signaling pathway through GLP-1R. GEN may be
an effective approach for the treatment of DR.

1. Introduction

Diabetes is one of the most important and serious global
health problems worldwide. Epidemiological studies have
shown that the prevalence of diabetes will increase to 7.7%
and affect 439 million adults by 2030 [1]. Diabetes causes
serious damage to microvessels and macrovessels and leads
to vascular complications in the human body [2]. Among
microvascular complications, diabetic retinopathy (DR)
remains one of the most serious and common diabetes-
associated complications. As the main glial cells in the ret-
ina, Müller cells play a crucial role in the progression of
DR. Our previous studies showed that Müller cells become
activated and secrete several inflammatory cytokines in
experimental DR model. Inhibition of Müller cell gliosis
may decrease damage to the blood-retinal barrier (BRB)

and reduce the loss of retinal ganglion cells (RGCs) [3, 4].
Thus, preventing Müller cell gliosis and subsequent inflam-
matory factor production may be an effective therapeutic
strategy for DR treatment.

Chronic hyperglycemia-induced oxidative stress and
low-grade inflammation are thought to play crucial roles in
the onset and development of DR [5]. When there is an
imbalance between excessive reactive oxygen species (ROS)
production and the ability of endogenous antioxidant factors
to clear ROS, oxidative stress occurs [6]. Oxidative stress is
characterized by ROS-induced overexpression of proinflam-
matory and proangiogenic factors, which damage glial cells,
vascular cells, and neurons [7, 8]. Cumulative evidence has
indicated that ROS plays an important role in activating
transcription factor nuclear factor-kappa B (NF-κB) [9,
10]. NF-κB is triggered and translocated to the nucleus
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where it activates the transcription of proinflammatory cyto-
kines, such as tumor necrosis factor-α (TNF-α), interleukin-
6 (IL-6), and interleukin-1β (IL-1β) [11, 12].

The interaction of retinal glial cells and blood vessels is
important for maintaining the homeostasis and survival of
retinal tissue [13]. Müller cells are the main glial cells in
the retina, and under hyperglycemic conditions, they
undergo oxidative damage and exhibit a reactive phenotype,
which is manifested by the upregulation of glial fibrillary
acidic protein (GFAP) expression and the subsequent pro-
duction of proinflammatory factors [14, 15]. In addition,
Müller cells span the entire thickness of the retina, and the
anatomical association of Müller cells with neurons and
microvessels means that damage to Müller cells will lead to
severe injury to neurons and blood vessels [16–18]. There-
fore, inhibiting oxidative stress and inflammation in Müller
cells in a hyperglycemic environment may improve retinal
vascular and nerve damage to alleviate DR progression.

Geniposide (GEN) is a natural product extracted from gar-
denia fruit that has a variety of biological properties, such as
antioxidant and anti-inflammatory activities [19, 20]. Studies
have revealed that GEN protects against myocardial ischemia
reperfusion injury in diabetic rats by suppressing oxidative
stress through the nuclear factor erythroid 2-related factor
(Nrf2)/heme oxygenase-1 (HO-1) signaling pathway [3]. In
ApoE−/− mice and RAW264.7 cells, GEN treatment decreased
the areas of atherosclerotic plaques and the production of
inflammatory cytokines, and the anti-inflammatory mecha-
nism was related to the miR-101/mitogen-activated protein
kinase phosphatase-1/P38 signaling pathway [21]. The metab-
olite of GEN, genipin, leads to HO-1 upregulation and partic-
ipates in the anti-inflammatory response, which is mediated
by PI3 kinase and activation of the downstream targets
JNK1/2 and Nrf2 [22]. Studies have suggested that GEN plays
a vital antioxidant and anti-inflammatory role and is closely
associated with the Nrf2 signaling pathway. Moreover, as a
novel agonist of glucagon-like peptide-1 receptor (GLP-1R),
GEN also has a role in the treatment of diabetes and diabetic
complications [23–25]. However, the effect of GEN on DR
pathogenesis and whether Nrf2 is involved remain unknown.
Therefore, the purpose of our study was to explore the role
of GEN in DR development and the underlying mechanisms.

2. Materials and Methods

2.1. Cell Culture. Mouse primary retinal Müller cells were
isolated from 3-day-old newborn C57BL/6 pups. The mice
were obtained from the Experimental Animal Center of Soo-
chow University. Müller cells were extracted and identified
as previously described [26]. Retinal Müller cells were
cultured in DMEM supplemented with 10% fetal bovine
serum (FBS, Gibco), streptomycin (100mg/ml), and penicillin
(100U/ml) (Gibco). Then, the cells were cultured in a humid-
ification incubator (5% CO2) at 37

°C, and the medium was
replaced every two days.

2.2. Cell Treatments. The cells were treated with 5mM
D-glucose (normal glucose, NG) or 30mM D-glucose
(HG) (#310808; Sigma, USA) for 24 h to mimic the diabetic

environment before or after certain experiments. Different
concentrations of GEN (#SML0153; Sigma, USA) (25, 50,
100, and 200μg/ml) were used to treat Müller cells for 24 h
before HG was added. The dose used of GEN was based on
a previous study [27]. The ROS scavenger N-acetylcysteine
(NAC) (1mM, 24h) (#A7250, Merck, USA) [26] and GLP-
1R antagonist exendin (9-39) (EX-9) (200 nmol/l, 1 h)
(#ab141101, Abcam, UK) [28] were used to treat the cells
before HG or GEN administration. After certain treatments,
the cell culture medium was collected and stored at -80°C for
cytokine analysis.

2.3. Cell Viability Assay. Müller cells were seeded in 96-well
plates at a density of 5 × 103 cells/well. After 24 h, the cells
were treated with different concentrations of GEN (25, 50,
100, and 200μg/ml) with or without HG for 24h. Then, cell
viability was measured by a Cell Counting Kit-8 (CCK-8,
#CK04, Dojindo, Japan) according to the manufacturer’s
instructions. Briefly, after treatment, Müller cells were
washed with Hank’s solution, and 100μl of medium supple-
mented with 10μl of CCK-8 solution was added to each well.
After being incubated for 2 h in a CO2 incubator, the absor-
bance at 450nm was measured by a Thermo MultiSkan GO
microplate reader (Thermo Fisher, USA).

2.4. Immunofluorescence Analysis. Müller cells were seeded
in the slide chamber at a density of 1 × 103 cells per well.
After the indicated treatments, the cells were fixed with 4%
paraformaldehyde (PFA) at room temperature for 30min.
The retinal patch was first isolated from the mouse retina
and fixed at room temperature with PFA for 1 h. After being
blocked and permeabilized, the slides were incubated with
nuclear factor kappa B (NF-κB) p65 antibodies (host species:
rabbit; species reactivity: mouse, human; dilution: 1 : 1000;
#ab16502, Abcam), and the retinas were incubated with iso-
lectin B4 (1 : 1000, #I21411, Invitrogen) and GFAP (host
species: rabbit; species reactivity: mouse, rat; dilution:
1 : 1000, #ab7260, Abcam) antibodies at 4°C overnight. Then,
the samples that had been incubated with NF-κB p65 and
GFAP antibodies were incubated with secondary antibodies
(1 : 200 dilution) in the dark at room temperature for 2 h.
Finally, the cells were stained with DAPI at room tempera-
ture for 15min and observed by confocal laser fluorescence
microscopy (SP8, Leica).

2.5. Animals. Male C57BL/6 mice (8-weeks old) were
purchased from the Laboratory Animal Center of Soochow
University. The mice were housed in standard pathogen-
free conditions and were randomly divided into 6 groups:
normal, normal+PBS, normal+GEN, DM, DM+PBS, and
DM+GEN. The diabetic mouse model was established as
previously described [3]. Briefly, the mice were fasted for
12 hours before streptozotocin (STZ) injection. Then, the
mice received intraperitoneal injections of 50mg of STZ
once per day for 5 consecutive days. Mice with a blood glu-
cose greater than 16.7mmol/l were regarded as diabetic and
were used in follow-up experiments. The mice in normal
group were given an intraperitoneal injection of the same
amount of citrate buffer. Four weeks after successful
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modeling, the mice in the GEN treatment group were given
tail vein injections of GEN (50mg/kg/day) for one week.
GEN was dissolved in phosphate-buffered saline (PBS),
and equal volumes of PBS without GEN were injected as
the solvent control. Finally, the mice were sacrificed for
certain experiments. All animal experiments were approved
by the Animal Research Ethics Committee of Soochow
University and were in accordance with the Chinese
National Standard.

2.6. Intracellular ROS Detection. The generation of ROS was
measured by an ROS assay kit (#S0033M, Beyotime, China).
In vitro, Müller cells were seeded on 24-well plates and
incubated with 2,7-dichlorodi-hydrofluorescein diacetate
(DCFH-DA), at a concentration of 10μM for 20min at
37°C. The cells were washed three times in serum-free
medium to completely remove unincorporated DCFH-DA.
The level of ROS in the retinas of mice was measured as pre-
viously described [29]. ROS levels were measured by a
immunofluorescence microscope (Leica).

2.7. Western Blotting. Total protein was extracted from cul-
tured Müller cells and mouse retinas with protein lysis
buffer. Cytoplasmic and nuclear proteins were extracted
from cells using a PARIS Kit (#AM1556, Life Technologies,
USA) according to the manufacturer’s instructions. The
protein concentration was measured by a BCA assay kit
(#P0012S, Beyotime, China). Equal amounts of proteins in
each sample were separated by SDS-PAGE and then trans-
ferred to PVDF membranes. After being blocked, the
membranes were hybridized with primary antibodies against
IκBα (1 : 1000 dilution, #ab7217, Abcam), p-IκBα (1 : 1000
dilution, #2859, Cell Signaling Technology, USA), NF-κB
P65 (1 : 2000 dilution, #ab16502, Abcam), p-P65 (1 : 1000
dilution, #3031, Cell Signaling Technology), GFAP (1 : 3000
dilution, #ab7260, Abcam), Nrf2 (1 : 1000 dilution, #ab92946,
Abcam), β-actin (1 : 1000 dilution, #ab8226, Abcam), histone
H3 (H3) (1 : 1000 dilution, #ab6147, Abcam), HO-1 (1 : 2000
dilution, #ab189491, Abcam), NAD(P)H quinone dehydroge-
nase 1 (NQO1) (1 : 1000 dilution, #ab34173, Abcam), and
GAPDH (1 : 5000 dilution, #ab8245, Abcam) at 4°C overnight.
β-Actin and H3 were used as cytoplasmic and nuclear internal
controls, respectively. The membranes were then washed and
hybridized with horseradish peroxidase-conjugated secondary
antibodies (Cell Signaling Technology) at room temperature
for 1h. The protein bands were detected with a chemilumines-
cence reagent and visualized with a Bio-Rad imaging system
(Bio-Rad Laboratories, Hercules, CA, USA). ImageJ software
was used to quantify the band intensities, and GAPDH was
used as the loading control.

2.8. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted with TRIzol reagent (#15596018, Invitrogen,
USA) according to the manufacturer’s instructions. Total
RNA (1μg) was synthesized into cDNA using a Revert Aid
First Strand cDNA Synthesis Kit (#K1622, Thermo Scien-
tific, USA). The sequences of the qRT-PCR primers were
as follows: VE-cadherin: forward primer 5′-TGGAAGGTC
TGCACCTGCTA-3′, reverse primer 5′-TTTGGCCCACG

GGATTG-3′; claudin-5: forward primer 5′-TCTGCTGGT
TCGCCAACAT-3′, reverse primer 5′-CGGCACCGTCG
GATCA-3′; occludin: forward primer 5′-TGTGGGATA
AGGAACACATTTATGA-3′, reverse primer 5′-CAGACA
CATTTTTAACCCACTCTTCA-3′; and ZO-1: forward
primer 5′-TGAACGCTCTCATAAGCTTCGTAA-3′, reverse
primer 5′-ACCGTACCAACCATCATTCATTG-3′. PowerUP
SYBR Green Master Mix (#A25742, Thermo Scientific) was
used to detect the transcription products of the cDNA samples
on an ABI 7500 Real-Time PCR system (Foster City, USA).
GAPDH was used as the internal control, and the 2−ΔΔCT
method was used to calculate the relative expression of the
target genes.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). The
concentrations of TNF-α (#BMS607-3, Invitrogen), IL-1β
(#PI301, Beyotime, China), and IL-6 (#BMS603-2, Invitro-
gen) in the cell culture supernatant and retinas were
measured by commercial ELISA kits according to the manu-
facturers’ instructions. By measuring the optical density of
each well at 450 nm, the concentrations of these cytokines
were quantified with reference to the standard curve.

2.10. Cell Transfection. Nrf2 siRNA and scramble siRNA
were purchased from RIBO Biology Company (Nrf2 siRNA,
5′-UGAAAGCACAGCAGAAUUTT-3′). According to the
manufacturer’s instructions, Lipofectamine 2000 transfec-
tion reagent (#11668019, Invitrogen, USA) was used to per-
form the cell transfections.

2.11. Statistical Analysis. All data are presented as the mean
± SEM. GraphPad Prism version 7 software (GraphPad,
USA) was used for statistical analysis. All the experiments in
our study were repeated at least three times. Student’s t-test
(2-group comparisons) and one-way ANOVA followed by
Tukey’s multiple comparison posttest (multiple-group com-
parisons) were used to assess whether there was a significant
difference between the groups.

3. Results

3.1. ROS Accumulation Promotes NF-κB Activation,
Followed by Glial Activation and Inflammatory Cytokine
Secretion in HG-Stimulated Müller Cells. As shown in
Figure 1(a), intracellular ROS levels were increased under
HG conditions and decreased by the ROS scavenger NAC
(Figure 1(a)). After HG stimulation, the phosphorylation of
the NF-κB-related proteins IκBα and P65 was significantly
upregulated, and this effect was reversed by NAC pretreat-
ment (Figures 1(b)–1(d)). We also used western blot and
immunofluorescent staining to determine the subcellular
localization of NF-κB P65 in Müller cells. We found that
NF-κB P65-positive staining was mainly localized in the
cytoplasm in the control group and was translocated to the
nucleus by HG stimulation. Interestingly, the HG-induced
translocation of NF-κB P65 was inhibited in the presence
of NAC (Figure 1(g)). Additionally, HG promoted the expres-
sion of the glial activation marker GFAP (Figures 1(b) and
1(e)) and inflammatory factors, including TNF-α, IL-1β, and
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Figure 1: Continued.
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IL-6 (Figures 1(h)–1(j)), while NAC treatment counteracted
the effect of HG. These data suggest that HG promotes ROS
accumulation and induces the NF-κB signaling pathway acti-
vation, thereby increasing glial activation and inflammatory
cytokine secretion by HG-stimulated Müller cells.

3.2. GEN Is Not Cytotoxic to Müller Cells within a Range of
Concentrations. We next examined the cytotoxicity of GEN
on Müller cells under normal or HG conditions. As shown
in Figures 2(a) and 2(b), 25, 50, and 100μg/ml GEN did
not inhibit Müller cell viability, while 200μg/ml GEN sup-
pressed cell viability under both normal and HG conditions
(Figures 2(a) and 2(b)).

3.3. GEN Induces Nrf2 Nuclear Translocation and Inhibits
ROS Accumulation in HG-Stimulated Müller Cells. We also
found that GEN treatment dose-dependently induced Nrf2
nuclear translocation (Figures 2(c) and 2(d)). Moreover,
the Nrf2-targeted antioxidant genes HO-1 and NQO1 were
also assessed. As shown in Figures 2(e) and 2(f), the expres-
sion of HO-1 and NQO1 in Müller cells was markedly
decreased under HG conditions and dose-dependently
increased by GEN treatment. HG stimulation exacerbated
ROS accumulation. Conversely, GEN significantly reduced
HG-induced ROS levels (Figure 2(g)).

3.4. GEN Inhibits NF-κB Activation and HG-Induced Glial
Activation and Inflammatory Cytokine Secretion in Müller
Cells. The inhibitory effect of GEN on ROS accumulation
prompted us to investigate whether GEN was involved in
HG-induced NF-κB activation, glial activation, and inflam-
matory cytokine secretion. We found that the phosphory-
lated forms of the NF-κB-related proteins IκBα and P65
were significantly upregulated after HG stimulation, and this
effect was dose-dependently reversed by GEN pretreatment
(Figures 3(a)–3(c)). Additionally, HG promoted the
expression of GFAP and the secretion of inflammatory
cytokines, including TNF-α, IL-1β, and IL-6, while GEN

treatment reversed HG-mediated promotion of gliosis
(Figures 3(a) and 3(d)) and inflammatory cytokine secretion
(Figures 3(e)–3(g)).

3.5. GEN Inhibits NF-κB Activation, Müller Cell Activation,
and Inflammatory Cytokine Secretion through the Nrf2
Antioxidant Pathway. To confirm whether the anti-
inflammatory effect of GEN was mediated by activating the
Nrf2 antioxidant pathway, we investigated the effect of
Nrf2 knockdown on oxidative stress and inflammation in
HG-stimulated Müller cells. GEN was used at a concentra-
tion of 100μg/ml in the subsequent experiments due to its
improved protective effects. The results suggested that
GEN treatment significantly promoted the expression of
HO-1 and NQO1, and this effect was reversed by downreg-
ulating Nrf2 (Figures 4(a)–4(c)). Conversely, GEN decreased
ROS accumulation in HG-stimulated Müller cells, and Nrf2
knockdown blocked the inhibitory effect of GEN on ROS
accumulation (Figure 4(d)). In addition to cellular oxidative
stress, Nrf2 knockdown also suppressed the effect of GEN on
the NF-κB pathway activation (Figures 4(e)–4(g)), expres-
sion of the glial activation marker GFAP (Figures 4(e)
and 4(h)), and inflammation-associated cytokine secretion
(Figures 4(i)–4(k)).

3.6. The Protective Effects of GEN on HG-Stimulated Müller
Cells Were Abolished by a GLP-1R Antagonist. To further
investigate the mechanism of GEN, we evaluated the effects
of the GLP-1R antagonist EX-9 on oxidative stress and
inflammation in Müller cells. GEN increased the nuclear
translocation of Nrf2, and EX-9 inhibited the effect of GEN
(Figures 5(a) and 5(b)). Similarly, EX-9 eliminated the GEN-
induced increases in HO-1 and NQO1 (Figures 5(c)–5(e)). In
addition, GEN suppressed ROS accumulation (Figure 5(f)),
NF-κB pathway activation (Figures 5(g)–5(i)), expression
of the glial activation marker GFAP (Figure 5(j)), and
inflammation-associated cytokine secretion (Figures 5(k)–
5(m)), and these effects were reversed by EX-9.
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Figure 1: Reactive oxygen species (ROS) accumulation promotes NF-κB activation, followed by glial reactivation and inflammatory
cytokine secretion in HG-stimulated Müller cells. Müller cells were stimulated with normal glucose (NG) and high glucose (HG) to
establish an in vitro diabetes model, and mannitol was used as the osmotic control. Cells were pretreated with N-acetylcysteine (NAC)
before HG administration. (a) ROS accumulation was measured by an ROS assay kit. (b–e) The protein expression of IκBα, p-IκBα, P65,
p-P65, and glial fibrillary acidic protein (GFAP) was assayed by western blotting. ∗∗P < 0:01 vs. the NG group and #P < 0:05 vs. the HG
group. (f) The protein expression of P65 in the nucleus and cytoplasm was measured by western blotting. (g) Immunofluorescent
staining of NF-κB P65 in Müller cells. (h–j) ELISA was performed to measure the protein levels of TNF-α, IL-1β, and IL-6 in Müller
cells. ∗∗∗P < 0:001 vs. the NG group and ##P < 0:01 vs. the HG group. n = 4/group.
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3.7. GEN-Mediated Activation of the Nrf2 Signaling Pathway
Reduces NF-κB Activation and Decreases GFAP Production
and Inflammatory Cytokine Secretion in the Retinas of
Diabetic Mice. To investigate whether the Nrf2 antioxidant
signaling pathway and the NF-κB inflammatory pathway
were involved in diabetic mice in vivo, we treated the DR
mouse model with GEN. As shown in Figures 6(a) and
6(b), GEN increased the nuclear translocation of Nrf2 in
the retinas of diabetic mice. In addition, the Nrf2-targeted

antioxidant genes HO-1 and NQO1 were decreased in the
retinas of mice with diabetes, and GEN treatment increased
Nrf2 antioxidant pathway activation in diabetic mice
without affecting normal mice (Figures 6(c)–6(e)). Consis-
tent with the in vitro experiments, ROS accumulation and
the expression of p-IκBα and p-P65 were upregulated in
mice with DR and were reversed by GEN treatment
(Figures 6(f)–6(i)). Analyses of glial reactivity and inflam-
matory cytokine production are shown in Figure 6(g) and
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Figure 2: The effects of geniposide (GEN) on viability, Nrf2 nuclear translocation, and ROS accumulation in HG-stimulated Müller cells.
Müller cells were exposed to different concentrations of GEN with or without HG. (a, b) The viability of Müller cells was measured by CCK-
8 assays. ∗∗P < 0:01 vs. the control group. (c, d). The protein expression of Nrf2 in the nucleus and cytoplasm was measured by western
blotting. H3 and β-actin were used as nuclear and cytoplasmic loading controls, respectively. ∗P < 0:05 and ∗∗P < 0:01 vs. the NG group
and #P < 0:05 vs. the HG group. (e, f) The protein expression of HO-1 and NQO1 was measured by western blotting. ∗∗P < 0:01 vs. the
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Figure 3: GEN inhibits NF-κB activation and HG-induced glial activation and inflammatory cytokine secretion in Müller cells. (a–d) The
protein expression of IκBα, p-IκBα, P65, p-P65, and GFAP was measured by western blotting. ∗∗P < 0:01 vs. the NG group and #P < 0:05
and ##P < 0:01 vs. the HG group. (e–g) ELISA was used to measure the protein levels of TNF-α, IL-1β, and IL-6 in Müller cells.
∗∗∗P < 0:001 vs. the NG group and #P < 0:05 and ##P < 0:01 vs. the HG group. n = 4/group.
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Figure 4: GEN inhibits NF-κB activation, Müller cell activation, and inflammatory secretion through the Nrf2 antioxidant pathway. Nrf2
siRNA transfection was used to knockdown Nrf2 expression, and scramble siRNA (Scr siRNA) was used as the negative control. GEN was
administered to Müller cells 24 h prior to stimulation with HG. (a–c) The protein expression of HO-1 and NQO1 was measured by western
blotting. ∗∗P < 0:01 vs. the HG group and #P < 0:05 vs. the HG+GEN group. (d) ROS production was measured by an ROS assay kit. (e–h)
The protein expression of IκBα, p-IκBα, P65, p-P65, and GFAP was measured by western blotting. ∗∗P < 0:01 vs. the HG group and
#P < 0:05 vs. the HG+GEN group. (i–k) ELISA was used to measure the protein levels of TNF-α, IL-1β, and IL-6 in Müller cells.
∗∗P < 0:01 vs. the HG group and ##P < 0:01 vs. the HG+GEN group. n = 4/group.

8 Oxidative Medicine and Cellular Longevity



𝛽-Actin

Nrf2

Nrf2 80 kDa

80 kDa

15 kDa

42 kDa

H3

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

N
uc

le
ar

Cy
to

pl
as

m
ic

(a)

HG
HG+EX-9
HG+GEN
HG+EX-9+GEN

Nuclear

Nrf2

Cytoplasmic

1

1.5

0.5

2

0Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

⁎⁎

⁎⁎

#

#

(b)

+HG

GAPDH

NQO1

HO-1 33 kDa

33 kDa

36 kDa

GEN
EX-9

+

+

+ +
++
+

– –
– –

(c)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

HO-1/GAPDH

1.5

2.5

1

2

0

0.5

Re
lat

iv
e p

ro
te

in
 le

ve
l #⁎⁎

(d)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

NQO1/GAPDH

1.5

2.5

1

2

0

0.5

Re
lat

iv
e p

ro
te

in
 le

ve
l #⁎⁎

(e)

20 𝜇m

HG HG+EX-9 HG+GEN HG+EX-9+GEN

RO
S

(f)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

pIKB𝛼

IKB𝛼

p-P65

P65

GFAP

GAPDH

35 kDa

35 kDa

65 kDa

65 kDa

53 kDa

36 kDa

(g)

pIKB𝛼/IKB𝛼1.5

1

0

0.5

Re
lat

iv
e p

ro
te

in
 le

ve
l

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

⁎⁎ ##

(h)

p-P65/P651.5

1

0

0.5

Re
lat

iv
e p

ro
te

in
 le

ve
l

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

⁎⁎ ##

(i)

+HG
GEN
EX-9

+

+

+ +
++
+

GFAP/GAPDH1.5

1

0

0.5

Re
lat

iv
e p

ro
te

in
 le

ve
l

– –
– –

⁎⁎ ##

(j)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

TN
F-
𝛼

 p
ro

te
in

 (p
g/

m
L)

300

200

250

150

50

0

100

⁎⁎ ##

(k)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

IL
-1
𝛽

 p
ro

te
in

 (p
g/

m
L)

1000

800

600

400

200

0

⁎⁎⁎ ##

(l)

+HG
GEN
EX-9

+

+

+ +
++
+

– –
– –

IL
-6

 p
ro

te
in

 (p
g/

m
L)

400

300

200

100

0

⁎⁎ ##

(m)

Figure 5: The protective effects of GEN on HG-stimulated Müller cell activation were abolished by a GLP-1R antagonist. Müller cells were
pretreated with exendin (9-39) (EX-9) before HG or GEN administration. (a, b) The protein expression of Nrf2 in the nucleus and
cytoplasm was measured by western blotting. ∗∗P < 0:01 vs. the HG group and #P < 0:05 vs. the HG+GEN group. (c–e) The protein
expression of HO-1 and NQO1 was measured by western blotting. ∗∗P < 0:01 vs. the HG group and #P < 0:05 vs. the HG+GEN group.
(f) ROS production was measured by an ROS assay kit. (g–j) The protein expression of IκBα, p-IκBα, P65, p-P65, and GFAP was
measured by western blotting. ∗∗P < 0:01 vs. the HG group and ##P < 0:01 vs. the HG+GEN group. (k–m) ELISA was used to measure
the protein levels of TNF-α, IL-1β, and IL-6 in Müller cells. ∗∗P < 0:01 and ∗∗∗P < 0:001 vs. the HG group and ##P < 0:01 vs. the
HG+GEN group. n = 4/group.
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Figure 6: Continued.
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Figures 6(j)–6(m). The levels of GFAP and the secretion of
TNF-α, IL-1β, and IL-6 were significantly increased in
the retinas of mice with diabetes compared with those of
the mice in the normal group. However, GEN decreased
glial reactivity (Figures 6(g) and 6(j)) and inflammatory
cytokine secretion (Figures 6(k)–6(m)) in DR mice but
not in normal mice.

3.8. GEN Decreases Hyperglycemia-Induced Damage to the
BRB. Previous studies have shown that glial activation
followed by inflammatory cytokine secretion are important
factors that damage the BRB in the diabetic retinas [30].
We then investigated the effect of GEN on the BRB in dia-
betic mice. The results showed that the retinal vessels
(marked with isolectin B4) in the diabetic group were tortu-
ous and the exudates were increased, which were reversed by
GEN. Moreover, GFAP expression was increased in the
retinas of DR mice, and this effect was inhibited by GEN
treatment (Figure 7(a)). In DR mice, the expressions of
junction proteins such as VE-cadherin, claudin-5, occludin,
and ZO-1 were decreased, while this decline was abolished
by GEN treatment (Figures 7(b)–7(e)).

4. Discussion

Chronic inflammation and oxidative stress are considered to
be the key components of DR pathogenesis, which is charac-
terized by neuronal and vascular degeneration. Hyperglycemia
leads to massive ROS production in DR [31]. ROS promotes
the production and activation of NF-κB, which in turn trans-
locates to the nucleus and promotes the expression of inflam-
matory cytokines (such as IL-1β and IL-6) [32]. Müller cells
are the main glial cells in the retina and play a central role in
retinal metabolism. These cells are highly sensitive to meta-
bolic changes, such as those associated with diabetes [33].
Moreover, Müller cells have been widely used in the investiga-
tion of DR pathogenesis, and so we used HG-stimulated
Müller cells as an in vitro model to explore the mechanism
of DR. We found that under HG conditions, ROS production
and NF-κB pathway activation were increased in Müller cells

and were significantly attenuated by the ROS scavenger
NAC. Simultaneously, the expressions of the NF-κB down-
stream gene GFAP (a glial activation marker) and inflamma-
tory cytokines, including TNF-α, IL-1β, and IL-6, were
enhanced by HG stimulation, whereas NAC obviously
reversed the effect of HG, suggesting that ROS exert proin-
flammatory effects on Müller cells under HG conditions.
Based on these findings, we conclude that HG promotes
ROS production and induces NF-κB signaling pathway activa-
tion, thereby increasing glial activation and inflammatory
cytokine secretion in HG-stimulated Müller cells.

It has been reported that GEN exerts potent antioxidant
effects to combat various oxidative stress-related diseases,
such as osteoblast diseases [34], nonalcoholic fatty liver
[35], and myocardial ischemia reperfusion in diabetic rats
[36]. According to previous studies, GEN prevents oxidative
stress-induced damage by activating the Nrf2 antioxidant
pathway [20, 37]. Under oxidative stress conditions, the
transcription and synthesis of Nrf2 are increased. Moreover,
oxidative stress can also facilitate the dissociation of Nrf2
from the Keap1-Nrf2 complex, allowing Nrf2 to then bind
with antioxidant response elements, which in turn promotes
Nrf2-mediated regulation of antioxidant genes, such as HO-
1 and NQO1 [38, 39]. In the present study, we explored the
biological function of GEN in DR and the potential mecha-
nisms. We found that GEN pretreatment increased Nrf2
nuclear translocation and the expression of the downstream
genes HO-1 and NQO1. In addition, ROS accumulation was
dose-dependently alleviated by GEN. To further verify that
GEN plays a role via the Nrf2 pathway, Nrf2 was knocked
down by siRNA. The results showed that the GEN-
mediated promotion of HO-1 and NQO1 expression and
the inhibition of ROS production was reversed by Nrf2
knockdown. Based on these results, GEN protects Müller
cells from HG-induced oxidative stress by activating the
Nrf2 antioxidant signaling pathway.

Previous studies have shown that a lack of Nrf2 is asso-
ciated with augmented cytokine production in experimental
models of brain injury [40]. The Nrf2 activator dh404
prevented an increase in diabetes-induced inflammatory
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Figure 6: GEN-mediated activation of the Nrf2 signaling pathway reduces NF-κB activation and decreases GFAP production and
inflammatory cytokine secretion in the retinas of diabetic mice. DR mouse models were treated with or without GEN. (a, b) The protein
expression of Nrf2 in the nucleus was measured by western blotting. ∗∗P < 0:01 vs. the normal group and #P < 0:05 vs. the DM group.
(c–e) The protein expression of HO-1 and NQO1 was measured by western blotting. ∗P < 0:05 and ∗∗P < 0:01 vs. the normal group and
#P < 0:05 vs. the DM group. (f) ROS production was measured by an ROS assay kit. (g–j). The protein expression of IκBα, p-IκBα, P65,
p-P65, and GFAP was measured by western blotting. ∗∗P < 0:01 vs. the normal group and #P < 0:05 vs. the DM group. (k–m) ELISA was
used to measure the protein levels of TNF-α, IL-1β, and IL-6 in the retinas of diabetic mice. ∗∗∗P < 0:001 vs. the normal group and
##P < 0:01 vs. the DM group. n = 4/group.
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mediators, including TNF-α, IL-6, ICAM-1, and MCP-1, in
Müller cells [41]. Moreover, studies on Nrf2-/- mouse
embryonic fibroblasts (MEFs) showed that IKKβ activity
was increased, IκBα phosphorylation was enhanced, and
IκBα was subsequently degraded [42]. The NF-κB inflamma-
tory signaling pathway can be regulated by Nrf2. Wang et al.
confirmed that genipin, a metabolite of GEN, can activate
Nrf2 and thereby inhibit NF-κB activation and inflamma-
tory mediator production in BV2 microglial cells [43]. We
revealed that GEN decreased ROS accumulation by activat-
ing Nrf2. However, whether GEN is involved in inhibiting
NF-κB activation and inflammatory mediator production
in Müller cells remains unknown. In this study, we found
that GEN inhibited the activation of NF-κB and the down-

stream gene GFAP and inflammatory cytokines (TNF-α,
IL-1β, and IL-6) in a concentration-dependent manner.
Furthermore, Nrf2 knockdown reversed the anti-glial and
anti-inflammatory effects of GEN on HG-stimulated Müller
cells, suggesting that GEN could also inhibit the activation of
NF-κB and the downstream gene GFAP and inflammatory
cytokines (TNF-α, IL-1β, and IL-6), which are mediated
through the Nrf2 antioxidant pathway.

In recent years, GLP-1R agonists have been shown to be
effective and safe treatments for diabetes and diabetic com-
plications [44]. GLP-1R activation exerts both neuroprotec-
tive and vasculotropic effects to prevent vascular leakage in
the context of DR [44]. Moreover, GLP-1R is distributed dif-
fusely in the retina [45]. Therefore, we next explored
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Figure 7: GEN decreased hyperglycemia-induced damage to the blood-retinal barrier (BRB). The mice in the normal and DM groups were
treated with GEN. (a) Immunofluorescence was used to detect isolectin B4 (green) and GFAP (red) in the whole-mount retinas. White
arrows show the exudate. (b–e) qRT-PCR was used to measure the mRNA expression of junction proteins, including VE-cadherin,
claudin-5, occludin, and ZO-1, in the retinas of mice. n = 4/group.
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whether GEN functioned in a GLP-1R-dependent manner,
since GEN is a novel agonist of GLP-1R. We confirmed that
GEN treatment was beneficial and inhibited HG-induced
oxidative stress and inflammation. GEN promoted Nrf2
nuclear translocation and the expression of the downstream
genes HO-1 and NQO1, while EX-9 (GLP-1R antagonist)
attenuated the inhibitory effect of GEN on oxidative stress.
Additionally, GEN suppressed NF-κB pathway activation,
GFAP expression, and inflammation-associated cytokine
secretion, and these effects were reversed by EX-9. To the
best of our knowledge, this is the first report to confirm that
the protective effects of GEN against DR are mediated
through GLP-1R.

In conclusion, we demonstrated that GEN could protect
Müller cells and mice from HG-induced oxidative stress and
inflammation, and the effects were mostly dependent on
upregulating the Nrf2 signaling pathway through GLP-1R.
The activation of Nrf2 inhibited ROS accumulation, thus
decreasing NF-κB activation and the subsequent gliosis and
inflammatory response (Figure 8). Moreover, GEN treat-
ment alleviated the decrease in the expression of junction
proteins and may be an effective approach for the treatment
of DR.
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