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Background. The mitochondrial dynamics and mitochondrial biogenesis are essential for maintaining the bioenergy function of
mitochondria in diabetic cardiomyopathy (DCM). Previous studies have revealed that secreted frizzled-related protein 2
(SFRP2) is beneficial against apoptosis and oxidative stress. However, no research has confirmed whether SFRP2 regulates
oxidative stress and apoptosis through mitochondrial function in DCM. Methods. Exposure of H9C2 cardiomyocytes in
high glucose (HG) 25mM and palmitic acid (PAL) 0.2mM was used to simulate DCM in vitro. H9C2 cells with SFRP2
overexpression or SFRP2 knockdown were constructed and cultured under glucolipotoxicity or normal glucose conditions.
An SD rat model of type 2 diabetes mellitus (T2DM) was generated using a high-fat diet combined with a low-dose STZ
injection. Overexpression of SFRP2 in the rat model was generated by using an adeno-associated virus approach. CCK-8,
TUNEL assay, and DHE staining were used to detect cell viability, and MitoTracker Red CMXRos was used to detect
changes in mitochondrial membrane potential. We used qRT-PCR and western blot to further explore the mechanisms of
SFRP2 regulating mitochondrial dynamics through the AMPK/PGC1-α pathway to improve diabetic cardiomyocyte injury.
Results. Our results indicated that SFRP2 was significantly downregulated in H9C2 cells and cardiac tissues in T2DM
conditions, accompanied by decreased expression of mitochondrial dysfunction. The mitochondrial membrane potential was
reduced, and the cells were led to oxidative stress injury and apoptosis. Furthermore, the overexpression of SFRP2 could
reverse apoptosis and promote mitochondrial function in T2DM conditions in vitro and in vivo. We also found that
silencing endogenous SFRP2 could further promote glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in
cardiomyocytes, accompanied by downregulation of p-AMPK. Conclusion. SFRP2 exerted cardioprotective effects by
salvaging mitochondrial function in an AMPK-PGC1-α-dependent manner, which modulates mitochondrial dynamics and
mitochondrial biogenesis, reducing oxidative stress and apoptosis. SFRP2 may be a promising therapeutic biomarker in DCM.

1. Introduction

Diabetes and its complications have become a public health
issue of great concern. The leading cause of death in diabetic
patients is cardiovascular disease [1]. Our previous studies
also showed that even if the blood glucose level is in the pre-
diabetic population, the risk of long-term cardiovascular
events and all-cause death is significantly increased [2, 3].
Diabetic cardiomyopathy (DCM) is a common cardiovascu-

lar complication of diabetes. It is considered the main factor
for the high incidence and mortality of heart failure in dia-
betic patients [4].

Glucolipotoxicity stimulates myocardial cells to increase
the production of reactive oxygen species (ROS), which is an
important cause for the development of DCM [5–8]. Mito-
chondria are dynamic organelles that undergo frequent mor-
phological changes through fusion and fission [4, 9]. Some
studies have found that hyperglycemia and hyperlipidemia
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can influence mitochondrial dynamics and mitochondrial
biogenesis [10, 11]. Glucolipotoxicity can cause a decrease
in mitochondrial fusion and an increase in mitochondrial
fission [12, 13], while inhibiting mitochondrial fission can
reduce ROS production caused by high glucose [14].

Secreted frizzled-related protein 2 (SFRP2) is a secreted
protein, which exists in the cell cytoplasm and cell matrix.
SFRP2 has been shown to play a protective role in various
cardiovascular diseases [15–17]. We have found that SFRP2
could reduce myocardial damage and myocardial cell apo-
ptosis in vivo and in MI rat model [18]. Furthermore, we
found that the level of SFRP2 was positively associated with
myocardial fibrosis, evaluated by cardiovascular magnetic
resonance [19]. However, it remains unclear whether SFRP2
is a risk factor or a protective compensatory marker of myo-
cardial fibrosis. At present, there are few studies that involve
the role of SFRP2 in regulating mitochondrial function, and
it is still controversial whether the role of SFRP2 in mito-
chondrial fusion is positive or negative [20, 21]. Given the
important role of mitochondrial fusion in diabetic cardio-
myopathy, we speculate that SFRP2 may regulate and
improve mitochondrial fusion to reduce cardiomyocyte
damage caused by high glucose.

Therefore, the aims of the present study were (1) to clar-
ify the molecular signaling of glucolipotoxicity that leads to
impaired mitochondrial dynamics and mitochondrial bio-
genesis of cardiomyocytes and (2) to verify whether SFRP2
can reduce the oxidation stress, apoptosis, and mitochon-
drial dynamics and mitochondrial biogenesis of cardiomyo-
cytes caused by glucolipotoxicity and illustrate the
underlying mechanisms.

2. Materials and Methods

2.1. Cell Culture. The rat cardiomyocyte cell line H9C2 was
purchased from the Cell Bank of Chinese Scientific Academy
(Shanghai, China). H9C2 cells were cultured in DMEM
(Gibco, USA) media supplemented with 10% fetal bovine
serum (Gibco, USA) and 50U/mL penicillin and 50μg/mL
streptomycin. Cells were maintained in a standard humidi-
fied incubator at 37°C with 5% CO2. The culture media were
changed every second day. We added 25mM glucose and
0.2mM palmitic acid (PAL, Sigma, USA) to the medium in
the high-glucose group. 5mM glucose was added to the cells
in the control group. The cells were cultured for 48 h and
used for further experiments.

2.2. Expression Vector and Transfection. The cDNA of rat
Sfrp2 was PCR-amplified and cloned into LV-003 lentivirus
vector (Forevergen Biosciences Center, Guangzhou, China).
According to the manufacturer’s recommendations, trans-
fection was performed using Lipofectamine™ 3000 reagent
(Thermo Fisher Scientific, Waltham, MA, USA). The lentivi-
ral vector and packaging vector were cotransfected into 293T
cells to produce recombinant lentivirus. H9C2 cells were
exposed to recombinant lentivirus and cultured in a medium
containing 2μg/mL puromycin to generate H9C2-SFRP2
and an empty vector expressing H9C2 (H9C2-EGFP). To
confirm the efficiency of transfection of SFRP2 lentivirus,

H9C2-EGFP and H9C2-SFRP2 were used to detect by qPCR
and western blot, respectively.

2.3. Cell Viability. Cell viability was tested by Cell Counting
Kit-8 (CCK-8). The H9C2 cells were seeded in 96-well plates
at a concentration of 3000 cells/well. The cells received treat-
ment with 5mM glucose or 25mM glucose and 0.2mM PAL
for 24, 48, and 72h. Subsequently, 10μL was added to each
well of CCK-8 immediately, and the cells were incubated
for 2 h at 37°C. The absorbance was read at 450 nm on a
microplate reader.

2.4. Animal Model. An SD rat model of T2DM was gener-
ated using a high-fat diet combined with low-dose STZ
injection [22–25]. Forty adult male Sprague–Dawley (SD)
rats (220–250 g) received the adaptive feeding by two weeks.
There were ten rats in the WT group which continued to
receive a normal diet. The remaining rats were fed with a
high-fat diet. After 4 weeks of feeding, the rats were intraper-
itoneally injected with 30mg/kg STZ to induce a model of
T2DM. Animals with fasting blood glucose (FBG) levels
higher than 16.7mmol/L three days after the STZ injection
were considered as successful T2DM models. Adeno-
associated viruses expressing SFRP2 or EGFP were ordered
from Hanbio Biotechnology Co. Ltd. (Shanghai, China).
After the diabetes model was built, ten experimental rats in
the DCM-EGFP group were injected with AAV-EGFP and
ten experimental rats in the DCM-SFRP2 group were
injected with AAV-SFRP2 via the tail vein, resulting in a
model of control group or overexpression of SFRP2. The
ten experimental rats left were the DCM group. The effi-
ciency of virus infection and the expression of SFRP2 in rats
were further confirmed by qPCR.

2.5. Hematoxylin-Eosin (HE) or Masson’s Trichrome
Staining. Cardiac tissue of each group was isolated from rats
and fixed with 4% paraformaldehyde. The tissue was embed-
ded in paraffin and cut into sections (4μm). Then, we
observed the pathological and morphological changes of
the myocardial tissue of each group by hematoxylin-eosin
(HE) under an optical microscope (Olympus, Tokyo, Japan).
Masson’s trichrome staining of paraffin-embedded cardiac
tissue from rats was performed to examine the myocardial
fibrosis. The degree of the myocardial fibrosis in Masson’s
trichrome staining sections was determined using ImageJ
software.

2.6. TUNEL Assay. H9C2 cells or cardiac ventricle tissues
were analyzed for apoptosis with terminal transferase UTP
nick end labeling (TUNEL) assay. The H9C2 cells in the
12-well plate or cardiac ventricle tissues were washed with
PBS and fixed with 4% paraformaldehyde for 30 minutes.
After being washed with PBS, the samples were added
0.3% Triton X-100 PBS mixture and incubated at room tem-
perature for 5min. Then, we added 50μL of TUNEL detec-
tion solution prepared in advance to the samples, and they
were incubated for 60min at 37°C in the dark. Further, we
added DAPI to mount the slide and observe under a fluores-
cence microscope.
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2.7. Measurement of ROS Level. To assess ROS of the H9C2
cells, a ROS Assay Kit (Beyotime Biotechnology, China) was
used to detect intracellular reactive oxygen species. H9C2
cells were incubated with 5μM DHE at 37°C for 30min in
a dark incubator. Then, fluorescence microscopy was used
to examine the fluorescence.

2.8. Western Blot. Western blot analysis was performed as
described previously [18, 26]. Total proteins from the
H9C2 cells and cardiac tissue of rats were lysed by the RIPA
buffer (Beyotime, P0013B) according to the manufacturer’s
instructions. Protein concentration was determined using a
BCA Protein Assay Kit (Beyotime, P0011). After being
boiled, protein lysates (30μg protein per sample) were
loaded. Proteins were separated by sodium dodecyl sulfate
polyacrylamide gels (SDS-PAGE) and transferred onto the
PVDF membrane. The membranes were blocked with 5%
fat-free milk. After washing, the membranes were probed
with primary antibodies overnight at 4°C. After incubation
with their corresponding secondary antibody for 1 h at room
temperature, protein bands were visualized with chemilumi-
nescence (ECL; Forevergen Biosciences Center, Guangzhou,
China). Blots were quantified by densitometric scanning.
The level of protein expression was normalized against actin
controls.

2.9. Quantitative Real-Time PCR. Myocardial gene expres-
sion of Sfrp2 was performed by quantitative real-time PCR
(qRT-PCR). Total RNA was extracted using the TRIzol
reagent (Life Technologies). The RNA samples reverse-
transcribed to cDNA using an RNA reverse were transcribed
with Maxima First Strand cDNA Synthesis Kit (Takara,
Dalian, China). The primers used were as follows: forward
5′-CATGGGACAGAAACAGGGTGGA-3′ and reverse 5′-
GAGGTCGCAGAGTGGAAGTGGT-3′ for Sfrp2; forward
5′-GTATCGGACGCCTGGTTAC-3′ and reverse 5′-
ACTGGAACATGTAGACCATGTAGTT-3′ for GAPDH.

2.10. Mitochondrial Membrane Potential. MitoTracker Red
CMXRos (mitochondrial red fluorescent probe) can specifi-
cally label the biologically active mitochondria in the cell and
detect the mitochondrial membrane potential (MMP). The
cells were spread in a 12-well plate and treated with normal
glucose or HG and PA for 48 h. After treatment, the plate
was incubated in MitoTracker Red CMXRos staining solu-
tion (0.2μM) at 37°C for 30min. Subsequently, the plates
were replaced with the fresh cell culture medium. A fluores-
cence microscope was used to observe the cells. The MMP
was calculated as the fluorescence intensity ratio.

2.11. Immunofluorescence Staining. For immunofluores-
cence staining, cells were placed on culture slides, fixed by
4% paraformaldehyde for 30min, then permeated with
0.1% Triton X-100 for 30min, and blocked with 2% BSA
for 60min at room temperature. Subsequently, the primary
antibodies were incubated at 4°C overnight, followed by
incubation with secondary antibodies for 60min at room
temperature. Nuclei were counterstained with DAPI. Finally,
the images were examined with a fluorescence microscope.

2.12. Statistical Analysis. All experiments were performed at
least three times. Data were analyzed using GraphPad Prism
v.6 (GraphPad Software Inc., La Jolla, CA, USA). The data
are presented asmean ± SD. We used Student’s t-test to ana-
lyze the differences between the groups. A value of P < 0:05
was considered to indicate statistically significant differences
between groups.

3. Results

3.1. Glucolipotoxicity Increased Oxidative Stress and
Promoted Apoptosis in H9C2 Cardiomyocytes. To investigate
the detrimental effect of glucolipotoxicity on H9C2 cells, a
cohort of H9C2 cells was treated with 25mM glucose and
0.2mM PAL for 24, 48, and 72 h. As shown in Figure 1(a),
H9C2 cells with HG and PAL exhibited decreased cell viabil-
ity at every time point. Compared with normal conditions,
an increase of ROS was observed in cells treated with gluco-
lipotoxicity for 48h (Figure 1(b)). Glucolipotoxicity for 48 h
significantly increased cell death in cultured H9C2 cardio-
myocytes (Figure 1(c)). BAX, BCL-2, CASPASE-3, and C-
CASPASE-3 are apoptosis-related factors [27]. After glucoli-
potoxicity stimulation for 48 h, BAX and C-CASPASE-3
protein expressions were upregulated while BCL-2 was
downregulated (Figure 1(d)). Taken together, these results
demonstrated that glucolipotoxicity increased oxidative
stress and promoted apoptosis in H9C2 cells.

3.2. Glucolipotoxicity Induced Mitochondrial Dysfunction in
H9C2 Cardiomyocytes. Mitochondrial membrane potential
levels of the H9C2 cells treated with glucolipotoxicity were
evaluated by MitoTracker Red CMXRos [28]. In the glucoli-
potoxicity group, mitochondrial membrane potentials
decreased, compared with the control (Figure 2(a)). As
shown in Figures 2(b) and 2(c), the expression of the
DRP1 and FIS1 protein was also increased progressively
after treatment with glucolipotoxicity stimulation for 48 h,
while the expression of MFN1 and MFN2 significantly
decreased by western blot and immunofluorescence analysis.
Furthermore, we found PGC1-α downregulated in a glucoli-
potoxic milieu, accompanied by a downregulation of NRF1
and TFAM (Figure 2(d)). We also detected mitochondrial
respiratory chain protein and ATP. The level of NDUFA9,
SDHA, and ATP5A and the level of ATP were decreased
in the glucolipotoxic milieu. These findings confirmed that
glucolipotoxicity stimulation could cause mitochondrial dys-
function in H9C2 cardiomyocytes.

3.3. Identification of SFRP2 as a Potential Regulator of DCM.
We measured the mRNA and protein levels of SFRP2, which
might change in H9C2 cells exposed to glucolipotoxicity.
The real-time PCR analysis revealed that the mRNA levels
of Sfrp2 significantly decreased in H9C2 cells with glucolipo-
toxicity (Figure 3(a)). Western blotting also showed a signif-
icant decrease in the level of the SFRP2 protein in the
glucolipotoxic milieu. These results suggest that the level of
SFRP2 protein was significantly reduced compared to that
in the control group (Figure 3(b)).
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3.4. Overexpression of SFRP2 Ameliorates Glucolipotoxicity-
Induced Mitochondrial Dysfunction and Apoptosis in
Cardiomyocytes. To clarify a causal relationship between
SFRP2 and mitochondrial dysfunction and apoptosis in car-
diomyocytes with glucolipotoxicity, we established an over-
expression SFRP2 cell model and its control group and
verified that the expression level of SFRP2 in H9C2-SFRP2
was higher than that in H9C2-EGFP cells (Figures 4(a) and
4(b)). Overexpression of SFRP2 can reverse the decrease in

cell viability and reverse the oxidative stress damage caused
by glucolipotoxicity (Figures 4(c) and 4(d)). To understand
the function of mitochondria, we tested the changes in
MMP and analyzed the expression of mitochondrial dynam-
ics proteins after glucolipotoxicity treatment between H9C2-
EGFP and H9C2-SFRP2 cells. The level of mitochondrial
membrane potential in H9C2-EGFP was significantly lower
than that in H9C2-SFRP2 (Figure 4(e)). H9C2-SFRP2 cells
exhibited higher levels of MFN1 and MFN2 and lower levels

24 48 72
0

50

100

150

Ce
ll 

V
ia

bi
lit

y 
(%

)

Time (hour)

⁎⁎

⁎

⁎⁎⁎

Control
HG+PAL

(a)

Control HG+PAL

(b)

Control

HG+PAL

DAPI MergeTUNEL

(c)

BAX BCL 2
0

1

2

3

4

Re
la

tiv
e E

xp
re

ss
io

n

C-CASPASE 3

⁎

⁎⁎

⁎

Control
HG+PAL

BAX

BCL 2

CASPASE 3

ACTIN

C-CASPASE 3

Contro
l

HG+PAL

(d)

Figure 1: Glucolipotoxicity increased oxidative stress and promoted apoptosis in H9C2 cardiomyocytes. (a) Cell viability of H9C2
cardiomyocytes, treated with 25mM glucose and 0.2mM PAL for 24, 48, and 72 h, was measured by CCK-8. (b) The H9C2
cardiomyocytes were treated with indicated concentrations of HG and PAL for 48 h, and intracellular ROS was detected by DHE
staining. (c) The apoptotic cells were detected by TUNEL assay. (d) Western blot analysis of BAX, BCL-2, CASPASE-3, and C-
CASPASE-3 expressions in H9C2 cells treated with indicated concentrations of HG and PAL for 48 h. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Figure 2: Continued.
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of FIS1 and DRP1 compared to H9C2-EGFP (Figures 4(f)
and 4(g)). The related indicators of mitochondrial biogenesis
PGC1-α and TFAM in H9C2-SFRP2 with the glucolipotoxic
milieu were significantly higher than those of the control
group, accompanied by increased expression of NRF1

(Figure 4(h)). Meanwhile, the mitochondrial respiratory
chain protein NDUFA9, SDHA, and ATP5A and the ATP
level were increased in H9C2-SFRP2 than H9C2-EGFP
(Figures 4(i) and 4(j)). As expected, SFRP2 overexpression
improving apoptosis was observed by TUNEL assay and
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Figure 2: Glucolipotoxicity induced mitochondrial dysfunction in H9C2 cardiomyocytes. (a) The mitochondrial membrane potential levels
of H9C2 cells treated with HG (25mM) and PAL (0.2mM) were evaluated by MitoTracker Red CMXRos. (b) The mitochondrial dynamics
markers, DRP1, FIS1, MFN1, and MFN2, were detected by western blot analysis. (c) Immunofluorescence analysis was performed to detect
the expression level of DRP1, FIS1, MFN1, and MFN2. (d) Western blot analysis of PGC1-α, NRF1, and TFAM expressions in H9C2 cells
treated with HG and PAL for 48 h. (e) Mitochondrial respiratory chain proteins NDUFA9, SDHA, and ATP5A were detected by western
blot. (f) The ATP level was analyzed. ∗P < 0:05; ∗∗P < 0:01.
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western blot analysis (Figures 4(k) and 4(l)). Furthermore,
SFRP2 overexpression activated AMPK phosphorylation,
which might be the mechanism by which SFRP2 improves
mitochondrial function and apoptosis (Figure 4(m)).

3.5. Knockdown of SFRP2 Promoted Glucolipotoxicity-
Induced Mitochondrial Dysfunction and Apoptosis in
Cardiomyocytes. To further verify the role of SFRP2 on pro-
moting glucolipotoxicity-induced mitochondrial dysfunc-
tion and apoptosis in cardiomyocytes, we established
H9C2-shCON and H9C2-shSFRP2 cells and confirmed the
successful establishment of the cell model (Figures 5(a) and
5(b)). The results of CCK-8 showed that H9C2-shSFRP2
exhibited lower cell viability and more severe oxidative stress
than H9C2-shCON after exposure to the glucolipotoxic
milieu (Figures 5(c) and 5(d)). To investigate whether
SFRP2 stimulates mitochondrial dynamics and mitochon-
drial biogenesis in cultured cardiomyocytes in response to
glucolipotoxicity treatment, we also tested the MMP and
the expression levels of mitochondrial fusion and fission
proteins under the condition of knocking down SFRP2.
Experimental results showed that H9C2-shSFRP2 has lower
MMP, higher expression levels of FIS1 and DRP1, and lower
expression levels of MFN1 and MFN2 than the control
group (Figures 5(e)–5(g)). After exposure to the glucolipo-
toxic milieu, the expression levels of PGC1-α and TFAM
in the H9C2-shSFRP2 group were significantly lower than
those in the control group, while NRF1 was higher than that
in the control group (Figure 5(h)). SFRP2 knockdown fur-

ther aggravated cardiomyocyte apoptosis (Figures 5(i) and
5(j)). Last, SFRP2 knockdown inhibited AMPK phosphory-
lation (Figure 5(k)). These results further suggested that
SFRP2 may be a key molecule to improve mitochondrial
function and apoptosis through the AMPK pathway.

3.6. Overexpression of SFRP2 Ameliorates Mitochondrial
Dysfunction and Apoptosis In Vivo. We next evaluated the
therapeutic potential of SFRP2 in vivo. After separating the
heart tissue, H&E and Masson staining was performed. As
shown in Figure 6(a), the cardiac tissues of the wild-type
(WT) group were neatly arranged with uniform cell nuclei
and only a small amount of collagen fibers was deposited, while
the myocardial tissue of the DCM group was disordered, the
nucleus size was uneven, and a large amount of collagen fibers
was deposited. However, after injection of AAV-SFRP2 through
the tail vein, these changes in the myocardium can be reversed.
The level of SFRP2 in the DCM group was significantly lower
than that in the WT group (Figure 6(b)). Furthermore, DCM
rats showed lower BCL-2 and MFN1 levels and higher BAX
and FIS1 levels. Consistent with the results of cell experiments
in vivo, the levels of BCL-2 and MFN1 in the DCM-SFRP2
group were significantly higher than those in the DCM-EGFP
group, while BAX and FIS1 were significantly lower than those
in the DCM-EGFP group (Figure 6(c)). In addition, we also
found that cardiomyocyte apoptosis was exacerbated by diabe-
tes mellitus, while treatment with SFRP2 reduced cardiac cell
apoptosis (Figure 6(d)). These data suggested that SFRP2 could
reduce cardiac damage and protect cardiac function in vivo.
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4. Discussion

In this study, we discovered that SFRP2 improves mitochon-
drial function and quality control through the AMPK-
PGC1-αα axis, thereby protecting cardiomyocytes against
oxidative stress and apoptosis induced by glucolipotoxicity

in vitro and in vivo (Figure 7). These beneficial effects of
SFRP2 on mitochondria may play a role in hyperglycemia
and hyperlipidemia-induced cardiac remodeling and
dysfunction.

High glucose can cause oxidative stress and apoptosis of
cardiomyocytes [6, 29]. The utilization of glucose by
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Figure 4: Overexpression of SFRP2 ameliorates glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes. (a,
b) qRT-PCR and western blot were used to detect the overexpression of SFRP2 in H9C2-EGFP and H9C2-SFRP2 cells. (c) Cell viability of
H9C2-EGFP and H9C2-SFRP2, treated with 25mM glucose and 0.2mM PAL for 24, 48, and 72 h, was measured by CCK-8. (d) The
intracellular ROS was detected by DHE staining. (e) The mitochondrial membrane potential levels of the H9C2-EGFP and H9C2-SFRP2
cells treated with the indicated concentrations of HG and PAL were evaluated by MitoTracker Red CMXRos. (f) Western blot analysis of
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cardiomyocytes decreased in diabetes, which was conducive
to the β-oxidation of free fatty acids (FFA). In insulin resis-
tance, the lipolysis of adipose tissue is enhanced, leading to
an increase in circulating FFA. However, the continuous rise
of FFA has a negative effect on myocardial function and
eventually leads to increased mitochondrial ROS production
and cell apoptosis [30–32]. Corresponding with previous
studies, we found that the glucolipotoxic milieu can increase
ROS in cardiomyocytes and cause apoptosis in vitro and
in vivo [33–35].

SFRP2 has been reported to have beneficial properties
against apoptosis [15, 18, 21, 36] and oxidative stress [21,
36, 37]. Merino et al. found that SFRP2 have valuable thera-
peutic potential in reversing doxorubicin-induced oxidative
stress and apoptosis in soleus muscle [36]. In our previous
study, we observed that SFRP2 is an independent biomarker
for myocardial fibrosis [18]. In this study, we observed that
the expression of apoptosis proteins was decreased, and anti-

apoptotic protein was increased in type 2 diabetes (T2D)
models, accompanied with reduced cell apoptosis in overex-
pressing SFRP2 cells. The opposite results were observed
after knocking down SFRP2. These findings suggested that
SFRP2 can improve oxidative stress and apoptosis of cardio-
myocytes under the glucolipotoxic milieu. Combined with
our early findings, it is more supportive that SFRP2 is a com-
pensatory protective response of heart failure.

The mitochondrial dynamics and mitochondrial biogen-
esis are very important for maintaining the bioenergy func-
tion of mitochondria [38]. The increased fusion or
decreased fission promotes the formation of an extended
mitochondrial network, and the decreased fusion or
increased fission leads to the fragmentation of mitochondria
[39]. The imbalance of mitochondrial fusion and fission
played a key role in the mechanism for myocardial injury
in diabetes mellitus [10, 40]; mitochondrial dysfunction
seems to be an important target for therapy to improve
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Figure 5: Knockdown of SFRP2 promoted glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes. (a, b)
qRT-PCR and western blot were used to detect the expression of Sfrp2 in H9C2-shCON and H9C2-shSFRP2 cells. (c) Cell viability of
H9C2-shCON and H9C2-shSFRP2, treated with 25mM glucose and 0.2mM PAL for 24, 48, and 72 h, was measured by CCK-8. (d) The
intracellular ROS was detected by DHE staining. (e) The mitochondrial membrane potential levels of the H9C2-shCON and H9C2-
shSFRP2 cells treated with the indicated concentrations of HG and PAL were evaluated by MitoTracker Red CMXRos. (f) Western blot
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cardiac function directly [41]. After abnormal glycolipid
exposures, we observed that the mitochondrial membrane
potential and intracellular ATP concentration were reduced.
Mitochondrial fusion was decreased, while the mitochon-
drial fission was increased. Simultaneously, the mitochon-
drial oxidative phosphorylation was impaired in
cardiomyocyte [12, 42]. We also found the imbalance of

mitochondrial dynamics in T2D rat, but the opposite result
was observed in H9C2 cells overexpressing SFRP2 and
DCM-SFRP2 rats. These results suggest that SFRP2 can
improve mitochondrial function.

PGC1-α is a critical regulator of oxidative metabolism,
which is involved in maintaining mitochondrial biogenesis
and function [43]. Previous studies showed that PGC1-α

TUNEL DAPI Merge
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DCM-SFRP2

(d)

Figure 6: Overexpression of SFRP2 ameliorates mitochondrial dysfunction and apoptosis in vivo. (a) Representative images of heart muscle
stained with H&E and Masson. (b) The mRNA expression of Sfrp2 was detected by qRT-PCR. (c) The expression levels of BAX, BCL-2,
MFN1, and FIS1 were determined by western blot. (d) Representative images of TUNEL staining show cardiac cell apoptosis. ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001.
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furthermore activate PGC1-α. PGC1-α improves mitochondrial dynamics through regulating mitochondrial dynamics-related proteins
and promotes mitochondrial biogenesis activating NRF1 and TFAM.
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ameliorated cardiac dysfunction and mitochondrial injury in
DCM [44, 45], to further prove that PGC1-α could activate
NRF1 and TFAM to promote mitochondrial biogenesis.
Carvedilol, a third-generation and nonselective β-adreno-
ceptor antagonist, could stimulate mitochondrial biogenesis
via the PGC1-α-NRF1-TFAM pathway and then increase
oxygen consumption and mitochondrial respiratory rate in
human umbilical vein endothelial cells (HUVEC) [46]. We
also observed an increase in PGC1-α expression with over-
expression of SFRP2, accompanied by an increase in NRF1
and TFAM expression.

AMPK is a key regulator of cardiac energy metabolism,
which plays an important role in reducing oxidative stress
[47, 48] and antiapoptosis [47, 49, 50] of cardiomyocytes.
Additionally, in cultured cardiomyocytes, treatment with
recombinant FGF21 counteracted HG-induced oxidative
stress, mitochondrial dysfunction, and inflammatory
responses, leading to increased AMPK activity expression.
However, these beneficial effects of FGF21 were markedly
weakened by the genetic blockage of AMPK [51]. Previous
findings revealed that AMPK could act as an upstream
kinase and activate the expression of PGC1-α directly [43].
In our study, we observed that exposure of H9C2 cells to
the glucolipotoxic milieu reduced AMPK and PGC1-α activ-
ity. Overexpression of SFRP2 could activate the AMPK-
PGC1a pathway and improve the mitochondrial function
of cardiomyocytes under glycolipid toxicity, while SFRP2
was knocked down, the opposite results were observed.

There are several limitations in our study. Firstly, the
major findings in our studies were based on cell and rat
model. It is still unknown whether they occur in clinical con-
ditions. Secondly, our experiments were particularly focused
on the regulatory effects of SFRP2 on mitochondrial dynam-
ics and mitochondrial biogenesis, but we did not pay atten-
tion to other functions of mitochondria, such as
mitochondrial autophagy. Lastly, we still do not know how
SFRP2 regulates the specific mechanism of AMPK, which
needs further research.

5. Conclusion

Our findings verified the value of SFRP2 in a novel
mitochondria-relevant mechanism that mediated cardiopro-
tection via activation of the AMPK-PGC1-α signaling path-
way in the diabetes-induced cardiac dysfunction. SFRP2
directly regulates the expression of PGC1-α through the
AMPK signaling pathway and therefore improves the mito-
chondrial dynamics and mitochondrial biogenesis of dia-
betic cardiomyocytes and the oxidative stress and apoptosis
of cardiomyocytes. These findings identify SFRP2-
modulated mitochondrial fusion as a potential target for
treating cardiac dysfunction.
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