Corrigendum

Corrigendum to “Myricetin Possesses Potential Protective Effects on Diabetic Cardiomyopathy through Inhibiting IκBa/NFκB and Enhancing Nrf2/HO-1”

Hai-han Liao,1,2,3 Jin-xiu Zhu,1,2,3 Hong Feng,4 Jian Ni,1,2,3 Nan Zhang,1,2,3 Si Chen,2,3 Huang-jun Liu,1,2,3 Zheng Yang,1,2,3 Wei Deng,1,2,3 and Qi-Zhu Tang1,2,3

1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
2Cardiovascular Research Institute of Wuhan University, Wuhan, China
3Hubei Key Laboratory of Cardiology, Wuhan, China
4Department of Gerontology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Correspondence should be addressed to Qi-Zhu Tang; qztang@whu.edu.cn

Received 20 April 2021; Accepted 20 April 2021; Published 4 May 2021

Copyright © 2021 Hai-han Liao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled “Myricetin possesses potential protective effects on diabetic cardiomyopathy through inhibiting IκBa/NFκB and enhancing Nrf2/HO-1” [1], an error was identified in Figure 8(b) where the same original blots were mistakenly used for T-Nrf2 and HO-1 when preparing the image. The authors have provided the correct images for T-Nrf2 and HO-1 and the revised Figure 8 is as below:
Figure 8: Myricetin regulated the expression of Nrf2 and HO-1 in neonatal rat cardiomyocytes (NRCM). (a) Myricetin enhanced the expression and nuclei translocation of Nrf2 after 36 h treatment with or without high glucose. (b) Representative blots showed the expression of Nrf2 and HO-1. (c–e) Histogram showed the fold change of T-Nrf2, Nuc-Nrf2, and HO-1; all of the proteins were normalized to GAPDH or histone 3 before relative quantitative analysis, and all experiments were repeated 3 times independently. Data were presented as means ± SD. *P < 0.05 as compared with CON, and #P < 0.05 as compared with HG group.

References