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Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in
oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various
physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied
at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental
cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways
triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect
is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly
governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD)
that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the
immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint
immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer
lesions systemically is also discussed.

1. Introduction

Cold physical plasma is a partially ionized gas operated at or
around body temperature [1], and the term “plasma” in this
work relates to this gas plasma and not to the protein-rich
liquid of blood plasma. Physical plasmas are multicompo-
nent systems as several plasma properties are described,
including electrons and ions, electric fields, mild thermal
and UV radiation, and reactive oxygen and nitrogen species.
The latter will be abbreviated as ROS hereafter as most RNS
also contain oxygen. It was recently outlined that ROS are
major biomedical effectors of physical plasma treatment in
biology and medicine [2].

Physical plasma is produced by different types of plasma
devices such as the plasma jet [3–8], dielectric barrier dis-
charge (DBD) [9–13], floating-electrode dielectric barrier
discharge (FE-DBD) [14, 15], atmospheric pressure glow
discharge torch (APGD-t) [16, 17], plasma brush [18],
microhollow cathode discharge air plasma jet [19], micro-
wave plasma torch [20], and nanosecond plasma gun [21].
Plasma jets and DBDs are particularly suitable for biomedi-
cal applications as these devices have already entered clinical
practice [22]. The first report of using plasma in oncology
was published in 2007 by showing the inactivation of mela-
noma cells in vitro following plasma treatment [14]. After
that, more studies provided evidence of the anticancer
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capacity of plasma in several cancer types such as the brain
[23–25], skin [26–29], breast [30–34], colorectal [35–37],
lung [38–40], cervical [41–43], leukemia [44–48], pancreatic
[49–54], liver [55–57], and head and neck [58–60]. Because
of altered metabolism and mitochondrial dysfunction, can-
cer cells are often found to produce more intracellular ROS
than nonmalignant cells [61–63]. In some studies, enhanced
intracellular ROS in cancer cells makes them more suscepti-
ble to cell death induced by extracellular ROS [64, 65].
Among the extracellular ROS generated via plasma are
superoxide anion, hydrogen peroxide, peroxynitrite, nitrite,
nitrate, hydroxyl radicals, atomic oxygen, ozone, and singlet
delta oxygen [66]. One hypothesis is that aquaporin trans-
porters [67, 68] and lower levels of cholesterol in the mem-
brane of cancer cells compared to a nonmalignant cell [69]
increase the permeation of ROS through the cancer cell
membrane, presumably via lipid peroxidation [70, 71]. As
a result, more plasma-produced ROS are being transported
to cancer cells, ultimately augmenting cell death. Cell death
is a consequence of intracellular signaling regulated by
pathways such as signal transducer and activator of tran-
scription 3 (STAT3), MAP-kinase (MAPK) [72], and phos-
phatidylinositol 3-kinases (PI3K) via AKT (protein kinase
B) [73]. Thus, plasma treatment can selectively target cancer
cells because of their unique properties [67, 69].

Moreover, several pharmacological and physics approaches
have been combined with plasma treatment to additively or
synergistically augment toxicity in cancer cells. This includes
radiotherapy [74–76], pulsed electric fields [77, 78], hyper-
thermia [79], photodynamic therapy [80], established anti-
cancer drugs [81–85], and novel anticancer compounds
[86, 87] including nanoparticles and emulsions [88–103].
This current will not focus on these aspects due to the
broad nature of the combination approaches. Instead,
plasma treatment has been described to directly or indi-
rectly affect the immune system’s cells, which may be har-
nessed in antitumor therapy [104], and current concepts
are described that address this framework. Altogether, this
review is aimed at unfolding the mechanisms, pathways,
and immune-related activities involved in plasma cancer
therapy.

2. Plasma Devices in Cancer Treatment

Analyzing plasma devices from different perspectives,
including assessing their safety aspects, the capacity of ROS
production, and cellular response to oxidative eustress and
distress, are critical steps in examining how plasma works
in cancer treatment. For a detailed overview of plasma phys-
ics, the reader is referred to reviews on this topic [105–107],
while this section intends to give a brief overview to the bio-
medical audience. There are three major types of plasma
sources including (1) DBD plasmas, also called “direct”
plasma sources, that use the human body as an electrode;
(2) plasma needles/plasma jets, also called “indirect” plasma
sources, producing a discharge between two electrodes
(Figure 1); and (3) hybrid plasma source, the combination
of both (1) and (2) plasma sources [108]. The use of these
plasma-producing systems depends on the study's purpose,

and plasma jets seem more common than DBD plasmas
based on several reports [109]. DBD plasmas' advantage is
that they do not require a particular gas flow as needed in
plasma jets, in which usually a noble gas is excited using
high-frequency electrodes. In most cases with DBDs, the
DBD electrode needs to be close to the target, and its diam-
eter varies from several millimeters to centimeters [110].
Unlike DBDs, plasma jets use three common gases, includ-
ing helium (He), argon (Ar), and nitrogen (N2), that deter-
mine the efficiency and pattern of ROS production [111].
Other critical parameters in operating plasma jets are, for
instance, gas flow rate, applied voltage, and the distance
from the nozzle to the target. For example, increasing the
distance from the target to a jet nozzle decreases the concen-
tration and variety of most reactive species reaching that tar-
get, while some, like ozone, are often found to be increased
[112]. Also, changes in the feed gas flux are accompanied
by changes in the reactive species composition, especially
when the flow switches from laminar to turbulent [113,
114]. Another critical factor is exposure time. It is well
known from microbiology studies that the growth inhibition
zones of bacteria grown on agar increase with a rise in
plasma treatment time [115]. Likewise, the plasma treatment
time dictates the extent of biological responses, e.g., apopto-
sis [110, 116]. Also, exposure time can modulate the secre-
tion of cell-signaling molecules, such as growth factors and
cytokines [117]. The plasma devices' operating conditions
affect the type and amount of reactive species products,
especially in cancer cells [6, 118, 119]. Therefore, regulating
these conditions improves plasma efficiency in inhibiting
cancer cells (Table 1).

One device that has been successfully employed in can-
cer treatment in patients [120, 121] is the atmospheric pres-
sure argon plasma jet kINPen MED (Figure 2). Generally,
medical plasmas are multicomponent systems, while it has
been established that the biological activity of plasma treat-
ment is mainly mediated via ROS/RNS and subsequent
redox signaling [2, 122]. The ROS/RNS generation process
is briefly described. For plasma jets, a gas is fed into the
device. Usually, noble gases such as argon, helium, and neon
are used to be ionized easily. These ionized gases are subse-
quently expelled into the ambient air. Reaction with oxygen
and nitrogen takes place, generating reactive oxygen and
nitrogen species. Within the plasma plume, hundreds of
chemical reactions occur [123, 124], leading to the simulta-
neous generation of a large variety of reactive species
[125]. These species have varying concentrations along the
axis of the plasma jet and are characterized by individual
travel distance and deterioration kinetics in the ambient air
[126–128]. This aspect complicates the identification of
exact species types and concentrations being delivered to
the biological target. As a general measure of species quanti-
fication, liquids can be exposed to plasma to identify some
species such as nitric oxide, singlet oxygen, hydrogen perox-
ide, hydroxyl radical, nitrite, nitrate, peroxynitrite, and
ozone, based on established redox chemistry assays [66,
129–133]. Notably, there is no tool available to simulta-
neously investigate all types of species being generated in
the plasma gas phase or treated liquids. This also holds true
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for plasma-treated tissues, as tools for assessing such species
directly in such context are currently not available [134].

3. Cell Death Signaling in Cancer Cells

Several cell death modalities are known, including necrosis,
apoptosis, necroptosis, autophagy, and pyroptosis [135].
These pathways can be a therapeutic target for the control
and destruction of cancer cells. Deregulation of cell death
signaling is a distinctive feature of cancer cells, and many
cancer therapies target the apoptosis signaling machinery,
including cell death receptors and mitochondrial signaling
pathways [136, 137]. Direct plasma treatment or plasma-
treated liquid (PTL) increases the intracellular ROS affecting
different factors in cell death signaling in tumor cells [138].
Accordingly, targeting proteins or kinases involved in cell
death signaling can efficiently induce apoptosis and death
in the cancer cell. In the following, it will be outlined which
pathways are involved in plasma-mediated cell death
(Figure 3).

3.1. Apoptosis. It has been found that the ROS produced by
plasma can induce cell death in cancer cells by activation
of four MAPK pathways, including ERK1/2, c-Jun N-
terminal kinase (JNK), p38 MAPK, and ERK5. The JNK
and p38 pathways have a crucial role in the induction of
apoptosis and the stress of the cells [139]. The activation of
these pathways involves proapoptosis Bcl-2 proteins such
as BAX and BAK that initiate intrinsic or mitochondrial cell
death signaling. Also, p38 MAPK and JNK can upregulate
p53 activity that controls cancer growth and triggers cell
death in cancer cells [140].

p53 is a tumor suppressor protein involved in stress
responses and intrinsic and extrinsic apoptosis pathways
[141]. The phosphorylation of p53 triggers the intrinsic apo-
ptosis pathway by activating the BH3 domain of proapopto-
tic proteins such as Puma, Noxa, Bad, Bax, Bak, and
apoptosis-execution factors such as Apaf1 [136]. Also, p53
can initiate extrinsic apoptotic pathway signaling through
cell death receptors such as Fas. Following activation of
one of the two (or both) pathways, downstream caspases
are activated, and apoptosis occurs. High levels of p53
protein in plasma-treated leukemia cells confirm p53-
induced apoptosis [46, 136]. Moreover, increased Bax,
Bcl-2, and caspase 8 expression in cancer cells after plasma
treatment showed the effect of plasma on intrinsic and
extrinsic pathways [46].

The ERK pathway is another MAPK pathway that coor-
dinately regulates some essential biological functions of the
cells, such as proliferation, differentiation, cycle regulation,
apoptosis, and tissue formation. Also, this pathway can be
related to tumor proliferation and invasion/metastasis
[139]. Accordingly, the regulation of this pathway can be
essential in inhibiting tumor cell growth. Plasma therapy
has been shown to dramatically increase ERK1/2 phosphor-
ylation and activate caspases in cancer cells, leading to their
death [142].

Elevated intracellular ROS activates tumor suppressor
proteins and kinases, suppressing the oncogenic PI3K/AKT
pathway. Thus, inhibition of the PI3K/AKT pathway initi-
ates cancer cell death [140]. PI3K/AKT signaling mediates
a wide range of cellular functions, including transcription,
translation, proliferation, growth, and survival. This path-
way maintains the balance between cell proliferation and
apoptosis in cancer cells and is associated with metastasis

High voltage supply

Pulse/AC generator

Wires
Dielectric material

Anode

Main discharge area
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Sample

Sample
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Figure 1: Schematic of the principles of plasma jets and dielectric barrier discharges (DBD). In plasma jets, the gas flow is required for the
generation of cold physical plasma, while the plasma provided by DBD is created in ambient air. Plasma jets are grounded, while many DBD
systems use the treatment target as a grounded cathode to produce cold physical plasma. Many types of gases can be used. Usually, noble
gases such as argon, helium, and neon are employed, but air ionization is also feasible with specific parameter setups.
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in some tumors [143]. Also, PI3K/AKT activation has been
shown to play a critical role in inhibiting p53. Indeed,
plasma therapy downregulates the PI3K/AKT pathway and
induces p53-mediated apoptosis and cancer cell death [97].
Nitric oxide (NO), a product of NOX activity in some tumor
and innate immune cells, has pro- and anticancer effects.
Depending on its intracellular level, low NO levels can pro-
mote tumor cell growth, while high NO levels usually cause
the tumor cell to die [144]. Physical plasma treatment
enhances intracellular NO levels in cancer cells, leading to
MAPK p38 activation [144]. This plasma-derived NO was
shown to significantly increase the presence of active cas-
pases 3 and 8, confirming the role of plasma in activating
caspase cascade and inducing cell death [144].

Moreover, activating protein-1 (AP-1) as a dimeric
transcription factor, Fra-1, and c-Jun (highly expressed in
invasive cancers) enhance cancer cells' migration and prolif-
eration. Their phosphorylation is often regulated by MAP
kinases such as JNK and p38 [145]. Plasma treatment can
modulate the expression of AP-1 related transcription fac-
tors in cancer cells such as leukemia. It has been reported
that JUND, a subfamily of Jun, can trigger phagocyte activa-
tion and cytokine secretion such as IL-8 in plasma-treated
THP-1 cells [146].

Another pathway involved in cancer cell death is signal
transducer and activator of transcription 3 (STAT3) signal-
ing. STAT3 has a role in proliferation, survival, migration,
invasion, and angiogenesis [147]. Therefore, targeting this
pathway can be efficient in cancer cell inhibition. Plasma-
treated osteosarcoma showed an initiation in the apoptotic
pathway by reducing phosphorylation in the AMPK or
STAT3 pathways, which had an inhibitory effect on cancer
cells' growth [148]. Further experiments are needed to
explain the effect of plasma on the STAT3 pathway in this
area.

3.2. Autophagy. Autophagy is a process that occurs in all
cells to eliminate dysfunctional or damaged cell organelles.
The autophagic process plays a double-edged sword role in
cancer progression [149]. Regulation of autophagy is medi-
ated by tumor suppressor proteins such as LC3 and Beclin-
1, leading to cancer cells' death. Various environmental
stressors such as starvation, hypoxia, and growth factor dep-
rivation can convert LC3 to LC3-II by conjugating a lipid

molecule called phosphatidylethanolamine (PE) to incorpo-
rate into the autophagosome membrane. Also, Beclin-1 is
involved in the very early stage of autophagosome formation
[149, 150]. Plasma-produced ROS increased autophagosome
formation through activate ERK1/2 and induce LC3. This is
presumably due to ROS stimulating the JNK pathway to
phosphorylate Bcl-2 and releasing Beclin-1 associated with
LC3 involved in autophagic cell death [151, 152]. Using
PTL decreases the phosphorylated mTOR and AKT protein
levels, which is critical for cancer cell viability. Besides, PTL
increases LC3B expression in endometrial cancer cells. So
PTL can inhibit cell viability while inducing autophagic cell
death in endometrial cancer cells [153]. Moreover, PTL
treatment increases the level of LC3A/B, p-ERK kinase,
which is involved in Beclin-1-related autophagy. Indeed
PTL induces apoptosis of pancreatic cancer cells through
the ROS-dependent autophagy pathway [154]. As a result,
JNK phosphorylates the c-Jun protein, which leads to the
production of AP-1, which in turn promotes the expression
of many genes such as Bax and FasL [151].

3.3. Pyroptosis. Pyroptosis is another type of programmed
cell death mediated by the gasdermin family which includes
GSDMA, GSDMB, GSDMC, and DFNA5/GSDME [155].
Pyroptosis has some characteristics of apoptosis as well as
necrosis. Pyroptotic cells undergo nuclear condensation
and chromatin DNA fragmentation, similar to apoptotic
cells. In parallel, cell membrane pore formation, cell swell-
ing, cell membrane rupture, and the release of proinflamma-
tory mediators, including IL-1β, IL-18, ATP, and HMGB14
during pyroptosis, occur, sharing similar features to necro-
sis. Therefore, pyroptosis is an inflammatory form of cell
death and has a bilateral role in tumor cell progression.
Plasma treatment was shown to induce pyroptosis in cancer
cells via ROS, promoting the phosphorylation of JNK and
increasing cytoplasmic cytochrome C levels [156]. These
pathways induced caspase 9 and caspase 3 activation by
cleaving GSDME, which induces pyroptosis in cancer
cells [157].

3.4. Ferroptosis. Ferroptosis is an iron-dependent and reac-
tive oxygen species- (ROS-) reliant cell death distinct from
apoptosis, classic necrosis, autophagy, and other forms of
cell death at morphologic, biochemical, and genetic levels
[158–160]. Ferroptosis is mainly based on cytological
changes, including decreased mitochondrial cristae, a rup-
tured outer mitochondrial membrane, and a condensed
mitochondrial membrane. Excessive membrane lipid perox-
idation and the occurrence of oxidative stress cause cell
abnormalities in ferroptosis [160]. This form of cell death
can be induced by small molecules such as erastin and
Ras-selective lethal small molecules (RSL). Also, iron and
ROS accumulation, activation of the MAPK pathway, and
release of arachidonic acid mediators trigger this type of cell
death. However, xCT (SLC7A11) and glutathione peroxidase
4 (GPX4) are critical regulators of ferroptosis [159]. In addi-
tion, p53 might act as a rheostat, preventing ferroptosis
under basal or low ROS stress while promoting ferroptosis
in high oxidative stress conditions [161]. p53 represses the
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Figure 2: The atmospheric pressure argon plasma jet kINPen. The
kINPen is a certified medical product in Europe and is regularly
employed in dermatology. First initial trials in human cancer
patients have been employed. Reproduced from [125].
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expression of SLC7A11, a vital component of the cystine/
glutamate antiporter. Hence, p53 can inhibit cystine uptake
and sensitizes cells to ferroptosis [162]. Moreover, another
study implicated that plasma treatment increases cell death
in the samples with lower xCT expression than samples with
higher xCT expression [163].

Excess irons are the basis for ferroptosis. Interestingly,
redox-active iron pools (i.e., Fe2

+) via Fenton reaction can
directly catalyze lipid peroxides, which cause ferroptosis
[162]. Accordingly, it was hypothesized that plasma expo-
sure could induce destruction of the shell of ferritin and
simultaneous reduction from Fe(III) to Fe(II), resulting in
Fenton reaction to cause oxidative cell death [164]. Also,
plasma exposure may kill oral squamous carcinoma cells
through ferroptosis, dependent on ample catalytic Fe(II)
[165]. Further studies are required to demonstrate the effect
of plasma therapy in cancer cell ferroptosis.

4. Immune Cell Activation Followed by
Plasma Treatment

Plasma treatment can affect the activation of immune cells
and their ability to provide effective antitumor immunity
[166]. As currently known, antitumor immune responses
consist of innate and adaptive immunity that interacts
and acts on cancer cells by various means [104]. The innate
immune system can both foster and limit cancer progres-

sion through direct interaction with tumor cells and the
activation of other cells in the tumor microenvironment
(TME) [167, 168].

4.1. Immunogenic Cancer Cell Death (ICD). Induction of cell
death is an expected valuable outcome in plasma-treated
cancer cells. It may also cause tumor cells to externalize or
secrete many types of damage-associated molecular patterns
(DAMPs), including ATP, high mobility group protein B1
(HMGB1), calreticulin (CRT), and heat shock protein 90
(HSP90), leading to the recruitment of immune cells [169].
CRT and ATP are critical for innate immune cell activation
to uptake dead tumor cells to occur in the inflammatory
context. This mediates an antitumor immune response by
promoting DC maturation and antigen presentation, result-
ing in T-cell responses against tumor cells [170].

It has been demonstrated that nonthermal plasma treat-
ment induces ICD by the generation of ROS [171] and other
charged species [166] and increases the immunogenicity of
tumor cells. Plasma upregulates immunogenic cell surface
molecules such as MHC-I [172] and surface-exposed calreti-
culin (ecto-CRT). The latter acts as an Eat Me signal facili-
tating the recognition, engulfment, and processing of
tumor cells by APCs. High levels of extracellular ATP fol-
lowing plasma therapy [173] act as a Find Me signal for
the recruitment and activation of APCs in tumor microenvi-
ronments (Figure 4). Increased expression of CD45, a
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leukocyte marker, and CD11c, an APC marker, in the tumor
microenvironment of BALB/c mice exposed to the plasma
suggested additional leukocytes' recruitment, including
APCs, presumably via DAMP signaling [174, 175].

4.2. Macrophages. Macrophages are critical immune cells in
the TME and play a pivotal role in immune homeostasis.
In response to a wide variety of environmental conditions,
macrophages can differentiate and polarize into different
phenotypes of M1 and M2. Tumor cells release and express
molecules that hijack macrophages, supporting tumor
growth [176]. In some cancer types, such as in the pancreas
and brain, up to 50% of the cells are macrophages, continu-
ally supporting angiogenesis and phagocytose, silently and
without inflammation, dead tumor cells. These are called
tumor-associated (M2) macrophages. M2 macrophages
express CD163 (scavenger receptor) and CD206 (mannose
receptor) as anti-inflammatory markers and arginase. In
addition, they release IL-10, TGF-β, and PGE2 and have a
higher expression of PD-L1 that can repress antitumor T-
cell responses. In turn, however, macrophages can also be
licensed to kill tumor cells in the presence of proper proin-
flammatory stimuli, called proinflammatory (M1) macro-

phages [167]. M1 macrophages, as classically activated
macrophages, express CD68, CD80, and CD86 costimula-
tory molecules and can control tumor progression by releas-
ing TNF-α, IL-1β, IL-12, and iNOS. In the appropriate
setting, some cytokines such as INF-γ can convert M2
macrophages to the M1 phenotype in the TME [177, 178].
Another study, however, found an M2 skewing of
monocyte-derived macrophages with plasma treatment
[179]. While plasma-treated monocytes generated ROS and
were susceptible to plasma-induced cell death, as shown
before [180], plasma-treated macrophages were not [178].

Using human monocytes, plasma treatment was shown
to exacerbate M1 macrophages' cytotoxic activity against
tumor cells. This was accompanied by an increased expres-
sion of CD86 (M1 marker) and low levels of CD163 and
CD206 (M2 markers) on the THP-1-derived macrophages
[178]. A similar increase of toxicity was made in A549 lung
cancer cells during coculture with THP-1-derived macro-
phage in vitro [181]. Another study reported that the rate
of cell death in a plasma-treated nasopharyngeal carcinoma
cell line (CNE-1) cocultured with native (M0) macrophages
(macrophages) was higher than the presence of macro-
phages, possibly due to the increase in extracellular ATP
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[182]. In such coculture systems of cell-line-derived macro-
phages and tumor cells, elevated levels of TNF-α were also
linked to the increased cytotoxicity observed [183]. TNF-α
inhibits the tumor progression by activating CD8+ T-cells
and induces inflammatory cytokines such as IL-1, IL-6, IL-
8, and cytotoxic factors like NO and ROS produced by mac-
rophages and NK cells [184, 185]. Strikingly, recent evidence
suggests that plasma treatment supports monocytes' differ-
entiation process into macrophage-like cells. In contrast to
the other studies, this was found in cell lines and using pri-
mary monocytes isolated from the human blood [186].
Moreover, plasma treatment of cancer cells and culturing
monocytes in these DAMP-containing cancer cell superna-
tants promoted monocyte activation [123] and their cyto-
toxicity upon coculture with tumor cells [187].

4.3. Cross-Talk between Dendritic Cells and T-Cells. Activa-
tion of T-cells and the generation of long-lived memory cells
in the tumor microenvironment (TME) are the critical target
of cancer therapies. CD8+ T-cells are the key player in the
adaptive immune system for the direct killing of cancer cells
via the release of cytotoxins, such as perforin and granzyme
B. Effector CD4+ T-cells in response to an antigenic tumor
can secrete cytokines such as IFN-γ, TNF-α, and IL-2 that
limit tumor progression and help the activation of CD8+

CTL in a later stage [188]. Activation of adaptive T-cell
responses depends on antigen recognition, so antigen-
presenting cells (APC) such as DCs play a critical role in
stimulating an adaptive immune response, especially cyto-
toxic CD8+ T-cells and CD4+ T-cells. DCs are innate
immune cells known as professional APC and play a crucial
role in linking innate and adaptive immune responses. DCs
phagocytose, process, and present the tumor antigens to
naïve antigen-specific CD4+or CD8+ T-cells via major histo-
compatibility complexes (MHC) II and I, respectively. There
are two major subsets of DC: classical/conventional DC
(cDC) and plasmacytoid DC (pDC). pDC produces type I
interferons, which are essential in the stimulation of anti-
tumor immune response. They can also generate regula-
tory T-cells (Treg) in the tumor microenvironment, which
favors tumor progression. Depending on their subtype,
cDCs present tumor antigens to prime both CD8+ and
CD4+ T-cells [189].

It was previously speculated that plasma-derived ROS
treatment of tumor cells initiates the cancer-immunity cycle
by promoting ICD, DC maturation, and priming of antitu-
mor T-cells in the draining lymph node [190, 191]. A recent
in vivo report supports this claim by providing evidence for
ICD and subsequent DC activation together with checkpoint
therapy-augmented plasma and abscopal effects in a mela-
noma model [192]. Using the same cell type but a different
type of plasma source, ICD and the subsequent protection
from tumor growth in a preventive vaccination model were
shown, and mechanistically, the effects were deduced to
the action of short-lived ROS [193]. In vitro, plasma-
treated PBS activity on tumor cells may be involved in DC
maturation. Also, higher levels of TNF-α and IFN-γ and
decreased levels of immunosuppressive cytokines such as
TGF-β produced by DC cocultured with tumor cells exposed

to plasma-treated PBS an immune-enhancing effect of this
approach [194]. Moreover, other in vitro studies suggested
a distinct cytokine profile and modest but evident DC activa-
tion in the presence of directly plasma-killed tumor cells [74,
173]. It was recently reported for a translational research-
relevant plasma jet accredited as a medical device in Europe
that plasma treatment not only induced ICD in melanoma
cells that were successfully used as a preventive vaccine in
mice but also was accompanied by an increased influx of
CD4+ and CD8+ T-cells in the TME along with their
increased activation and memory phenotype [195]. More-
over, increased efficacy of plasma treatment was demon-
strated when combined with a toll-like-receptor (TLR)
agonist activating DCs and superior efficacy of one plasma-
derived ROS cocktail rich in atomic oxygen over other
ROS cocktails. These findings corroborated previous reports
on increased T-cell infiltrates in plasma-treated syngeneic
melanomas in vivo [196, 197]. In addition, it was recently
shown in vitro and in vivo that the immunogenicity
plasma-treated protein can confer immunoprotection in
mice against melanoma growth [198], giving rise to entire
novel concepts in plasma oncotherapy [199].

5. Clinical Trials and Case Series on Plasma
Therapy in Medicine including Cancer

In vivo and in vitro studies in plasma medicine have shown
promising results, encouraging clinicians to evaluate plasma
therapy in clinical settings across several types of diseases
(Table 2). Since there is only a few reports on plasma anti-
cancer studies, other clinical applications are described as
well in the following. For each plasma device, such studies
must demonstrate safe plasma treatment in the first clini-
cal step.

5.1. Case Series. Several case series and reports have reported
on the use of different plasma devices in humans to treat dis-
ease. In Greifswald, Germany, clinicians investigated the
clinical application of cold physical plasma treatment in 21
patients with advanced head and neck cancer in a palliative
setting. This study was aimed at evaluating tumor surface
changes and the ratio of apoptotic cancer cells, respectively,
in group I and group II. Among the 12 patients in group I,
there was no enhanced or stimulated tumor growth under
two weeks after cold physical plasma treatment. The result
of 9 patients in group II showed more frequent apoptotic
cells in tissue areas treated by plasma than in untreated
areas [120, 121, 200].

Moreover, German clinicians used a plasma device to
treat six patients suffering from wound healing disturbances
after maxillofacial surgical procedures. The size and localiza-
tion of the defect were different among all cases, so plasma
therapy was initiated at various postsurgery times, ranging
from 2 to 42 weeks. The primary outcome showed com-
plete healing, defined as wound closure and the absence
of any signs of infection. Besides, the secondary outcomes
showed complete remission after 48 weeks of plasma treat-
ment. In that study, several therapeutic properties of
plasma, including antibacterial effect, stimulation of tissue
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repair, regeneration, neovascularization, and skin microcir-
culation, were considered. Based on the results, plasma is a
promising approach to treat chronic healing disorders of
wounds resulting from CMF surgery [201]. Another study
by the same authors evaluated the effect of plasma therapy
on wound healing disorder following the radial forearm
free flap (RFFF) procedure. The endpoint of this therapy
showed the successful remission of wounds. It was con-
cluded that plasma treatment possibly is a new therapeutic
modality to avoid repeated surgery [202].

Actinic keratosis (AK) was another skin disease that has
been investigated to be treated using plasma. In one study,
17 lesions were plasma-treated and followed up for one
month without interval evaluation. Three lesions improved
significantly, and the condition of five lesions did not
worsen. Interestingly, none of the patients experienced side
effects, such as pain and inflammation during treatment
[203]. All patients showed a decline in AK characteristics
such as erythema, scaling, crusts, and thickness, and in some
cases, the total lesion number was decreased [204].

The efficacy of plasma therapy has also been investigated
in the treatment of wart lesions. The results of one study
revealed that all lesions of the first patient faded after 2 to
3 plasma exposure cycles. In a second patient, however, the
lesions were improved but did not disappear completely
[205]. The same authors demonstrated that plasma exposure
could also be an effective modality for wart treatment in
pediatric patients [206]. The plasma device used in this
study is currently not approved by the FDA. Nevertheless,
plasma treatment was suggested to induce apoptosis in
malignant cells ex vivo [207], so it seems likely that this also
holds for premalignant cells. However, clinical data are
insufficient to confirm the plasma mechanism in improving
the wart [206].

Overall, plasma therapy is a novel promising therapeutic
tool in managing tumor cells and the recovery of infection,
postoperative wound healing, actinic keratosis, and wart
disorders.

5.2. Clinical Trials. The first registered clinical trial on
plasma cancer treatment was initiated in Tübingen, Germany,
in 2017 to manage cervical intraepithelial neoplasia.
Approximately 170 patients were planned to participate in
the study. Final results, however, were not reported yet
apart from the observation that pathological remission
and HPV reduction were secondary outcomes [208]. In
2019, a U.S. company used plasma to treat 20 patients with
breast and lung cancer after standard treatments, including
chemotherapy, radiation, and surgery. Preliminary results
suggested a preferential targeting of tumor cells, but further
confirmation is awaited. This technology was the first to be
approved in an FDA phase I clinical trial in August 2019
[209]. Moreover, the Skin Center Dermatology Group
investigated the effect of plasma to treat 100 subjects with
skin disorders. This study enrolled 100 participants suffer-
ing from actinic keratosis, acne, or verruca plana. The
results of the plasma treatment were successful in most
cases and showed no side effects. However, this study has
not yet been completed and final results are awaited

[210]. A recent clinical study examined the effect of plasma
in the treatment of hair loss. This study started on June 8,
2020, and is currently recruiting. However, no results have
yet been reported [211].

6. Side Effects of Plasma Treatment

Any medical treatment has to meet both efficacy and safety
requirements. While many studies had investigated the effi-
cacy of plasma treatment in many types of diseases, studies
on their safe applications are less frequent. The main agents
of biomedical plasma effects, ROS, are also produced during
physiological processes in the body. Hence, ROS are not
toxic or dangerous per se, but their exacerbated concentra-
tion or application frequency might be. To understand this
from a practical point of view, it needs to be mentioned that
H2O2 at molar concentrations (e.g., 3% equals 1M) is used
for wound disinfection and dentistry. For comparison, to
reach the concentration of 1M H2O2 in 1ml of a saline solu-
tion, this would translate to a plasma treatment time of
30.000min (or 500 h) for an accredited argon plasma jet
[212]. For in vitro, in vivo (mice), and patient treatment with
this jet, typical treatment times are between 5 s and 3min
[213, 214]. This calculation emphasizes that the ROS doses
generated with plasma treatment range from inducing
ROS-related (cell death) signaling rather than overloading
the cells with necrotic doses of ROS and would account for
most medically suited plasma devices currently in use.

Nevertheless, several safety studies have been performed,
especially for the well-characterized kINPen MED [215].
This plasma jet does not generate mutagenic events, as
shown using the OECD-accredited HRPT test and the
cytokinesis-block micronucleus assay [216, 217]. Notably,
the phosphorylation of the histone 2A-X seems a secondary
event due to plasma-induced cell death rather than direct
DNA damage [218]. In vivo, no formation of micronuclei
was observed [219]. In a wound-healing model in mice, the
animals were plasma-treated for seven days using the kIN-
Pen, and one year later, the animals were investigated using
MR-imaging, CT-scanning, histopathology, and tumor
marker analysis in the blood and tissues [220]. No tumor
formation or any other detrimental long-term effect was
observed. Concerning mucosal tissue in mice, plasma expo-
sure caused mild inflammation, and the epithelial layers
healed without showing signs of hyperplasia or dysplasia
[221]. Side effects in patients were recently summarized
[215] and currently extended to the first 5-year follow-up
in plasma-treated wounds [222]. In patients suffering from
advanced squamous cell carcinoma of the head and neck,
some side effects such as bad taste, fatigue, and bleeding
were seen in some cases after plasma treatment. However,
all of the side effects were mild to moderate and not life-
threatening [223].

For plasma devices other than the kINPen MED, safety
has been implied as well, albeit less systemically. For
instance, this accounts for the PlasmaDerm and SteriPlas
devices [224–227], and the efficacy and safety of plasma
wound treatment have been reviewed in a meta-analysis
recently [228]. Moreover, the number of clinical trials

10 Oxidative Medicine and Cellular Longevity



indicates a preevaluation (e.g., CE mark in Europe) of the
safety across many other plasma sources as a prerequisite
to clinical use. In Europe, several medical plasma device
types have been employed over the last seven years in over
100 clinical centers and thousands of applications already
without any note of severe side effects. It is important to note
that there are many plasma devices for cosmetic application
on several international markets, but their safety has been
addressed to a minimal extent only in most cases. Besides,
several plasma devices or device modifications that are not
in clinical use yet but are aimed for such application have
undergone in vitro or in vivo risk assessments already
[229–234]. A DIN spec has been published in Germany that
suggests several assays that should be performed for a stan-
dard characterization of medical plasma devices [235]. A
DIN spec is a legal norm in Germany that describes detailed
methods and assays to characterize a product, process, or
device based on industry consensus. Current efforts are
aimed at generating a respective ISO-norm for the safety of
plasma devices that would harmonize risk assessments to
ensure the safety and efficacy of plasma treatment of human
diseases.

7. Conclusion

This review summarizes the recent advances in understand-
ing plasma therapy in medicine, emphasizing cancer treat-
ment. Studies of plasma therapy in the clinical setting have
only begun, but promising results were reported so far. Cold
physical plasma alters many features of tumor cells, ulti-
mately leading to their demise. Plasma also promotes
inflammatory signaling pathways that can augment antitu-
mor responses by innate and adaptive immune cells. Further
studies are required to demonstrate the effect of plasma on
memory cells' generation against tumor cells. Because
plasma releases tumor-associated antigens and facilitates
antigen processing, using a combination of plasma and
immunotherapy regimens, such as immune checkpoint
inhibitors, possibly enhances antitumor immune responses.
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