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Background. Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease; however, there are no comprehensive
therapeutic interventions. Therefore, this study is aimed at identifying novel molecular targets that may improve the diagnosis
and treatment of patients with AD. Methods. In our study, GSE5281 microarray dataset from the GEO database was collected
and screened for differential expression analysis. Genes with a P value of <0.05 and ∣ log 2FoldChange∣ > 0:5 were considered
differentially expressed genes (DEGs). We further profiled and identified AD-related coexpression genes using weighted gene
coexpression network analysis (WGCNA). Functional enrichment analysis was performed to determine the characteristics and
pathways of the key modules. We constructed an AD-related model based on hub genes by logistic regression and least absolute
shrinkage and selection operator (LASSO) analyses, which was also verified by the receiver operating characteristic (ROC) curve.
Results. In total, 4674 DEGs were identified. Nine distinct coexpression modules were identified via WGCNA; among these
modules, the blue module showed the highest positive correlation with AD (r = 0:64, P = 3e − 20), and it was visualized by
establishing a protein–protein interaction network. Moreover, this module was particularly enriched in “pathways of
neurodegeneration—multiple diseases,” “Alzheimer disease,” “oxidative phosphorylation,” and “proteasome.” Sixteen genes were
identified as hub genes and further submitted to a LASSO regression model, and six genes (EIF3H, RAD51C, FAM162A,
BLVRA, ATP6V1H, and BRAF) were identified based on the model index. Additionally, we assessed the accuracy of the LASSO
model by plotting an ROC curve (AUC = 0:940). Conclusions. Using the WGCNA and LASSO models, our findings provide a
better understanding of the role of biomarkers EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H, and BRAF and provide a basis
for further studies on AD progression.

1. Introduction

Alzheimer’s disease (AD), a chronic and progressive neuro-
degenerative disease, is one of the leading causes of dementia
worldwide, accounting for an estimated prevalence of 60%–
80% of all cases [1]. Owing to the increase in aging popula-
tion, AD has become an enormous health burden for families
and societies, and the number of AD cases is predicted to
increase to 152 million by 2050 [2]. Clinically, AD has multi-
ple complex manifestations, which are characterised by
symptoms such as a gradual decline in memory and cognitive

impairment as well as defects in judgement, abstraction, lan-
guage, and attention [3]. Importantly, the main pathological
features of AD include the deposition of extracellular β-amy-
loid plaques composed of myloid-β peptides, the formation
of intracellular neurofibrillary tangles, and the loss and dam-
age of neurons [4]. Currently, multiple pharmacological
treatments, such as donepezil, galantamine, and rivastigmine
[5, 6] as well as memantine [7], have been employed to pro-
vide temporary relief from symptoms. Although substantial
efforts have been made to study the pathology and underly-
ing pathogenesis of AD, there are still no comprehensive
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therapeutic interventions for AD. Therefore, there is an
urgent need to identify novel molecular targets that can
improve the diagnosis and treatment of patients with AD.

With the development of technology involving high-
throughput sequencing and microarray, bioinformatics is
increasingly being used to analyse genetic changes in
tumours and nervous systems, thereby providing novel inter-
vention targets and novel therapeutic methods for diseases.
The Gene Expression Omnibus (GEO) database is a publicly
available genomic repository containing gene expression
profiles and the corresponding clinical traits of multiple dis-
eases. Weighted gene coexpression network analysis
(WGCNA) is a powerful screening tool to explore the relation-
ship between genes with similar expression patterns and exter-
nal clinical information by constructing free-scale gene
coexpression networks [8] and has been widely verified in
multiple diseases [9–16]. Consequently, hub genes highly
associated with clinical features have been identified as poten-
tial biomarkers and therapeutic targets. This type of systems
biology algorithm, to a certain extent, overcomes the limita-
tion that a majority of studies only focus on the expression
of differential genes and neglect the high correlation of genes.

In this study, the public AD dataset GSE5281 from the
GEO database was collected for systemic analyses. First,
using a combined approach of differentially expressed gene
(DEG) analysis and clinical trait-based WGCNA, we further
profiled and identified a panel of AD-related coexpression
genes by comparing control and AD patients. Functional
analyses were performed to determine the characteristics
and functions of these genes. Subsequently, we established
an AD-related 6-mRNA prediction model using logistic
regression and least absolute shrinkage and selection opera-
tor (LASSO) analyses. This model was verified using a
receiver operating characteristic (ROC) curve. Therefore,
these findings will aid in further understanding the underly-
ing mechanisms of AD and highlight the potential applica-
tion of these targets in AD treatment strategies. The
detailed workflow is shown in Figure 1.

2. Materials and Methods

2.1. Data Mining. The GEO database includes high-
throughput gene expression data submitted by researchers
worldwide. Large sample sizes were considered to provide
more reliable results in the screening of DEGs. Therefore,
this research employed a gene expression profile dataset of
AD that was downloaded from the GEO public database
(http://www.ncbi.nlm. https://nih.gov/geo). The GSE5281
dataset containing 74 control samples and 87 AD samples
based on the GPL570 platform was selected for further anal-
ysis in the present study. Data from the GEO database are
accessible and free of charge, and their utilization does not
require the approval of an Ethics Committee.

2.2. Gene Set Enrichment Analysis (GSEA). GSEA is an algo-
rithm based on gene sets that is used to construct a database
of molecular characteristics in accordance with known infor-
mation, including gene characteristics, location, and biologi-
cal functions [17]. This computational method was used to

screen and analyse biological process (BP), cellular compo-
nent (CC), molecular function (MF), and Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) pathways that
may be associated with AD in the GSE5281 dataset using
GSEA v4.1.0 (http://http://www.broad.mit.edu/gsea/). Based
on default parameters, GSEA was performed using c5.bp.
v6.2.symbols.gmt, c5.go.cc.v7.2.symbols.gmt, c5.go. mf.
v7.2.symbols.gmt, and c2.cp. kegg. v6.2.symbols.gmt datasets
in the MsigDB V6.2 database [18] as reference gene sets.
P < 0:05 and false discovery rate ðFDRÞ value < 0:25 were
used as cut-off values.

2.3. Identification of DEGs.We first converted the probes into
gene symbols for a series matrix file of the gene dataset for
further analysis. The processed data were subjected to nor-
malisation and log base 2 transformation using the
GSE5281 dataset, which was screened for differential expres-
sion analysis between AD and healthy tissues, which was per-
formed using the “Limma” package in R software version
3.6.0. Genes with P value <0.05 and ∣log 2FoldChange ∣ >
0:5 were considered DEGs. A heat map cluster and volcano
plot of the DEGs were created using the “pheatmap” and
“ggplots” packages via R software.
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Figure 1: Workflow to identify the key module and hub genes of
Alzheimer’s disease.
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2.4. Construction of Weighted Gene Coexpression Network.
To explore the expression and interactions of DEGs in AD
samples, a gene coexpression network was constructed by
the “WGCNA” package in R software [8] according to the
following process. We applied the Fragments Per Kilobase
Million (FPKM) method to standardise the DEGs of the data
matrix and remove the nonstandard data (if the mean FPKM
was greater than 0.5, it was defined as standard data). After
removing the abnormal samples based on cluster trees, we
calculated the Pearson correlation coefficient cor (i, j) to
determine the correlation between gene pairs. The formula
fora similar expression matrix is as follows:

ai j = 0:5 × 1 + cor i, jð Þðð Þβ, ð1Þ

where aij is the adjacent function between genes i and j. To
ensure a scale-free network, a soft thresholding power β
value of 5 was chosen, and the similarity matrix was con-
verted into an adjacency matrix. Subsequently, we built a
topological overlap matrix (TOM) to measure the mean net-
work connectivity of each gene. Genes with similar expres-
sion profiles were classified into different modules using the
dynamic tree cut method based on the relevant parameters
(deepSplit of 2 and minModuleSize of 30), and the cutHeight
value was set to 0.9. A tree diagram was then built by hierar-
chical clustering to calculate the correlation between mod-
ule eigengenes (MEs) and traits, which were used to screen
the MEs. The module with the highest correlation with AD
among all modules was identified as the most critical module
for further analysis and visualised using Cytoscape (version
3.7.2) software. The hub genes in the critical module referred
to those that met the following criteria: gene significance
ðGSÞ > 0:6 and modulemembership ðMMÞ > 0:8.

2.5. Functional Enrichment Analysis of the Key Module. To
further clarify the potential biological implications of the
genes in the key module, we performed Gene Ontology
(GO) term and KEGG pathway analyses using the “cluster-
Profiler” package in R software [19]. The three categories of
biological process (BP), molecular function (MF), and cellu-
lar component (CC) constituted the GO term. In addition,
only when the GO or KEGG terms exhibited an FDR of less
than 0.05, they were considered significant. Thus, using
either BP, CC, or MF analysis as a baseline, the top five terms
were selected and further visualised using the GOplot pack-
age in R software version 3.6.0. [20] However, KEGG enrich-
ment analysis result was presented visually using a bubble
plot. In addition, a gene-KEGG pathway network was estab-
lished using Cytoscape software (version 3.7.2).

2.6. Establishment of a LASSO Model and ROC Curve
Analysis. A LASSO model was established to identify the best
features for high-dimensional data owing to its strong pre-
dictive value and low correlation [21, 22]. The “glmnet”
package in R software was used to establish the LASSOmodel
based on the gene expression profiles of hub genes, which
could strongly distinguish between AD and control. The
minimum lambda value was then used as a reference to iden-
tify the best variable to be included in the model. Genes

acquired from the LASSO model were used to perform logis-
tic regression analysis for calculating the expression value
and regression coefficient of hub genes according to the fol-
lowing formula:

index = ExpGene1 × Coef 1 + ExpGene2 × Coef 2
+ ExpGene3 × Coef 3+⋯+ExpGeneN × Coef N ,

ð2Þ

where “Exp” refers to the expression value of a gene and
“Coef” refers to the regression coefficient of a gene. Addition-
ally, ROC curve analysis was employed to evaluate the stabil-
ity and sensitivity of the LASSO model in identifying AD,
which was realised using the pROC package in R software
version 3.6.0 [23].

3. Results

3.1. Functional Enrichment Analysis. GSEA was performed
using data from the AD and control groups, and the results
are shown in Figure 2. The results indicate that with the BP
class mediator as a reference, 53 gene sets were significantly
enriched in apoptotic processes involved in morphogenesis,
enteric nervous system development, notochord development,
mesodermal cell differentiation, and head morphogenesis in
the AD samples (Figure 2(a) and Supplementary Table 1).
Similarly, compared with the control group, CC terms such
as complex of collagen trimers, connexin complex, gap
junction, lamellipodium membrane, and protein complex
involved in cell adhesion were markedly enriched in the
AD group (Figure 2(b)). Moreover, extracellular matrix
structural constituents conferring tensile strength, gap
junction channel activity, and transforming growth factor β
binding of MF were mainly enriched in the AD group
(Figure 2(c)). Furthermore, we found that the AD group
was overrepresented in terms of ECM receptor interaction
(NES = 1:71, nom P value = 0.01) and the NOTCH
signalling pathway (NES = 1:73, nom P value = 0.02)
(Figure 2(d)).

3.2. Identification of DEGs between AD and Control Groups.
To identify genes that markedly affect AD, we first obtained
genes that were differentially expressed between AD patients
and controls from the GEO database. We then sorted these
genes according to the threshold values of P < 0:05 and ∣log
2FoldChange ∣ >0:5 and found that among them, 2349 genes
were downregulated and 2325 were upregulated. The rele-
vant DEGs are illustrated using a volcano plot (Figure 3(a)).
A heat map representing the top 40 genes is presented in
Figure 3(b).

3.3. WGCNA and Identification of the Key Module and Hub
Genes. After removing the abnormal samples and screening
the genes, the expression profiles of 4665 genes including a
total of 161 samples in the GEO dataset were extracted for
constructing the weighted gene coexpression network using
the package “WGCNA” in R software. The key parameter
associated with a scale-free network is the soft threshold
power value. In the present study, when the soft threshold
power was confirmed as five, the scale independence reached
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Figure 2: Continued.
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0.9 (Figure 4(a)), and the adjacency matrix gained a compar-
atively higher mean connectivity value (Figure 4(b)). When
merging modules with dissimilarities of less than 10% and
minimum modules of less than 30 into larger modules, nine
distinct coexpression modules were identified completely
via dynamic tree cutting (Figure 4(c)). Furthermore, a corre-
lation analysis between the modules and phenotypes of clin-
ical traits was performed. As shown in Figure 4(d), the blue

module showed the highest positive correlation with AD
(r = 0:64, P = 3e − 20) and was selected for further analysis.
In addition, the brown module showed the highest negative
correlation with AD (r = −0:52, P = 1e − 12). Thereafter, a
protein–protein interaction network was established based
on the genes present in the blue module with a weighted
value of greater than 0.2 (Figure 4(e)). Additionally, we per-
formed a correlation analysis between MM and GS for each
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Figure 2: Results of gene set enrichment analysis in AD. (a) Biological processes, (b) cellular component, (c) molecular function, and (d)
KEGG pathway.
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node in each module. Among them, the correlation value of
the blue module was 0.86 (P < 1e − 200), as depicted in
Figure 4(f).When the genes in the blue module met the cri-
teria GS > 0:6 and MM> 0:8, these genes were defined as
hub genes and used for further analysis. In total, 16 genes
(ATP5C1, PSMD1, ATP5B, EIF3H, EMC4, PSMB7, RAD51C,
FAM162A, RAP1GDS1, BRAF, NME1, AP3M2, RRAGA,
BLVRA, PSMD4, and ATP6V1H) fit all these criteria.

3.4. GO and KEGG Pathway Analyses of the Key Module. To
better interpret the underlying biological roles of these genes
in the blue module, we subjected them to GO and KEGG
enrichment analysis using the “clusterProfiler” package in
R software (Figures 5 and 6). In total, 272 GO-BP, 88 GO-
CC, 30 GO-MF, and 22 KEGG pathways were enriched.
Regarding BP enrichment, the blue module primarily partic-
ipated in “mitochondrial translation,” “mitochondrial gene
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Figure 3: Visualization plots of differentially expressed genes. The red dots represent significantly upregulated genes, and the green dots
represent significantly downregulated genes. (a) Volcano plot and (b) a heat map of 40 most differentially expressed genes.
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expression,” “mitochondrial translational termination,”
“mitochondrial translational elongation,” and so on, a chord
diagram of the top five enriched BP terms across gene lists is
presented in Figure 5(a) and Supplementary Table 2. The
top five terms in CC were mainly enriched in the
“mitochondrial inner membrane,” “mitochondrial protein
complex,” “mitochondrial matrix,” “organellar ribosome,”
and “mitochondrial ribosome” (Figure 5(b) and
Supplementary Table 2). The markedly enriched MF terms
were “oxidoreductase activity, acting on NAD (P)H,”
“NADH dehydrogenase activity,” “NADH dehydrogenase,
(ubiquinone) activity,” “NADH dehydrogenase (quinone)
activity,” and “oxidoreductase activity, acting on NAD (P)
H, quinone or similar compound as acceptor,” as shown in
Figure 5(c) and Supplementary Table 2. Furthermore, based
on KEGG analysis, the genes in the blue module were
particularly enriched in “pathways of neurodegeneration -
multiple diseases,” “Alzheimer disease,” “oxidative
phosphorylation,” “proteasome,” and other pathways. The
visualisation results are presented in Figure 6.

In addition, we established a gene-pathway network
according to the KEGG signalling pathways and correspond-
ing enrichment genes using Cytoscape, as depicted in
Figure 7. This network clearly demonstrated the interaction
and crosstalk between multiple signalling pathways and
genes.

3.5. Establishment of the LASSO Model and Assessment of
the ROC Curve. The expression profile of the selected
hub genes was extracted and used to establish the LASSO
model (Figure 8(a)). Then, 16 genes were further subjected
to a LASSO regression analysis based on the value of
lambda:min = 0:0128535, and six genes (EIF3H, RAD51C,

FAM162A, BLVRA, ATP6V1H, and BRAF) were identified
to construct the gene signature using nonzero regression
coefficients. Furthermore, these six genes were identified
based on the model index according to the following formula:
index = EIF3H × ð−1:4724261Þ + RAD51C × ð−0:4871083Þ
+ FAM162A × ð−0:3658030Þ + BRAF × ð−1:1119874Þ + BL
VRA × ð−1:1758151Þ + ATP6V1H × ð−0:5092112Þ. Addi-
tionally, we assessed the accuracy of the LASSO model by
creating an ROC curve, which was designated using the
AUC value. As shown in Figure 8(b), the AUC value of the
six-gene-based model was 0.940, indicating that these genes
may serve as potential biomarkers of AD for further testing.

4. Discussion

As an incurable neurodegenerative disease, suitable preven-
tion and treatment methods for AD have been a major but
unresolved problem. FDA-approved anti-AD pharmacologi-
cal therapies, such as donepezil, galantamine, rivastigmine,
and memantine, can be used to improve the clinical symp-
toms of patients with AD; however, these drugs only delay
the progression of the disease and do not serve as a curative
treatment [5–7]. In addition, AD is accompanied by a huge
economic burden. Hence, the exploration of potential mech-
anisms and therapeutic targets for patients with AD and the
construction of a predictive model for assessment are partic-
ularly important. In the present study, we focussed on the
potential targets of AD and their prognostic values. DEGs
between the AD and normal tissues across the GSE5282 data-
set were statistically analysed using the WGCNA and LASSO
regression methods. The blue module was significantly posi-
tively correlated with AD was selected for further analysis,
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and in this model, six genes (EIF3H, RAD51C, FAM162A,
BLVRA, ATP6V1H, and BRAF) were identified as hub genes.

Additionally, we explored the biological processes and
signalling pathways associated with AD. According to the
results of GSEA, the Notch signalling pathway and ECM
receptor interaction were enriched in the AD group. GO

enrichment analysis demonstrated that the module with a
strong positive correlation with AD participated in biological
processes associated with mitochondria, including mito-
chondrial translation, mitochondrial gene expression, mito-
chondrial inner membrane, mitochondrial protein complex,
NADH dehydrogenase activity, and oxidoreductase activity,
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acting on NAD (P)H.Mitochondrial dysfunction and oxida-
tive stress may contribute to promoting the accumulation
of amyloid-β peptides (Aβ) and enhancing the phosphoryla-
tion levels of Tau [24]. Moreover, the results of KEGG path-
way analysis mainly highlighted categories such as “pathways
of neurodegeneration-multiple diseases,” “Alzheimer dis-
ease,” “oxidative phosphorylation,” and “proteasome.” For
example, the proteasome and its downstream effects have a
dual effect on AD symptoms [25]. Proteasomes can degrade
Aβ, thereby improving AD [26, 27].

An important finding of this study was that the downreg-
ulation of EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H,
and BRAF was closely related to the occurrence of
AD.EIF3H, a subunit of the eukaryotic translation initiation
factor 3 complex, regulates protein translation, and plays a
key role in several processes in the initiation of protein syn-
thesis [28]. It has been rarely reported in AD, but its amplifi-
cation and overexpression have been noted in multiple
tumour tissues, including colorectal cancer [29], non-small-
cell lung cancer [30], hepatocellular carcinomas [31], and
breast cancer [32]. However, in our study, EIF3H was down-
regulated, and the relationship between EIF3H and AD and
the potential mechanisms and functions remain unknown
and need to be further explored. RAD51C, a member of the
RAD51 encoded family, is located on chromosome 17q22
and mainly participates in the process of homologous recom-

bination and DNA repair [33]. Importantly, a previous study
revealed that RAD51Cmutation may regulate oxidative stress
levels and DNA damage characteristics [34]. Interestingly,
Lin et al. found that cognitive aging is influenced by the inter-
actions between EXO1 and RAD51C genes [35]. In addition,
another study identified seven genes, including RAD51C, as
potential biomarkers for AD diagnosis [36]. Consistent with
the results of our study, Wang et al. found that RAD51C is
downregulated in AD, which was consistent with our present
results [36]. However, due to a few related studies, it remains
unclear whether this is related to the formation of amyloid
plaques or other pathological mechanisms of AD.

Although little is known about FAM162A, it has been
shown to act as an HIF-1α-responsive proapoptotic mole-
cule, also known as human growth and transformation
dependent protein (HGTD-P). As previously confirmed, it
may play a role in promoting mitochondrial apoptosis
induced by hypoxia [37, 38]. For example, relevant studies
demonstrated that FAM162A overexpression induces
canonical mitochondrial cell death in multiple cells, includ-
ing prostate cancer cells [37]. Furthermore, Lee et al. found
that multiple genes that are upregulated, including
FAM162A, are cardiac enriched and may have an effect on
the progression of heart failure [39]. FAM162A was identi-
fied as an upregulated gene in several diseases [39, 40]; how-
ever, we found that this gene was downregulated in AD, and
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the specific mechanism involving AD remains to be further
explored.

Biliverdin reductase A (BLVRA), an isozyme of biliverdin
reductase, plays a pivotal role in maintaining the cellular
redox balance. The impairment of BLVRA induced by oxida-
tive stress is responsible for the increased accumulation of Aβ
and tumour necrosis factor-alpha, which remarkably results
in the onset of brain insulin resistance as the pathology of
AD progresses [41]. Interestingly, a previous study found
that the reduction and activation of BLVRA protein occur
early in the 3xTg-ADmouse brain before uniformly elevating
the pathological features of AD [41]. A strong negative corre-
lation was found between BLVRA and BACE1, thereby

favouring the direct involvement of BLVRA in the regulation
of BACE1.[42] BACE1 is the rate-limiting enzyme in the
generation of Aβ. Inhibiting the enzymatic activity of BACE1
could reduce the production and toxicity of Aβ. [43] Addi-
tionally, decreased BLVRA levels impaired oxidative stress
and neuroprotection, resulting in increased tau phosphoryla-
tion in early-stage AD, suggesting that it is a promising ther-
apeutic target for AD [44].

V-type proton ATPase subunit H (ATP6V1H) is a
member of the V-type proton ATPase family [45] and is
crucial for all types of biological processes, including promot-
ing cellular function and development, regulating protein
degradation, and intracellular compartment acidification of
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eukaryotic cells [46, 47]. Although there is no study indicat-
ing a direct relationship between ATP6V1H and AD until
now, some studies involving encoded proteins and metabolic
processes of BACE revealed that ATP6V1H mutations may
lead to increased BACE activity [48]. In addition, increased
BACE activity may lead to the accumulation of Aβ in the
brain, resulting in the formation of amyloid plaques. [49,
50] Considering the lysosome pathway is a vital degradation
pathway of the BACE protein, V-ATPase also plays a crucial
role in lysosomal acidification [42, 43, 49–52].

In this study, WGCNA and LASSO regression analyses
were used to identify targets and molecular pathways related
to AD. Moreover, ROC curve verification demonstrated that
six key genes showed high performance in predicting speci-
ficity and sensitivity. However, except for the lack of in vivo
and in vitro experimental verification, the present study has
some limitations that must be considered. Another limitation
is the lack of focus on the different stages of AD. Mining the
hub genes that predict AD in early stages and providing
timely drug intervention can prevent the occurrence and
development of AD. Moreover, the predictive ability of the
six-gene signature should be verified in other databases;
unfortunately, on account of clinical data limitations, we
could not find a suitable dataset at present. In future studies,
we plan to pay close attention to the relevant information in
other databases and conduct in vitro studies, while our ongo-
ing studies will focus on exploring the mechanism of action
of EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H, and
BRAF in AD.

5. Conclusions

Taken together, usingWGCNA and comprehensive analyses,
this study provides a better understanding of the role of bio-

markers EIF3H, RAD51C, FAM162A, BLVRA, ATP6V1H,
and BRAF and provides a biological basis for further studies
on AD progression.
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