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Neutrophil extracellular traps (NETs) are complexes of decondensed DNA fibers and antimicrobial peptides that are released by
neutrophils and play important roles in many noninfectious diseases, such as cystic fibrosis, systemic lupus erythematosus,
diabetes, and cancer. Recently, the formation of NETs has been detected in many central nervous system diseases and is thought
to play different roles in the occurrence and development of these diseases. Researchers have detected NETs in acute ischemic
stroke thrombi, and these NETs are thought to promote coagulation and thrombosis. NETs in ischemic brain parenchyma were
identified as the cause of secondary nerve damage. High levels of NETs were also detected in grade IV glioma tissues, where
NETs were involved in the proliferation and invasion of glioma cells by activating a signaling pathway. Extracellular web-like
structures have also recently been observed in mice with traumatic brain injury (TBI), and it was hypothesized that NETs
contribute to the development of edema after TBI. This article reviews the effect of NETs on multiple diseases that affect the
CNS and explores their clinical application prospects.

1. Background

Neutrophils are critical components of the innate immune
system and play important roles in central nervous system
(CNS) diseases. It is well known that few neutrophils are
present in the CNS under physiological conditions due to
the brain-blood barrier (BBB). When the CNS suffers from
bacterial infection, numerous neutrophils infiltrate the brain
parenchyma and cerebrospinal fluid to resist the invasion of
bacteria [1]. In addition, neutrophils play crucial roles in
some aseptic inflammatory lesions of the CNS. Neutrophils
disrupt the blood-brain barrier by releasing matrix metallo-
proteinases (MMPs), ROS, and elastase [2–7] and contribute
to the pathogenic mechanism of diseases such as ischemic
stroke (IS), cerebral hemorrhage, and trauma [8–11].
Recently, researchers observed that accumulated neutrophils
may also discharge web-like chromatin structures modified
with antimicrobial peptides named neutrophil extracellular
traps (NETs), which destroy the BBB, lead to the subse-
quent damage of neurons, and are involved in many CNS
diseases [12, 13].

Early in 2004, active neutrophils were found to release
web-like structure consisting of decondensed (unwound)
DNA decorated with histones and granular proteins, which
were termed as NETs [14]. NETs were first discovered in
the process of defending against invading microorganisms.
By binding microorganisms with web-like structures, NETs
immobilize microbes, stop their spread, and provide a high
concentration of antimicrobial peptides to kill pathogens
such as bacteria [14], fungi [15], and parasites [16]. Crucial
steps in the formation of NETs were described in early
in vitro studies [17, 18]. Neutrophil nuclei lose their charac-
teristic lobular shape and then swell after stimulation. Data
from many researchers show that the citrullination of his-
tones by peptidyl arginine deiminase 4 (PAD4) mediates
chromatin decondensation, leading to nuclear swelling [19–
22]. It was also suggested that neutrophil elastase (NE) syner-
gized with myeloperoxidase (MPO) to cleave histones and
facilitate chromatin decondensation [23]. Subsequently,
nuclear and granular membranes decompose, and the decon-
densed nuclear and granular proteins are mixed in the cyto-
plasm. Ultimately, the cell membrane breaks, and the
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mixture of DNA and proteins released into the extracellular
compartment (Figure 1). Fuchs et al. showed that this neu-
trophil death process, named NETosis, depends on the pro-
duction of ROS by NADPH oxidase (Nox) [18]. In vitro
experiments showed that neutrophils stimulated by hydro-
gen peroxide could induce the formation of NETs. Moreover,
either inhibition of NADPH oxidase by diphenylene iodo-
nium or destruction of hydrogen peroxide by catalase shows
inhibition of NETs production.

NETosis takes quite a long time and is followed by neu-
trophil lysis. Interestingly, Pilsczek et al. [24] showed that
neutrophils could rapidly expel NETs within minutes with-
out undergoing cell death in response to Staphylococcus
aureus. NETs produced by this new mechanism were termed
as “vital” NETs. Neutrophils extrude their decondensed
chromatin without the release of cytoplasmic contents or cell
membrane disintegration. Denucleated neutrophils are still
capable of creeping, chasing, and engulfing microorganisms
trapped in their web-like structures. Unlike that described
by Fuch et al., such NETs are produced in a manner that is
independent of Nox. Further studies have shown that cal-
cium influx and mitochondrial ROS release are necessary
for the progress of the Nox-independent NET formation.
Current studies have shown that the Nox-dependent path-
way and Nox-independent pathway are two different ways
of NET formation. The activators and subsequent activated
kinases required by these two ways are different. Although
studies of NET formation have been ongoing for 16 years,
there is still no uniform and standardized definition of the
mechanism by which NETs are induced.

Although the formation of NETs is one of the main
mechanisms of the bactericidal effect of neutrophils, increas-
ing studies have shown that the NETs can also cause adverse
effects on the body. On the one hand, antimicrobial peptides
such as neutrophil elastase (NE) in NETs cannot only kill
pathogens but also cause tissue damage. On the other hand,
histone and other substances of NETs can act as autoantigens
to cause autoimmune reaction [14]. It has been reported that
excessive NET formation may contribute to the pathogenesis
of systemic lupus erythematosus [25–27], atherosclerosis
[28], thrombosis [29–31], lung injury [32], diabetes [33],
and tumors [34, 35]. As described later in this review, NETs
are also implicated in CNS diseases, including stroke, Alzhei-
mer’s disease, and multiple sclerosis (MS).

2. NETs in Stroke

IS is the primary cause of adult disability worldwide. Local
thrombosis or peripheral circulatory clots migrate into the
brain and block the blood supply of the brain, leading to
the formation of an ischemic core and surrounding salvage-
able ischemic penumbra. In 2017, Laridan et al. [36] demon-
strated the presence of NETs in ischemic stroke thrombi for
the first time. Inspection of thrombi extracted from cerebral
circulation in patients with IS showed the presence of citrul-
linated histones, which are hallmark of NET formation [36,
37], indicating that NETs may contribute to the pathogenesis
of IS. Although the role of NETs in thrombosis has long been
described [30, 31], it is still unclear whether and how NETs
promote coagulation and thrombosis in IS. Experiments by
Peña-Martínez et al. [38] indicated that activation of neutro-
phils through platelet toll-like receptor 4 (TLR4) could result
in NETosis and therefore the formation of arterial thrombi in
the brain. Zhou et al. documented neutrophil activation and
NET release at the site of plaque rupture in internal carotid
artery (ICA) occlusion patients [39]. NETs, which bind
platelet-derived microparticles (PMPs) and clotting factors,
could act as assembly platforms for atherothrombosis by
promoting the formation of thrombin and fibrin. Further-
more, NET-associated proteases and citrullinated histones
may damage endothelial cells and augment their coagulant
activity through the induction of exposed phosphatidylser-
ine (PS) and tissue factor (TF) expression in endothelial
cells [39].

Researchers found that the content of web-like structures
in thrombi may impair t-PA-induced thrombolysis in IS. The
potential mechanism may be as follows: by forming a ternary
complex of DNA, fibrinolytic protein, and fibrin, the extra-
cellular decondensed chromatin in NETs wraps fibrin tightly
and impedes fibrinolytic protein-mediated fibrin clot disinte-
gration, resulting in fibrinolysis impairment [40]. Addition-
ally, histone-DNA complexes can improve the stability and
rigidity of fibrin in thrombi, leading to prolonged fibrinolysis
time [41]. Peña-Martínez et al. [38] simulated t-PA resistance
by inducing platelet-rich fibrin-free thrombi in mice. The
application of DNase-I, which promotes NETs degradation,
recanalized the occluded vessels, confirming that NETs could
exert detrimental effects on IS thrombolysis. It was recently
reported that recombinant DNase 1 accelerated t-PA-
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Figure 1: Release process of NETs.
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induced thrombolysis in vitro [36], whereas DNase 1 alone
was ineffective [37], suggesting that both fibrin and
neutrophil-derived extracellular DNA must be targeted to
induce successful thrombolysis.

It has been widely recognized that following primary
ischemic injury, neuroinflammation promotes secondary
exacerbation in the ischemic brain. As one of the first
immune cells to infiltrate brain lesions [42], neutrophils play
a prominent role in aseptic inflammation. Kim et al. [43]
observed spatiotemporal progression of NETosis in the
mouse brain after middle cerebral artery occlusion (MCAO).
NETosis was detected in peripheral blood and meningeal
vessels after 12 hours of MCAO, and neutrophils infiltrated
the brain parenchyma and released NETs 1 day after MCAO.
A study displayed NETosis inside and around blood vessels
[44], combined with the established evidence of BBB destruc-
tion caused by neutrophil elastase [45], indicating that neu-
trophils could attack the BBB by releasing decondensed
chromatin lined with proteases. There was evidence that
digesting NETs with DNase 1 significantly reduced BBB
damage [46].

Early studies have suggested that the main cause of
delayed neuronal damage after cerebral ischemia is the
migration of neutrophils to the brain parenchyma and the
release of a large number of proteases. Recently, researchers
found citrullinated histone H3 (CitH3) and extracellular
DNA fibers in the ischemic brain, suggesting that NETs play
a role in neurological dysfunction after ischemia [44, 46].

Allen et al. identified a novel neuroinflammatory mechanism
in the ischemic brain: by migrating across the BBB, neutro-
phils cause neuronal death by altering their phenotypes and
releasing decondensed chromatin and proteases [12]. Nota-
bly, interleukin-1 (IL-1) plays a key role in cerebrovascular
activation, neutrophil recruitment, and transendothelial
migration [12]. Experiments by Kim and colleague [43] sug-
gest that high-mobility group box-1 (HMGB1), a prototypic
danger-associated molecular pattern (DAMP), is involved
in NET-mediated neuronal damage in the ischemic brain.
On the one hand, HMGB1 is released from neuronal nuclei
after acute damage and serves as a mediator that leads to
the formation of NETs in neutrophils. On the other hand,
after neutrophil activation, HMGB1 in neutrophil nuclei is
extruded to the extracellular space during NETosis and
therefore exacerbates neuroinflammation by further recruit-
ing and activating neutrophils and other immune cells.

During the convalescence of cerebral ischemia, neovascu-
larization and vascular remodeling are critical for the repair
of the brain function. Kang et al. [46] discovered that
PAD4 was markedly increased in the ischemic peripheral
cortex, leading to a reduction in neovascularization by the
increased release of NETs. Consistent with these observa-
tions, vascular branches, microvascular length, and perfused
capillary length were increased in the ischemic brains of mice
treated with DNase 1.

Figure 2 Contribution of neutrophil extracellular traps to
ischemic stroke.
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Figure 2: Contribution of NETs to IS. After forming in blood vessels, NETs can cause blood-brain barrier damage, which may be related to
the granular protein it contains. Intravascular NETs can enhance coagulation activity and act as assembly platform to promote thrombosis.
After transferring to brain parenchyma by changing phenotype, neutrophils release NETs, which can directly damage neurons through
cytotoxic proteins or aggravate neuroinflammation by activating inflammatory cells.

3Oxidative Medicine and Cellular Longevity



As another devastating form of stroke, intracerebral
hemorrhage (ICH) is a severe acute cerebrovascular event
with high mortality and poor prognosis. Despite the
increased intracranial pressure (ICP) and brain tissue dam-
age caused by the accumulation of blood within the brain
parenchyma, ICH is also characterized by inflammation-
mediated brain damage [47, 48]. Consistent with IS, neutro-
phils are among the first inflammatory cells to infiltrate the
brain tissue in ICH. An abundance of neutrophil accumula-
tion in the ICH core and hematoma border has been docu-
mented in experimental intracerebral hemorrhage [47]. By
releasing matrix metalloprotease 9 (MMP-9), neutrophils
can cause BBB destruction and axonal damage after ICH
[48]. However, there is a lack of data on NETosis in cerebral
hemorrhage. Recently, an animal experiment first confirmed
the presence of NETs in ICH by the colocalization of DAPI,
histone H3, and MPO [49] in the ICH rat brain. An
in vitro experiment showed that hemin, a heme-related mol-
ecule produced by the hemolysis of red blood cells, can acti-
vate neutrophils and induce morphological changes,
degranulation, and NET release in neutrophils, which may
explain how NETs are induced in ICH [50]. However, it is
still unclear whether and how NETs cause damage to the
blood-brain barrier and exert detrimental effects on neurons
in ICH. Further experiments by Tan et al. demonstrated that
DNase 1 could promote t-PA-induced hematoma fibrinoly-
sis, thereby relieving brain swelling, reducing neuronal death,
and improving functional prognosis in rats with ICH [49].

3. NETs in Alzheimer’s Disease (AD)

AD is a chronic progressive neurodegenerative disorder
characterized bymemory deterioration and cognitive impair-
ment. The pathological characteristics of AD include senile
plaques with amyloid beta (Aβ) peptide deposition, neurofi-
brillary tangles containing hyperphosphorylated neuronal
tau protein, and synaptic dysfunction [51–53]. Additionally,
neuroinflammation is thought to play an important role in
the pathological process of AD because leukocytes such as
lymphocytes, monocytes, and neutrophils have been discov-
ered in the brains of these patients [54–56]. Studies have
shown that neutrophil depletion can improve the cognitive
function and reduce AD-associated pathological damage in
AD model mice [56, 57]. NETs-producing neutrophils dis-
covered in the parenchyma and blood vessels of AD model
mice may support the idea that NETs, which are involved
in neutrophil-mediated chronic neuroinflammation, and
promote the pathogenesis or development of AD.

On the one hand, destruction of the BBB in AD model
mice has been widely reported [58, 59]. Current evidence
shows that BBB permeability precedes senile plaque forma-
tion and cognitive deficits, suggesting that BBB disruption
may be related to the pathogenesis of AD. Research by
Zenaro et al. [56] recently demonstrated the production of
endovascular NETs in an AD model animal and suggested
that this is one of the mechanisms of BBB disruption in
AD. The potential mechanism proposed by the same author
in a review is as follows [60]: Aβ activates cerebral endothe-
lial cells, which express endothelial adhesion molecules,

including intercellular cell adhesion molecule-1(ICAM-1)
[56, 61]. Circulating neutrophils adhere to blood vessels by
binding to ICAM-1 through the lymphocyte function associ-
ated antigen-1 (LFA-1) [56]. Adhered neutrophils secrete
endovascular NETs, which may be associated with the bind-
ing of activated platelets to neutrophil LFA-1 via intercellular
cell adhesion molecule-2 (ICAM-2) [56, 62] or triggered by
proinflammatory cytokines such as tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), and interleukin-8 (IL-8)
released by activated endothelial cells [63–66]. Components
of NETs such as NE and MMPs, myeloperoxidase (MPO)
and histones could injure endothelial cells and promote
BBB damage [45, 67–70]. Additionally, thrombosis caused
by intravascular NETs could exacerbate cerebral amyloid
angiopathy, which is another characteristic of AD caused
by Aβ deposits. On the other hand, the discovery of NETs
within the cerebral parenchyma of animal models and
patients with AD [56] indicated that NETs represent a mech-
anism of intraparenchymal tissue damage in AD. Through
LFA-1-ICAM-1 binding, neutrophils adhere to endothelial
cells and infiltrate the brain parenchyma. By activating Nox
in neutrophils, Aβ promotes the generation of ROS, poten-
tially promoting intraparenchymal NETosis in AD [71].
Additionally, neutrophils in brain parenchyma may be acti-
vated by tumor necrosis TNF-α, IL-1β, and IL-8 secreted
by glial cells and then releasing NETs [72–74], which may
in turn activate glial cells and cause neuronal damage. Intra-
parenchymal NETs could cause neurotoxicity by disintegrat-
ing extracellular matrix, which could be caused by NET-
associated proteases such as MMP-9, MPO, and NE, and
activating the mitochondrial apoptosis pathway and amplify-
ing the inflammatory process [75–78].

4. NETs in Autoimmune Diseases

Since extracellular histone complexes may serve as self-
antigens that participate in the development of lupus erythe-
matosus, it was recognized in the first report on NETs that
the extracellular web-like structure may play a role in auto-
immune diseases [14]. In fact, NETs are associated with
many autoimmune diseases, including those that may affect
the central and peripheral nervous systems (e.g., lupus ery-
thematosus [26] and Behcet’s disease [79]) and those that
are specific to neural antigens such as multiple sclerosis
(MS) [80].

MS is a chronic inflammatory, demyelinating disease of
the CNS with a strong autoimmune component. Although
the inflammatory cells associated with MS are mostly T lym-
phocytes cells and macrophages that accumulate within the
CNS parenchyma and perivascular spaces, there is evidence
that neutrophils also exert deleterious effects on the patho-
genesis of MS [80]. The role of neutrophils in multiple sclero-
sis has been described in a recent review [81]: neutrophils can
generate and present autoantigens, produce ROS, and release
inflammatory mediators, enzymes, and NETs [82–85].

Although elevated levels of circulating NETs were identi-
fied in MS patients, early studies opposed a critical role of
NETs in this disease, as increased circulating NET levels do
not appear to be a common feature of relapsed remitting
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MS (RRMS) patients, and there was no correlation between
the level of NETs in serum and disease activity [80, 86]. How-
ever, further investigation by these authors showed that
MPO-DNA complexes were significantly higher in male
patients, who generally suffer a worse prognosis, than in
female patients [86], suggesting that high NET levels could
underlie sex-specific differences in MS pathogenesis. In the
same study, researchers also proposed the possibility that
NETs adversely affect the BBB and induce damage to neigh-
boring neurons in MS patients. Consistent with this hypoth-
esis, there is evidence that the absence of NET-related
proteins (MPO, NE) increases the integrity of the BBB and
reduces severity of the disease [84, 87]. Furthermore, studies
have shown that elevated plasma NE levels in patients with
MS correlate with disease severity and clinical prognosis
[88]. Researchers have demonstrated that NETs can activate
inflammatory T helper 17 cells, which can secrete interleukin-
17 (IL-17), a neutrophil-attracting cytokine. Depleting IL-17
to inhibit recruitment of neutrophils can significantly amelio-
rate the onset and severity of experimental autoimmune
encephalomyelitis (EAE) [89], which is a rodent model of
MS. However, there is still a lack of a strong direct association
between NETs and MS lesions, and evidence that NETs cause
the breakdown of the BBB and neuronal damage in MS
patients still needs to be further explored. Paryzhak et al. sug-
gested another possible effect of NETs, which is the degrada-
tion of circulating immune complexes in MS [90]. These
authors emphasize the potency of NET-related proteases to
cleave circulating IgG immune complexes, resulting in the
exposure of hidden glycoepitopes, which may contribute to
MS pathogenesis.

NETs may also be involved in neuropsychiatric lupus.
Tay et al. [91] described a hypothesis for the pathogenesis
of cognitive dysfunction in SLE. Elevated levels of MMP-9
in the serum of SLE patients may contribute to degeneration
of the basal lamina and damage BBB integrity. Then, neutro-
phil recruitment, rolling, adhesion, migration, and intracere-
bral parenchymal NET release occur, which result from the
activation of the cerebrovascular endothelium by anti-N-
methyl-D-aspartate receptor subunit NR2A/B (anti-NR2A/B)
autoantibodies. Finally, the formation of NETs leads to neu-
rotoxicity by inducing neuronal death, resulting in cognitive
disorders in SLE patients. Additionally, anti-NR2A/B auto-
antibodies cross the BBB into the CSF and may lead to dis-
ruption of neuronal cell activity via Ca2+ influx and
subsequent activation of the apoptotic pathway, which may
further cause CNS symptoms [92].

5. NETs in CNS Infection

It is well known that NETs can immobilize bacteria, kill
bacteria with antimicrobial peptides, and restrict bacterial
dissemination in the host. Recent research indicates the for-
mation of NETs in the cerebrospinal fluid (CSF) of patients
with pneumococcal meningitis, as well as patients with Lyme
neuroborreliosis (LNB) and viral CNS infections such as
enteroviral meningitis [93, 94]. However, the effect of NETs
on CNS infections is far from clear.

In recent years, studies have reported that many bacteria,
including Streptococcus pneumoniae [95, 96], Staphylococcus
aureus [97] [98], and Streptococcus suis [99], can produce
DNases to evade capture and killing by NETs, which facilitate
their further dissemination. De Buhr et al. showed a balance
in antimicrobial activity between NET evasion and NET sta-
bilization [100]. Streptococcus suis- (S. suis-) secreted nucle-
ase A (SsnA) and endonuclease A of S. suis (EndAsuis) were
identified as NET evasion DNases that lead to the degrada-
tion of NETs in S. suis infection [99, 101]. However, despite
a strong DNase activity was present in those CSF samples,
NET fiber-trapping bacteria were still detectable in the CSF
of the S. suis-infected piglets. These authors found that the
antimicrobial peptides LL-37 and PR-39 play a role in pre-
venting extracellular DNA from destroying nucleases,
thereby restricting NET evasion mediated by nucleases in S.
suis infection. It is hypothesized that the ultimate result of
NET-mediated inhibition of S. suis rests in the balance
between NET degradation caused by bacterial nuclease and
NET stabilization via antimicrobial peptides.

A study by Mohanty et al. [93] showed the present of
NETs in the CSF of patients with pneumococcal meningitis;
however, the effect of NETs could run counter to their previ-
ously described antibacterial actions. Pneumococci are
trapped in NETs without any decline in survival. They hide
in the web-like structure of NETs and replicate and then pass
through the damaged BBB and spread elsewhere. In a pneu-
mococcal meningitis model rat, targeting extracellular web-
like structures with DNase may unmask bacteria trapped in
NETs and expose them to intact neutrophils, leading to bac-
terial death via neutrophil phagocytosis. The same effect was
recently observed in piglets infected with S. suis. Meurer et al.
[102] reported that host DNase 1 promoted the killing of S.
suis by neutrophils by cleaving DNA fibers in NETs and facil-
itating neutrophil intracellular uptake and phagocytosis of
bacteria. This finding was supported by the production of
“vital” NETs, as previously described, in which neutrophils
did not die after NET release. In summary, these authors sug-
gested that NETs play a harmful role in pneumococcal men-
ingitis and CNS infection with S. suis.

The evidence that certain bacteria are trapped and killed
in the web-like framework of NETs, while others take advan-
tage of NETs to avoid neutrophil phagocytosis, shows that
NETs can be beneficial or detrimental in infectious diseases.
At present, there have been few studies on the roles of NETs
in CNS infections. Some studies have reported the harmful
effects of NETs, but there have been no reports on the bene-
ficial effects of NETs in CNS infection. Further investigation
is warranted to reveal the exact roles of NETs in CNS
infections.

6. NETs in CNS Tumors

Many studies have shown the presence of NETs in tumors,
and many in vitro experiments have demonstrated that a
variety of tumor cells can promote the formation of NETs
[103, 104]. The role of NETs in tumors, however, remains
complex. In malignant melanoma [105], NETs can come into
contact with tumor cells and inhibit melanoma cell migration
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and viability. It is hypothesized that the antitumor effect of
NETs is related to the ability of NETs to directly kill cancer
cells or stimulate the immune system to fight against the
tumor. In contrast, some studies hypothesized that NETs
play a significant role in tumor proliferation, invasion, and
metastasis [106–108]. Evidence shows that NETs can entrap
circulating tumor cells and promote tumor cell adhesion and
metastasis to distant organ sites [108].

The presence of NETs in tumors of CNS has rarely been
reported. Early studies on the capacity of NET-related pro-
teins such as elastase, proteinase-3, and cathepsin G to invade
CNS tumors preliminarily showed traces of NETs in CNS
tumors [109]. Recently, NETs were detected in the glioma tis-
sue by staining for MPO and CitH3 [110]. Furthermore, by
activating the NF-κB signaling pathway through the binding
of HMGB1 with receptor for advanced glycation end prod-
ucts (RAGE), NETs secreted by tumor-infiltrating neutro-
phils (TINs) participate in the proliferation and invasion of
glioblastoma cells. Consistent with this observation, the levels
of NETs in high-grade glioma tissues were significantly
higher than those in low-grade glioma tissues. The author
also described a positive feedback loop among neutrophils,
NETs, and glioma cells. By activating the NF-κB signaling
pathway, NETs cannot only promote the progression of gli-
oma but also induce the secretion of IL-8 by glioma cells.
IL-8, which is widely known as a proinflammatory chemo-
kine, can facilitate neutrophil infiltration into tumor sites.
At the end of the cycle, the recruitment of neutrophils to gli-
oma tissue can further result in NET production via the
PI3K/AKT/ROS axis.

Salganik et al. [111] documented a reduction in the
lymph node size and extended survival time at 12 weeks after
injection of DNase I in spontaneous lymphatic leukemia
mice. Other study have shown that injecting DNase I into
laboratory animals can significantly inhibit pancreatic cancer
cells invasion and metastasis [112].Therefore, future research
should focus on whether the degradation of extracellular
DNA fibers with DNase I can inhibit the proliferation and
invasion of glioma cells.

7. NETs in Traumatic Brain Injury (TBI)

TBI is a transient or permanent neurological dysfunction
caused by external forces. TBI is one of the main causes of
disability and death in young people worldwide [113, 114].
In contrast to stroke, traumatic brain injury occurs more
often in young adults than in older individuals [113, 114].
The high disability rate has brought huge social and eco-
nomic burdens to individuals who are in the prime of their
life. In addition to neuronal and widespread axonal damage
caused by the initial trauma, subsequent elevated ICP, cere-
bral hypoperfusion, and inadequate tissue oxygenation can
cause serious secondary lesions. Studies have shown that
neutrophils enter the subarachnoid and subdural spaces
within 4 hours of injury and penetrate into the parenchyma
during the following days [115, 116]. By inducing edema for-
mation and cerebral hypoperfusion, neutrophils play a signif-
icant role in experimental models of TBI [117, 118].

Vaibhav et al. [119] used scanning electron microscopy
and observed an extracellular web-like framework within
the controlled impact cortex in mice. CitH3 localized within
infiltrated neutrophils in the cortex further corroborates the
formation of NETs in the TBI brain. After TBI, CNS-
infiltrated neutrophils exhibited elevated TLR4 expression,
which correlated with poor TBI outcomes in patients [120].
The release of HMGB1 from necrotic neurons promoted
cerebral edema via a TLR4–dependent mechanism, as
observed in experimental TBI mice [121]. Vaibhav and col-
leagues found that NETs may exert their effects through
TLR4, since they discovered that the activation of TLR4 pro-
motes NETosis after experimental TBI, whereas mice lacking
functional TLR4, exhibited less NET formation and dis-
played less edema development after TBI. Since a reduction
in serum DNase-I activity is associated with elevated levels
of circulating NETs in patients with severe nerve injury,
researchers suggest that NETs may contribute to the develop-
ment of cerebral edema and worsened neurological function
in patients with TBI by means of correlation analysis of
patient serum DNase activity and ICP or Glasgow Coma
Scale (GCS) scores. The underlying mechanism may be that
circulating NETs promote microthrombus formation, which
leads to the obstruction of cerebral venous return, further
resulting in cerebral edema. Finally, the researchers degraded
both circulating and CNS-infiltrated NETs via intravenous
administration of recombinant human DNase-I, which
resulted in a decrease in cerebral edema.

8. Clinical Application Prospect of NETs

8.1. Reducing/Inhibiting the Formation of NETs to
Treat/Prevent Diseases.Many of the studies on NETs, includ-
ing those mentioned above, show the potential of degrading
NETs to prevent and treat disease. As described previously,
intravascular NETosis could play a critical role in athero-
thrombosis in IS patients with ICA occlusion [39], which
suggests that combining traditional anticoagulant drugs with
drugs targeting NETs may reduce the risk of thrombosis,
thereby further preventing the occurrence of stroke. Previous
studies have shown that the administration of DNase 1 to
degrade NETs improves the efficacy of t-PA induced throm-
bolysis in vitro [37]. We expect that DNase 1 could be com-
bined with fibrinolytic therapy, salvage the ischemic
penumbra, and significantly improve the outcome of ische-
mic stroke patients. Minimally invasive surgery combined
with alteplase has become a new strategy for the treatment
of ICH in recent years [122]. A phase II clinical trial con-
firmed its safety, but the unsatisfactory hematoma clearance
rate makes it difficult to further develop this treatment strat-
egy [122, 123]. Tan et al. showed that degradation of the
extracellular web-like framework by DNase 1 promotes t-
PA induced hematoma fibrinolysis [49], which may provide
a new strategy for minimally invasive surgery plus fibrinoly-
sis therapy to treat ICH.

In addition to stroke, the administration of DNase in
other NET-associated studies has achieved considerable
results. For example, targeting NETs with DNase can allevi-
ate secondary cerebral edema and improve cerebral perfusion

6 Oxidative Medicine and Cellular Longevity



in TBI, as mentioned previously. Furthermore, host DNase
can unmask bacteria trapped in NETs and improve neutro-
phil phagocytosis of bacteria in pneumococcal meningitis
and CNS infection with S. suis. Finally, cleavage of extracellu-
lar DNA fibers with DNase in glioma tissue can inhibit the
proliferation and invasion of glioma cells, which also seemed
promising. Intriguingly, a study reported that intermittent
hypoxia-hyperoxia training (IHHT), which is a new non-
pharmacological therapy, could inhibit NET formation and
may enhance cognitive function in pre-AD patients and slow
the progression of AD [124].

Based on the ability of NETs to fight against infection, we
must consider whether a reduction in NETs after DNase
administration could increase the risk of infection in criti-
cally ill patients. As described previously, PAD4 is a key pro-
tein that regulates the formation of NETs. There is evidence
that PAD4-/- mice showed no increased susceptibility to
severe bacterial infection, even though these mice could not
produce NETs [125]. Furthermore, as a drug that has been
approved by U.S. Food and Drug Administration, DNase 1
is already used for cystic fibrosis therapy and is a drug with
an excellent record of clinical safety. These results indicate
that DNase may have promising clinical applications in these
NET-related diseases.

In addition to DNase 1, certain drugs or compounds have
also been shown to inhibit or destroy NETs and may play
therapeutic roles in CNS diseases. For example, aspirin, a
nonsteroidal drug with antithrombotic and anti-
inflammatory properties, can prevent NETosis by inhibiting
the interactions between platelets and neutrophils [126,
127]. In patients with cerebral infarction who take aspirin
orally, this potential effect may prevent the formation or fur-
ther expansion of thrombosis. As mentioned previously,
Zhou et al. demonstrated that NETs in carotid lesion sites
of patients with ICA occlusion could induce the expression
of PS and TF in endothelial cells and induce these cells to
exhibit a procoagulant phenotype [39]. Sivelestat, a selective
elastase inhibitor, can inhibit the cytotoxic effect of NETs
by inhibiting elastase related to NETs, thus protecting endo-
thelial cells, reducing procoagulant activity, and preventing
thrombosis in patients with ICA occlusion [39]. Future treat-
ment strategies can focus on the combination of drugs target-
ing NETs and classic antiplatelet drugs (although antiplatelet
drugs such as aspirin and dipyridamole have also been
proven to inhibit the formation of NETs) to further reduce
the risk of thrombosis and reduce the dose of antiplatelet
drugs.

Chlor-amidine is a nonspecific inhibitor of PAD that is
capable of inhibiting PAD4 and reducing the formation of
NETs [128]. As mentioned previously, PAD4 was signifi-
cantly increased in the ischemic peripheral cortex, resulting
in decreased neovascularization by releasing additional NETs
[46]. Whether the formation of NETs can be inhibited by
Chlor-amidine or other PAD inhibitors to increase neovas-
cularization in the cortex around cerebral infarctions will be
a future research topic.

HMGB1 plays an important role in ischemic cerebral
infarction and can promote the generation of NETs and
recruit immune cells to exacerbate neuroinflammation [43].

Studies have shown that the use of anti-HMGB1 antibodies
can reduce NET formation [129, 130]. The application of
an anti-HMGB1 antibody in ischemic cerebral infarction
may reduce neuronal death after ischemia and improve sub-
sequent neuroinflammation. Similarly, given that NETs can
promote the proliferation and invasion of glioma though
the binding of HMGB1 and RAGE [110], it is also possible
that the administration of anti-HMGB1 antibodies to glioma
patients can inhibit the deterioration and progression of
tumors induced by NETs.

Surprisingly, metformin, a widely used hypoglycemic
drug, has also been shown to reduce the concentration of
NETs in vitro [131]. The potential mechanism of metformin
may be related to the inhibition of Nox activation [131]. In
Alzheimer’s disease, Aβ peptides promote the production
of ROS by activating neutrophil Nox, thus promoting NETo-
sis in the brain parenchyma [71]. The application of metfor-
min may inhibit this process to improve neurodegeneration
in AD patients. In addition, it has been reported that metfor-
min can downregulate the expression of ICAM-1 by activat-
ing AMP-activated kinase (AMPK) [132], which indicates
that metformin also has the potential to reduce the formation
of endovascular NETs in AD patients.

In addition, there are several other drugs or compounds
that have been shown to inhibit NET release in vitro and
could potentially reduce NET formation in the CNS (ticagre-
lor [133], colchicine [134], prostaglandins [135], ruxolitinib
[136], etc.). However, no available treatment has been widely
studied or approved for human administration to treat NET-
associated CNS diseases, and more trials are needed for clin-
ical translation. There are still many problems to be solved,
such as whether these drugs can successfully cross the
blood-brain barrier and quickly reach the lesion to exert an
effect, whether the reduction in NETs will damage the
immune system and cause serious infection, whether the side
effects of the drugs themselves have been evaluated, and
whether they need to be combined with other traditional
treatment methods to achieve better treatment effects. In
summary, there is a long way to go in treating CNS diseases
through drugs that target NETs.

8.2. NETs as Circulating Markers. Clinical research by Lim
et al. [137] demonstrated an elevated level of circulating
dsDNA in patients with IS at the initial stage, suggesting that
NETs could act as a novel circulating marker for the early
diagnosis of IS. Furthermore, in a study of the plasma of IS
patients, elevated levels of circulating CitH3, a specific bio-
marker of NETs, were independently associated with the
severity and mortality of stroke [138]. All of the research
mentioned above suggests that NETs can serve as novel cir-
culating markers and may play an important role in the clin-
ical diagnosis, early severity prediction, and prognosis
estimation of IS.

The use of NETs as a new marker requires standardized
studies of normal and abnormal levels, which involve mea-
suring cell-free DNA (cfDNA), CitH3, NE, and other NET-
related factors in the blood. The determination of cyclic
MPO/cfDNA complexes and citH3 may be more suitable
for NET analysis than the determination of cfDNA alone
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[139]. How to accurately and conveniently measure circulat-
ing NETs in the clinic needs further investigation.

9. Discussion

In recent years, the role of NETs in CNS diseases has
captured a great deal of attention, and this topic has also been
reviewed by other researchers [13]. In this review, we com-
prehensively reviewed and summarized the previously for-
mulated concepts and supplemented the latest research data
in recent two years. In addition, the clinical application pros-
pect and the possibility of clinical transformation of NETs
were also one of our focuses.

On the one hand, the research on the role of NETs in
CNS diseases was unbalanced. The role of NETs in ischemic
stroke has been widely studied; thus, we made a relatively
comprehensive summary of this regard (Figure 2). However,
the research on NETs in AD, MS, and CNS infection was
inadequate, and more researches were required to illuminate
the role of NETs in these diseases. In addition, recently pub-
lished studies on NETs in cerebral hemorrhage, glioma, and
TBI not only showed that NETs play a significant role in dif-
ferent CNS diseases but also displayed that the role of NETs
in CNS diseases has been attached more attention. On the
other hand, we summarized the clinical application prospect
of NETs. Many drugs or compounds have been proved to
inhibit the formation of NETs or degrade NETs through dif-
ferent mechanisms. We speculated that the application of
these drugs or compounds can have beneficial effects on the
related CNS diseases (whether in prevention or treatment),
which was expected to be proved by subsequent studies.
Additionally, NETs, served as circulating markers, may have
the potential to predict the progression or prognosis of CNS
diseases. Therefore, we hoped that this article can provide
inspiration or useful information for the follow-up research
of NETs in CNS diseases, so as to promote the progress of
diagnosis and treatment of related CNS diseases.

10. Conclusion

There are growing evidences that NETs are present in many
CNS diseases of different origins, in which they may play
similar or different roles. In this paper, we described the roles
of NETs in various brain diseases and explored their clinical
application prospects. We expect that NETs can be detected
clinically as circulating markers, and that targeting NETs
can be used to treat certain CNS diseases. Since the role of
NETs in CNS disease has been gradually explored, future
research should focus on the similarities and differences in
the role of NETs in CNS diseases and their clinical
applications.
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