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Mitochondria not only are the main source of ATP synthesis but also regulate cellular redox balance and calcium homeostasis. Its
dysfunction can lead to a variety of diseases and promote cancer and metastasis. In this study, we aimed to explore the molecular
characteristics and prognostic significance of mitochondrial genes (MTGs) related to oxidative stress in clear cell renal cell
carcinoma (ccRCC). A total of 75 differentially expressed MTGs were analyzed from The Cancer Genome Atlas (TCGA)
database, including 46 upregulated and 29 downregulated MTGs. Further analysis screened 6 prognostic-related MTGs
(ACAD11, ACADSB, BID, PYCR1, SLC25A27, and STAR) and was used to develop a signature. Kaplan-Meier survival and
receiver operating characteristic (ROC) curve analyses showed that the signature could accurately distinguish patients with
poor prognosis and had good individual risk stratification and prognostic potential. Stratified analysis based on different
clinical variables indicated that the signature could be used to evaluate tumor progression in ccRCC. Moreover, we found
that there were significant differences in immune cell infiltration between the low- and high-risk groups based on the
signature and that ccRCC patients in the low-risk group responded better to immunotherapy than those in the high-risk
group (46.59% vs 35.34%, P = 0:008). We also found that the expression levels of these prognostic MTGs were significantly
associated with drug sensitivity in multiple ccRCC cell lines. Our study for the first time elucidates the biological function
and prognostic significance of mitochondrial molecules associated with oxidative stress and provides a new protocol for
evaluating treatment strategies targeting mitochondria in ccRCC patients.

1. Introduction

Renal cell carcinoma (RCC) is a common and highly malig-
nant tumor of the urinary system. Among them, clear cell
renal cell carcinoma (ccRCC) accounts for 75–80% of all
RCC [1, 2]. Symptoms of ccRCC are not obvious in the early
stage, and about 25–30% of patients have metastases by the
time of initial diagnosis [3]. In addition, metastatic recur-
rence occurred in approximately 30% of patients following

nephrectomy [4]. CcRCC has a poor prognosis due to its
high resistance to chemotherapy and radiotherapy [5], and
the five-year survival rate for advanced ccRCC patients has
been reported to be only 11.7% [6]. Although several prog-
nostic factors for survival in patients with RCC have been
described and signatures have been developed [7, 8], few sig-
natures can be used clinically to predict prognosis in patients
with RCC and reliable predictive biomarkers of individual
sensitivity or drug resistance have not been identified.

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 9939331, 32 pages
https://doi.org/10.1155/2021/9939331

https://orcid.org/0000-0001-6922-3008
https://orcid.org/0000-0002-3055-8721
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9939331


Moreover, in well-designed clinical trials, available evidence
can only partially promote more precise and personalized
patient selection [9]. Thus, in the era of a new generation
of antiangiogenesis and immunotherapy, the need to cover
unmet medical options may be critical.

Mitochondria is an important ancient organelle existing
in eukaryotic cells. Its main function is to generate energy
for cell survival through oxidative phosphorylation, main-
tain calcium homeostasis, and serve as a key component of
cell apoptosis [10]. Reprogramming of cell metabolism and
an abnormal redox status are considered to be the main
characteristics of tumor transformation. So mitochondrial
dysfunction plays an important role in a range of diseases,
including diabetes, cancer, and neurodegenerative diseases
[11]. The release of cytochrome C and the production of
mitochondrial reactive oxygen species (mtROS) and metab-
olites due to mitochondrial dysfunction can initiate signaling
cascades that affect gene expression and cell activation, pro-
liferation, and differentiation [12, 13]. Importantly, the main
source of intracellular reactive oxygen species (ROS) is the
mitochondrial respiratory chain, which plays an important
role in the maintaining redox balance and intracellular sig-
nal transduction [14]. Mitochondrial dysfunction increases
intracellular oxidation and stress, destroys the functional
activities of endoplasmic reticulum, lysosome, and other
organelles, induces autophagy, and mediates cell damage
and death. At the same time, the elevated ROS, as endoge-
nous DNA destruction factors, promotes genetic instability,
which may eventually lead to homeostasis and pathological
disorders [13, 15]. Moreover, escalated ROS generation
inhibits the activity of some key enzymes of energy metabo-
lism such as NADH dehydrogenase, succinate dehydroge-
nase, and aconitase and causes mitochondrial DNA
(mtDNA) damage and mutations [16]. Recently, Marquardt
et al. [17] clustered RNA-sequencing data from three histo-
pathological groups of RCC and revealed a unique histologi-
cally independent subgroup (mixed subgroup) characterized
by enhanced mitochondria and weakened angiogenesis-
related gene signatures. The association with the mixed sub-
group significantly shortened the overall survival (OS) of
patients with ccRCC and extended the overall survival of
patients with chromophobe RCC (chRCC). Therefore, in-
depth investigation of the molecular characteristics and bio-
logical functions of mitochondrial dysfunction and oxidative
stress in ccRCC is helpful to further clarify the mechanism of
tumor progression and identify reliable biomarkers.

Traditional research methods cannot reflect the molecu-
lar landscape of a large number of mitochondrial genes
(MTGs). In addition, oncogenesis is a highly coordinated
interaction of multiple regulatory factors, which requires a
more comprehensive and effective analysis of the character-
istics of MTGs in ccRCC. In this study, we explored the
molecular characteristics and biological functions of MTGs
related to oxidative stress in ccRCC by analyzing the geno-
mic information from TCGA-KIRC. Besides, we developed
a prognostic signature to predict ccRCC patient outcomes,
explored its upstream regulatory mechanisms, and prelimi-
narily revealed its potential to predict immunotherapy and
drug sensitivity of ccRCC cell lines.

2. Materials and Methods

2.1. Data Collection and Differentially Expressed MTGs.
Transcriptome data (read counts) of ccRCC patients and
corresponding clinical data including the survival status,
age, gender, grade, and stage were obtained from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) data-
base. A total of 539 ccRCC patients were enrolled in our
study. The raw expression data was normalized by the
trimmed mean of M values (TMM) algorithm in “edgeR”
package, and the genes with average expression less than 1
were removed. The “edgeR” package was also used for
MTG differential expression analysis. In our study, the cri-
teria for screening differentially expressed MTGs were ∣log2
fold change ðFCÞ ∣ ≥1:2 and false discovery rate ðFDRÞ <
0:05. The read counts were then converted to TPM values
and performed a log2ðx + 1Þ transformation for subsequent
analysis, since the TPM values are the same as the microar-
ray values [18]. Next, we downloaded 1136 MTGs from
MitoCarta3.0 database (http://www.broadinstitute.org/
mitocarta) [19], and according to the search term “oxidative
stress,” 9469 human genes related to oxidative stress were
obtained from OMIM database (https://www.oncomine
.org/resource/), NCBI gene function module (https://www
.ncbi.nlm.nih.gov/gene/), and GeneCard database (https://
www.genecards.org/). Based on this, we screened a total of
788 MTGs related to oxidative stress for subsequent analysis.
Moreover, the two expression matrices (E-MTAB-1980 and
GSE29609 cohorts) and their corresponding clinical infor-
mation were directly downloaded from the ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/) and the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm
.nih.gov/geo/), respectively, and used as external validation
cohorts to validate the predictive performance of the signa-
ture. Additionally, we downloaded transcriptome data of
65 patients with chRCC including OS, disease-free survival
(DFS), disease-specific survival (DSS), progression-free sur-
vival (PFS), and other clinical information from the cBio-
Portal database (https://www.cbioportal.org/datasets).

2.2. Weighted Correlation Network Analysis (WGCNA).
WGCNA analysis is an important method to identify key
genes and evaluate the relationship between key modules.
To assess the relationship between differentially expressed
MTGs and clinical variables as a whole, we performed
WGCNA on differentially expressed MTGs using the R
“WGCNA” package. A soft threshold was set to obtain the
optimal scale-free topology fitting model index (scale-free
R2), and the degree of difference between genes was deter-
mined based on the topological overlap metric. After cluster-
ing the modules and genes, the correlation between the
clinical variables in TCGA and the module characteristic
genes was analyzed. P < 0:05 was considered statistically
significant.

2.3. Construction and Validation of a MTG-Based Prognostic
Signature.We performed univariate, least absolute shrinkage
and selection operator (LASSO), and multiple stepwise Cox
regression analyses sequentially in these 539 ccRCC patients
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to identify the MTGs most associated with prognosis. The
risk score for predicting the prognostic risk in ccRCC
patients was then calculated with the following formula:

Risk score = 〠
n

i=1
Expiβi: ð1Þ

In the above formula, Exp and β represent the normal-
ized expression value and regression coefficient of gene i,
respectively. Next, all ccRCC patients were grouped accord-
ing to the median risk score (high- and low-risk groups).
Kaplan-Meier analysis was used to compare the difference in
OS between the two groups. The receiver operating character-
istic (ROC) curves were used to evaluate the accuracy and
diagnostic value of the MTG-based prognostic signature.
Moreover, the E-MTAB-1980 and GSE29609 cohorts were
used as external cohorts to further evaluate the signature.

2.4. Exploration of the Relationship between the Prognostic
Signature, Prognostic MTGs, and Clinical Variables. The dif-
ferences in prognosis and the distribution of risk scores were
explored under different clinical variable stratification. In
addition, we further analyzed the correlation between these
prognostic MTGs and different clinical variables to reveal
their possible roles in ccRCC.

2.5. Regulatory Network of Transcription Factors (TFs) and
MTGs and Functional Enrichment Analysis. We constructed
a TF-MTG regulatory network based on coexpression anal-
ysis to reveal the potential functions of TFs and MTGs in
ccRCC. We identified 318 transcription factors associated
with tumorigenesis and progression from cistrome (https://
cistrome.org/) [20]. Next, the overlap was extracted from
the expression data of TCGA and analyzed for differential
expression. Then, we carried out coexpression analysis on
these differentially expressed TFs and prognostic MTGs
based on ∣Cor ∣ >0:3 and P < 0:001 standard. Besides, we
explored the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) database pathways based
on the “clusterProfiler” package to clarify the molecular
functions and key signaling pathways of differentially
expressed MTGs.

2.6. Establish and Evaluate a Nomogram.We first performed
univariate and multivariate Cox regression analyses for the
risk score and clinical variables. Next, based on the R
“rms” package, a nomogram combining clinical variables
and MTG-based risk signature was constructed. Kaplan-
Meier survival curves and ROC curves were performed in
TCGA and E-MTAB-1980 cohorts, respectively, to evaluate
the performance of the nomogram.

2.7. Assessment of Immune Cell Infiltration and
Immunotherapy. Cell type identification by estimating rela-
tive subsets of RNA transcripts (CIBERSORT) is a deconvo-
lution algorithm developed by Newman et al. [21], which is
primarily used to calculate the abundance of infiltrated
immune cells per sample. We estimated the degree of
immune cell infiltration in different risk groups based on

CIBERSORT and its gene set LM22. The algorithm was sim-
ulated 1000 times, and P < 0:05 was the screening criteria.
Next, the tumor immune dysfunction and exclusion (TIDE)
was developed by Jiang et al. [22] to predict the response to
immunotherapy based on the simulation of the tumor
immune escape mechanism. In this paper, the response of
the TCGA-KIRC cohort to immunotherapy was preliminar-
ily discussed based on TIDE algorithm, due to the lack of
open-access data of the ccRCC cohort receiving
immunotherapy.

2.8. Immunofluorescence Assay. The ccRCC and normal
renal tissue were immobilized in 10% phosphate formalin
solution, then paraffin embedded, and sectioned to 5μm
thickness. The paraffin sections were then dewaxed and anti-
gen repaired. Next, the sections were closed with goat serum
at room temperature for 30min and incubated overnight
with CD163 antibody (1 : 200) at 4°C (Abcam, Cambridge,
MA, USA). The sections were then incubated in CY3-
labeled fluorescent secondary antibody for 1 h and DAPI
dye for 10min. Finally, the images were observed and col-
lected under a fluorescence microscope (Nikon Eclipse C1,
Nikon, Tokyo, Japan).

2.9. Relationship between the Prognostic MTG Expression
Level and Drug Sensitivity of Various ccRCC Cell Lines. We
downloaded the genomic expression data of tumor cell lines
and the corresponding drug therapy IC50 from the GDSC
database (https://www.cancerrxgene.org/) to analyze the
relationship between the expression level of prognostic
MTGs and IC50 values of various targeted drugs in ccRCC
cell lines.

2.10. Cell Transfection and Real-Time Quantitative
Polymerase Chain Reaction (RT-qPCR). A PBX1 expression
plasmid and small interfering RNA (siRNA) targeting
PBX1 (PBX1 siRNA) were used for gain- and loss-of-
function analyses, respectively. The PBX1 expression plas-
mid, PBX1 siRNA, and their negative control (NC) plasmid
were synthesized by GeneChem (Shanghai, China). OS cells
were seeded in a 6-well plate at 5 × 105 cells per well and
transfected according to the manufacturer’s instructions
(Invitrogen).

Total RNA was extracted from ccRCC tumor tissues and
normal kidney tissues with TRIzol reagent (Beyotime, Jiangsu,
China), and the reverse transcriptional reaction was per-
formed using the PrimeScript™ RT Reagent Kit (perfect real
time) (TaKaRa, Japan). RT-qPCR was then performed in the
ABI Prism 7300 system (Thermo Fisher Scientific) using TB
Green® Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa,
Japan) according to the manufacturer’s instructions. The rele-
vant primer data are shown in Table S1. The fold change value
of mRNA was calculated by the 2−ΔΔCt method.

2.11. Statistical Analysis. In this study, R version 4.0.5 and
GraphPad Prism 8.0 were used for all the calculations and
statistical analysis. The “edgeR” package was used for nor-
malization and differential analysis of the expressed data.
The MTGs with ∣log2 FC ∣ ≥1:2 and FDR < 0:05 (adjusted
P < 0:05) were defined as differentially expressed genes. We
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first converted the FDR value of each gene to −log 10 and
then generated the volcano plot using the “ggplot2,” “dplyr,”
and “ggrepel” packages. The “pheatmap” package was used
to generate heatmaps. Univariate and multivariate Cox
regression analysis was performed in the “survival” package,
and LASSO regression analysis was performed in the
“glmnet” package to identify MTGs associated with OS.
The Kaplan-Meier method in the “survival” package was
used for survival curve analysis, and the differences between
groups were tested by log-rank test. The “ggplot2” package
was used to generate ROC curves. The risk curve and sur-
vival status plot of each patient were generated by R “pheat-
map” package. The “ggplot2” and “ggpubr” packages were
used to generate boxplots and violin plots. The coexpression
of differentially expressed TFs and prognostic MTGs was
analyzed by Pearson correlation test in R “cor.test” function.
Meeting the ∣Cor ∣ >0:3 and P < 0:001 criteria indicated an
association. According to the results of coexpression analy-
sis, we used R “ggplot2,” “ggalluvial,” and “RColorBrewer”
packages to generate the Sankey plot. The “clusterProfiler”
package was used for GO and KEGG enrichment analysis.
The R “rms” package was used to construct a nomogram
to quantitatively predict the outcome of patients with
ccRCC. The encapsulated CIBERSORT.R script and LM22

gene set are available from the CIBERSORT (https://
cibersort.stanford.edu/download.php) website. Then, we
evaluated the degree of immune cell infiltration in each
patient based on R software. Pearson correlation analysis
was used to calculate the correlation between drug IC50
and prognostic MTG expression values. ∣Rs ∣ >0:2 and P <
0:05 were considered to be correlated. The unpaired Stu-
dent’s t-test was used to compare two groups of normally
distributed variables, while the Mann–Whitney U test was
used to compare two groups of non-normally distributed
variables. The variables in the contingency table were ana-
lyzed by the chi-square tests or Fisher’s exact tests.

3. Results

3.1. Differential Expression MTG Analysis. Figure 1 shows
the workflow of this study. After preliminary screening, a
total of 788 genes related to oxidative stress were identified.
Figure 2(a) shows the Venn diagram of screening. Subse-
quently, a total of 75 differentially expressed MTGs were
identified in ccRCC and normal kidney tissues, including
46 upregulated MTGs and 29 downregulated MTGs. The
log2FC values of all differentially expressed MTGs in ccRCC
patients and the corresponding −log10FDR values were

Data collection

1. TCGA‑KIRC (539 ccRCC) data from TCGA database
2. E‑MTAB‑1980 (101 ccRCC) data from ArrayExpress database
3. GSE29609 (39 ccRCC) data from GEO database
4. Kidney chromophobe (65 chRCC) data from Cbioportal database
5. 9469 oxidative stress‑related human genes from the Genecard
 

Further analysis

Roc curve Log‑rank test

Nomogram
Stratification

analysis

75 differently
expressed MTGs

Univariate, lasso
and multivariate Cox

regression analysis

Integrated 6‑
MTGs prognostic

signature

GO and KEGG
enrichment analysis

database, OMIM database and NCBI gene function module
6. 1136 mitochondrial human genes from the MitoCarta3.0 database
7. 318 transcription factors from the Cistrome project

1. TFs‑MTGs regulatory network
2. Relationship between MTGs and

clinical characteristics
3. Assessment of immune cell

infiltration and immunotherapy
4. Relationship between MTGs and

drug sensitivity of ccRCC cell lines
5. Validation in E‑MTAB‑1980 and

GSE29609 cohorts

Figure 1: Workflow of the study. We developed a MTG-based prognostic signature associated with oxidative stress based on the TCGA-
KIRC cohort and validated it in the E-MTAB-1980 and GSE29609 cohorts.
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shown in Figure 2(b), and the expression levels of all differ-
entially expressed MTGs were shown in Figure 2(c). Addi-
tionally, after WGCNA analysis, the relationship between
the module and different clinical variables, including the
age, gender, tumor grade, tumor stage, T stage, M stage,
and N stage, is shown in Figure S1. The results showed
that the two modules were negatively correlated with the
tumor stage, T stage and M stage, respectively (P < 0:01).
One module was negatively correlated with the N stage
(P < 0:05). However, there was no significant correlation
between the gene modules and the age, gender, or tumor

grade. The above results indicated that the 75 differentially
expressed MTGs were worthy of subsequent analysis.

3.2. Construction and Validation of a MTG-Based Prognostic
Signature. We identified 62 prognostic-related MTGs by
univariate Cox regression analysis (Table S2). Then, LASSO
regression analysis was performed on these MTGs based on
the “glmnet” package to screen out the MTGs closely related
to OS and a total of 9 MTGs were identified, including
ACAD11, ACADSB, ATAD3B, BID, FKBP10, HMGCS2,
PYCR1, SLC25A27, and STAR. The trajectory changes of the
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Figure 2: Analysis of mitochondrial genes associated with oxidative stress. (a) Venn diagram depicting intersecting genes in ccRCC/
mitochondria/oxidative stress; (b) volcano plot of differentially expressed MTGs; (c) heatmap of differentially expressed MTGs. N
represented the normal group and T represented the tumor group. (The statistical method was multiple hypothesis testing; the reported
P value was the fdr value).
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62 independent variable coefficients and the crossvalidation
results of model construction are shown in Figures 3(a) and
3(b). Afterwards, we performed multiple stepwise Cox
regression analysis on these 9 MTGs and further screened
out 6 MTGs that were most relevant to the prognosis of
patients with ccRCC based on AIC information statistics,

including ACAD11, ACADSB, BID, PYCR1, SLC25A27, and
STAR (Figure 3(c)). We then constructed a prognostic
signature based on the β coefficients obtained from
multivariate Cox regression analysis and corresponding gene
expression values. The specific calculation formula of the
risk score was shown below:
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Figure 3: Screening of MTGs related to prognosis in patients with ccRCC. (a) The trajectory changes of the 62 independent variable
coefficients; (b) the crossvalidation results of model construction; (c) multivariate Cox regression analysis of 9 MTGs. (The statistical
method was multiple hypothesis testing; the reported P value was the fdr value).
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Risk score = −0:0911 × ExpACAD11ð Þ
+ −0:2774 × ExpACADSBð Þ
+ 0:3854 × ExpBIDð Þ
+ 0:2156 × ExpPYCR1ð Þ
+ 0:2005 × ExpSLC25A27ð Þ
+ 0:1091 × ExpSTARð Þ:

ð2Þ

Then, 539 ccRCC patients in the TCGA cohort were
divided into high-risk and low-risk groups based on the
median risk score. The common clinical characteristics (age,
gender, grade, stage, T stage, N stage, M stage, and survival
status) between the high- and low-risk groups were shown in
Table S3. The Kaplan-Meier method was used to analyze the
OS of patients in the two groups, and the results showed that
patients in the high-risk group had significantly shorter OS
(P = 3:374e − 13, Figure 4(a)). Based on the ROC curve
analysis, we evaluated the predictive performance and
accuracy of the prognostic signature at one, three, and five
years. The predicted area under the ROC curve (AUC)
values for the signature at one, three, and five years were
0.736, 0.707, and 0.758, respectively (Figure 4(b)). The risk
score, OS, and survival status distribution of ccRCC patients
are shown in Figure 4(c). Next, we evaluated the stability
and applicability of the prognostic signature according to
the E-MTAB-1980 and GSE29609 external cohorts. The
above formula was used to calculate the risk score for each
patient in both cohorts. Then, Kaplan-Meier survival
analysis showed consistent results with those described
above (P = 0:020 and P = 0:006, Figures 4(d) and 4(f)).
Based on the E-MTAB-1980 cohort, the predicted AUC
values for the signature at one, three, and five years were
0.812, 0.777, and 0.799, respectively (Figure 4(e)). And based
on the GSE29609 cohort, the predicted AUC values for
the signature at one, three, and five years were 0.656, 0.699,
and 0.639, respectively (Figure 4(g)). Therefore, we have
sufficient evidence to show that the MTG-based prognostic
signature has good stability and predictive performance.

3.3. Prognostic Significance of the Signature Stratified
according to Common Clinical Variables. These 539 ccRCC
patients were stratified according to different clinical variables
to explore the signature’s ability to identify patients with poor
prognosis. The Kaplan-Meier method was used to analyze the
survival of ccRCC patients in the high- and low-risk groups
under different clinical stratification, and the results showed
that the high-risk group had worse prognosis under different
clinical variable stratification (Figure 5). These results show
that the MTG-based prognostic signature can accurately
screen out patients with poor prognosis without considering
multiple clinical variables.

3.4. Relationship between the Prognostic Risk Score and
Different Clinical Variables.Next, we analyzed the distribution
of the prognostic risk score across different clinical variables
to determine whether they were associated with disease
progression. The results showed that the distribution of risk
scores was not significantly different by age and N stage

(Figures 6(a) and 6(f)). However, the distribution of risk scores
differed significantly across other clinical variables. Specifi-
cally, it was higher in male patients than female patients
(Figure 6(b)), it was higher in grade 3–4 than grade 1–2
(Figure 6(c)), it was higher in stage III–IV than stage I–II
(Figure 6(d)), it was higher in T stage 3–4 than T stage 1–2
(Figure 6(e)), and it was higher in M stage I–X than M stage
0 (Figure 6(g)). The above results suggest that a higher prog-
nostic risk score in ccRCC patients may be indicative of a
higher degree of malignancy.

3.5. Relationship between Prognostic MTGs and Different
Clinical Variables. We also further analyzed the relation-
ships between these 6 prognostic MTGs and different clini-
cal variables to understand their possible roles in ccRCC.
The results indicated that there was significant correlation
between ACAD11, BID, and PYCR1 and gender; ACAD11,
ACADSB, BID, PYCR1, SLC25A27, and STAR were signifi-
cantly correlated with the grade, stage, and T stage.
ACAD11, ACADSB, BID, PYCR1, and STAR were signifi-
cantly correlated with the M stage. However, no gene was
significantly associated with the N stage (Table 1).

3.6. Assessment of the Efficacy of Prognostic MTGs and the
Prognostic Signature. In order to evaluate the ability of these
six prognostic MTGs to distinguish between ccRCC tumor
tissue and normal tissue, as well as the ability of the signa-
ture to distinguish between ccRCC tumor malignancy, we
performed ROC curve analysis. The results showed that
the AUC of these six prognostic MTGs was ACAD11
(AUC = 0:669, P < 0:001), ACADSB (AUC = 0:943, P <
0:001), BID (AUC = 0:897, P < 0:001), PYCR1 (AUC =
0:710, P < 0:001), SLC25A27 (AUC = 0:591, P = 0:012),
and STAR (AUC = 0:607, P = 0:003), which showed good
diagnostic accuracy for ccRCC (Figure S2). Moreover, we
also evaluated the ability of the prognostic signature to
distinguish ccRCC tumor progression through the ROC
curve and the AUC. The results showed that the AUC was
0.640 (95% CI = 0:593–0.687, P < 0:001) for the prediction
of the tumor grade, the AUC was 0.669 (95% CI = 0:620–
0.719, P < 0:001) for the prediction of the tumor stage, the
AUC was 0.655 (95% CI = 0:604–0.706, P < 0:001) for the
prediction of the T stage, and the AUC was 0.662 (95%
CI = 0:603–0.721, P < 0:001) (Figure S2) for prediction of
the M stage.

3.7. Gene Set Enrichment Analysis (GSEA) of Prognostic
MTGs. In order to explore the potential functions of these
six prognostic MTGs in ccRCC, we studied the genes mostly
related to the expression of these six MTGs based on GSEA
analysis to reflect their possible functions. The results
showed that ACAD11 was mainly enriched in the FoxO sig-
naling pathway, HIF-1 signaling pathway, RNA transport,
Th1 and Th2 cell differentiation, TNF signaling pathway,
and VEGF signaling pathway. ACADSB was mainly
enriched in the citrate cycle (TCA cycle), glycolysis/gluco-
neogenesis, mTOR signaling pathway, peroxisome, PPAR
signaling pathway, and Wnt signaling pathway. BID was
mainly enriched in DNA replication, NF-kappa B signaling
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Figure 4: Continued.
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pathway, NOD-like receptor signaling pathway, p53 signal-
ing pathway, proteasome, and ribosome. PYCR1 was mainly
enriched in the cell cycle, Hippo signaling pathway, mRNA
surveillance pathway, nucleotide excision repair, protea-
some, and TGF-beta signaling pathway. SLC25A27 was
mainly enriched in the glycerophospholipid metabolism,
Notch signaling pathway, phosphatidylinositol signaling sys-
tem, phospholipase D signaling pathway, spliceosome, and

Th1 and Th2 cell differentiation. STAR was mainly enriched
in the arachidonic acid metabolism, beta-alanine metabo-
lism, calcium signaling pathway, citrate cycle (TCA cycle),
fat digestion and absorption, and propanoate metabolism
(Figure S3). These results suggested that these six
prognostic MTGs may play an important role by affecting
the redox homeostasis, energy production, immune
infiltration, and metastasis mechanism of ccRCC.
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Figure 4: Prognostic value of MTG-based signature based on TCGA, E-MTAB-1980, and GSE29609 cohorts. (a) Kaplan-Meier survival
curve analysis for overall survival grouped by the median risk score in the TCGA cohort; (b) time-dependent ROC curves measuring the
predictive value of the risk score in the TCGA cohort; (c) distribution of the risk score, overall survival, and survival status of the
prognostic signature in the TCGA cohort; (d) Kaplan-Meier survival curve analysis for overall survival grouped by the median risk score
in the E-MTAB-1980 cohort; (e) time-dependent ROC curves measuring the predictive value of the risk score in the E-MTAB-1980
cohort; (f) Kaplan-Meier survival curve analysis for overall survival grouped by the median risk score in the GSE29609 cohort; (g) time-
dependent ROC curves measuring the predictive value of the risk score in the GSE29609 cohort. (The statistical method was a log-rank
test for a single factor, with only one test and the reported P value was the P value).
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3.8. Correlation of Prognostic MTGs with Immune
Infiltration and RNA Modification in ccRCC. Considering
that immunity plays a key role in a variety of diseases and
the above results suggested that these six MTGs may affect
the immune status of ccRCC, we investigated the relation-
ship between the expression of these six MTGs and the level
of immune infiltration of ccRCC. The results were shown in
Figure S4. The expression level of ACAD11 was positively
correlated with tumor purity and the infiltration levels of
CD8+ T cells and B cells, but not with the infiltration
levels of CD4+ T cells, dendritic cells, macrophages, and
neutrophil. The expression level of ACADSB was positively
correlated with tumor purity and the infiltration levels of
CD4+ T cells, dendritic cells, and neutrophil, but not with
the infiltration levels of CD8+ T cells, B cells, and dendritic
cells. The expression level of BID was negatively correlated
with tumor purity and the infiltration levels of B cells and
has significant positive correlations with CD8+ T cells,
dendritic cells, macrophages, and neutrophil, but not with
the infiltration levels of CD4+ T cells. The expression level
of PYCR1 was negatively correlated with tumor purity and
has significant positive correlations with dendritic cells, but
not with the infiltration levels of CD8+ T cells, CD4+ T
cells, B cells, macrophages, and neutrophil. The expression
level of SLC25A27 was positively correlated with tumor
purity and the infiltration levels of CD4+ T cells, but not
with the infiltration levels of CD8+ T cells, dendritic cells, B
cells, macrophages, and neutrophil. The expression level of
STAR was positively correlated with the infiltration levels of
CD4+ T cells, but not with tumor purity and the infiltration
levels of CD8+ T cells, dendritic cells, B cells, macrophages,
and neutrophil. In addition, since RNA modification plays

an important role in a variety of diseases, including tumors,
and N6-methyladenosine (m6A) is the most abundant and
characteristic modification in eukaryotic mRNA [23], we
further studied the relationship between m6A modification
enzyme (writers, erasers, and readers) and these six
prognostic MTGs through Pearson analysis. The heatmap
of the correlation matrix showed that the expression of
ACAD11, ACADSB, BID, PYCR1 and SLC25A27 was
significantly positively correlated with m6A modification
(Figure S5).

3.9. Regulatory Network of TFs-MTGs and Functional
Enrichment Analysis. Considering that mitochondria not
only produce energy for cell metabolic homeostasis and cell
survival through oxidative phosphorylation but also partici-
pate in a variety of biological processes, including calcium
homeostasis and signal transduction [24], thus, maintaining
the mitochondrial number, morphology, and function,
known as mitochondrial quality control (MQC), is essential
for mitochondrial and cellular health. TFs play an important
role in this process. Wang et al. [25] concluded that tran-
scription factor EB (TFEB) plays a key role in MQC, mainly
through activation of mitochondrial autophagy, regulation
of mitochondrial biogenesis, removal of reactive oxygen spe-
cies, and balance of the mitochondrial fission-fusion cycle,
and therapeutic strategies targeting TFEB have certain ther-
apeutic effects on diseases related to mitochondrial dysfunc-
tion. Another study revealed that Forkhead box O (FOXO)
protects mitochondria by activating mitochondrial antioxi-
dant enzymes and repairs or remodels damaged mitochon-
dria by inducing mitochondrial autophagy to maintain cell
and organism homeostasis [26]. Ryoo et al. [27] also found
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Figure 5: Kaplan-Meier survival curve analysis for overall survival stratified by different clinical variables. (a) Age ≤ 65; (b) age > 65; (c)
male; (d) female; (e) grades 3–4; (f) stages I–II; (g) stages III–IV; (h) T stages 1–2; (i) T stages 3–4; (j) N stage 0; (k) N stages I–X; (l) M
stage 0; (m) M stages I–X. (The statistical method was a log-rank test for a single factor, with only one test and the reported P value was
the P value).
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that nuclear factor, erythroid 2-like 2 (Nrf2) can be posi-
tively correlated with mitochondrial biology by directly
upregulating mitochondrial transcription factors and par-
ticipate in the MQC system by activating mitochondrial
autophagy. Based on this, it is of great significance to fully
reveal the regulatory network of TFs-MTGs. After final
screening, 66 differentially expressed TFs were identified,
including 46 upregulated and 20 downregulated TFs. The
expression levels of all differentially expressed TFs were
shown in Figure 7(a). Then, the regulatory network of TFs-
MTGs was revealed by coexpression analysis (Figure 7(b)).
A total of 26 TFs involved in upstream regulation were
identified. The regulatory information between these TFs
and prognostic MTGs was shown in Table S4. To further
verify the regulatory relationship between these prognostic
MTGs and TFs, we used the JASPAR online database

(http://jaspar.genereg.net/) to predict the binding sites of
these TFs in the promoter regions of these six prognostic
MTGs. The sequence of predicted sites was shown in
Table S5. Moreover, we also constructed overexpression
and interference plasmids to further verify the regulation of
TFs on these prognostic MTGs. The results were shown in
Figure S6.

Additionally, further GO and KEGG enrichment analy-
ses were performed to reveal the molecular functions and
key signaling pathways of these differential MTGs. Biological
process analysis showed that these MTGs were mainly con-
centrated in the small molecule catabolic process, organic
acid catabolic process, cellular amino acid metabolic process,
fatty acid catabolic process, and apoptotic mitochondrial
changes. Cellular component analysis showed that these
MTGs were mainly concentrated in the mitochondrial
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Figure 6: Distribution of the prognostic risk score under stratification of different clinical variables. (a) Age; (b) gender; (c) grade; (d) stage;
(e) T stage; (f) N stage; (g) M stage. (Subgraphs (a), (b), (e), (f), and (g) were the t-test with only one test; subgraphs (c) and (d) were the
nonparametric Mann–Whitney rank sum test with only one test. The reported P value was the fdr value).
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matrix, mitochondrial inner membrane, mitochondrial
outer membrane, and mitochondrial nucleoid. Molecular
function analysis showed that these MTGs were mainly con-
centrated in coenzyme binding, oxidoreductase activity, act-
ing on the CH-NH group of donors, NADP-retinol
dehydrogenase activity, NAD or NADP as an acceptor,
DNA-dependent ATPase activity, electron transfer activity,
and pyridoxal phosphate binding (Figure 7(c)). In terms of
KEGG analysis, these differentially expressed MTGs were
mainly concentrated in apoptosis-multiple species, citrate
cycle, peroxisome, PPAR signaling pathway, biosynthesis of
amino acids, and metabolism of various fatty acids and
amino acids (Figure 7(d)). Moreover, we also performed
functional enrichment analysis on these TFs involved in reg-
ulation, and the results showed that these TFs were mainly
enriched in immune cell differentiation, immune cell infil-
tration, and immune response activation (Figure S7).

3.10. Establish and Evaluate a Nomogram.We then analyzed
the model independence to determine whether it was inde-
pendent of common clinical variables and could be used as
an independent prognostic factor in ccRCC patients. The
univariate Cox analysis results showed that the age
(P < 0:001), tumor grade (P < 0:001), tumor stage (P <
0:001), T stage (P < 0:001), N stage (P = 0:049), M stage
(P < 0:001), and risk score (P < 0:001) were significantly
related to the prognosis of patients (Figure 8(a)). Multivari-
ate Cox analysis showed that only the age (P = 0:010), grade
(P = 0:024), stage (P < 0:001), and risk score (P < 0:001)
were independent prognostic factors affecting patients’ prog-
nosis (Figure 8(b)).

Subsequently, to extend the clinical applicability of the
MTG-based prognostic signature, based on the TCGA
cohort, a nomogram containing a prognostic risk score
and common clinical variables was constructed that could
be conveniently used to calculate the expected survival of

ccRCC patients (Figure 8(c)). The calibration curves at differ-
ent time points showed that there is a good agreement between
the predicted value and the true value (Figures 8(d)–8(f)). We
further verified the accuracy and stability of the nomogram
based on the TCGA cohort and E-MTAB-1980 cohort.
Kaplan-Meier survival curve analysis indicated that risk
stratification of ccRCC patients based on the nomogram
could accurately distinguish patients with poor prognosis
(P < 0:001 and P = 9:691e − 05, Figures 8(g) and 8(i)). In
the TCGA cohort, the predicted AUC values for the nomo-
gram at one, three, and five years were 0.862, 0.808, and
0.784, respectively (Figure 8(h)). And in the E-MTAB-1980
cohort, the predicted AUC values for the nomogram at one,
three, and five years were 0.907, 0.894, and 0.884, respectively
(Figure 8(j)). The above results indicated that the nomogram
had good predictive ability and accuracy.

3.11. Assessment of Immune Cell Infiltration and
Immunotherapy. In addition to generating ATP through oxi-
dative phosphorylation, mitochondria also play a crucial role
in the integrity, proliferation, and growth of immune cells
[28]. Mitochondria not only maintain the phenotype of
immune cells but also are the necessary conditions for the
establishment and function of their phenotypes [13]. Mito-
chondria can rapidly transform from catabolic organelles
that produce ATP to synthetic organelles that produce
ATP and macromolecule synthesis at the same time, which
enables them to meet the appropriate metabolic require-
ments of different immune cells [29]. Moreover, targeting
human mitochondrial metabolism has been shown to mod-
ulate immune responses in disease. For example, Singhal
et al. [30] found that the antidiabetic drug metformin, which
acts on mitochondrial complex I, is used as an immune
modulator for tuberculosis. Therefore, in this study, we sep-
arately explored the effects on immune cell infiltration and
immunotherapy. The degree of immune cell infiltration

Table 1: The relationship between prognostic-related mitochondrial genes and clinicopathologic parameters.

Gene
Gender

(male/female)
Grade

(G1–2/G3–4)
Stage

(I–II/III–IV)
T stage

(T1–T2/T3–T4)
N stage

(N0/NI–X)
M stage

(M0/MI–X)

N 353/186 249/282 331/205 349/190 241/298 428/109

ACAD11
t value 3.637 2.16 2.979 2.359 0.149 NA∗

P value <0.001 0.031 0.003 0.019 0.881 <0.001

ACADSB
t value 1.475 NA∗ NA∗ 6.841 0.135 4.957

P value 0.141 <0.001 <0.001 <0.001 0.893 <0.001

BID
t value 2.926 NA∗ 6.911 6.304 0.558 3.497

P value 0.004 <0.001 <0.001 <0.001 0.577 0.001

PYCR1
t value 3.342 NA∗ NA∗ 5.099 0.032 3.09

P value 0.001 <0.001 <0.001 <0.001 0.974 0.002

SLC25A27
t value 1.392 3.023 NA∗ NA∗ 0.749 0.193

P value 0.165 0.003 0.009 0.037 0.455 0.847

STAR
t value 0.655 NA∗ 4.251 4.485 0.491 3.346

P value 0.513 0.007 <0.001 <0.001 0.624 0.001

NA: not available; ∗nonparametric Mann–Whitney rank sum test. (The statistical method was t-test or nonparametric Mann–Whitney rank sum test with
only one test. The reported P value was the fdr value).
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between high- and low-risk groups was assessed based on
CIBERSORT and its gene set LM22. As shown in
Figure 9(a), there were significant differences in the compo-
sition of the 22 immune cells in each sample. Specifically,
there were significant differences in plasma cells, T cells
CD8, T cell CD4 memory activated, T cell follicular helper,
T cell regulatory Tregs, monocytes, macrophage M0, mac-
rophages M1, dendritic cells resting, dendritic cells acti-
vated, mast cells resting, and eosinophils between the two
groups (Figure 9(b)). The differences of immune cell infil-
tration among ccRCC patients stratified by different clini-
cal characteristics are shown in Table S6. In addition, we
also analyzed the difference in the infiltration of M2
macrophage marker CD163 between ccRCC and normal
kidney tissue by immunofluorescence assay and the results
showed that the infiltration level of CD163 in each tumor
group was significantly higher than that in normal kidney
tissue (Figure S8). And the clinical information of
corresponding ccRCC patients was shown in Table S7.

Correlation matrix results revealed that the T cell CD8
had the strongest positive correlation with T regulatory
cells (Tregs) (Figure 9(c)). Subsequently, we predicted the
likelihood of an immunotherapy response in ccRCC patients
from the TCGA cohort based on a TIDE algorithm.
Figure 9(d) shows that the low-risk group had lower TIDE
prediction score (P = 0:003). Figure 9(e) shows that patients
in the low-risk group had a higher response rate to
immunotherapy (46.59% vs 35.34%, P = 0:008). These
results provide further evidence that patients in the low-risk
group have better prognosis and may have more potential
for immunotherapy.

Additionally, previous studies have shown that immune
checkpoint inhibitor (ICI) genes can regulate immune cell
infiltration in tumor tissues [31]. Thus, we also compared
the expression levels of common ICI genes and
angiogenesis-related genes (PD-1, PD-L1, CTLA4, KDR,
KIT, and VEGFR) in ccRCC between different patient
groups based on prognostic signature stratification. As
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Figure 7: Regulatory network of TFs-MTGs and functional enrichment analysis. (a) Heatmap of differentially expressed TFs. N represented
the normal group and T represented the tumor group; (b) Sankey plot of the TF-MTG regulatory network; (c) GO enrichment analysis of
the differentially expressed MTGs; (d) KEGG enrichment analysis of the differentially expressed MTGs. (The statistical method was multiple
hypothesis testing; the reported P value was the fdr value).
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shown in Figure 10, the expression levels of KDR (P < 0:001),
KIT (P = 2:5e − 07), and PD-L1 (P = 7e − 10) in the low-risk
group were significantly higher than those in the high-risk
group. The expression levels of PD-1 (P < 0:001) and CTLA4
(P = 4:3e − 07) in the low-risk group were significantly lower
than those in the high-risk group. However, there was no sig-
nificant difference in VEGFA expression between the two
groups. Next, we further investigated whether the MTG-
based prognostic signature had any effect on clinical out-
comes in patients with similar expression levels of these
genes by comparing the survival distribution of the four
patient groups stratified by the signature and the high/low
gene expression. The results showed that patients with low
risk and low KDR (or low risk and high KDR) had signifi-
cantly better survival than those with high risk and low
KDR (or high risk and high KDR) (P < 0:001, Figure 10(g)).
Similar results were shown in KIT, VEGFA, PD-1, PD-L1,
and CTLA4 (P < 0:001, Figures 10(h)–10(l)). We also
observed that patients with low risk and low gene expression
tended to have significantly better survival than patients in
the other three groups. These results further suggest that
the prognostic signature may be a potential marker of immu-
notherapeutic response in patients with ccRCC.

3.12. Relationship between the Prognostic MTG Expression
Level and Drug Sensitivity of Various ccRCC Cell Lines.
Additionally, we analyzed the relationship between IC50
values of targeted drugs in various ccRCC cell lines and the
expression levels of these prognostic MTGs using GDSC
database. We believed that positive correlation indicates
increased drug resistance of cell lines, while negative correla-

tion indicates increased drug sensitivity of cell lines. The
results showed that the high expression of ACADSB pro-
moted the drug resistance of ccRCC cell lines to FTY 720
and ARRY-520 but enhanced the drug sensitivity of ccRCC
cell lines to cisplatin, vorinostat, SN-38, and other drugs
(Figure 11(a)). The high expression of BID promoted the
drug resistance of ccRCC cell lines to bleomycin but
enhanced the drug sensitivity of ccRCC cell lines to bortezo-
mib, elesclomol, Wnt-C59, and other drugs (Figure 11(b)).
The high expression of PYCR1 promoted the drug resistance
of ccRCC cell lines to cyclopamine, IC-87114, MK-2206, and
other drugs but enhanced the drug sensitivity of ccRCC cell
lines to CGP-082996 (Figure 11(c)). The high expression of
STAR promoted the drug resistance of ccRCC cell lines to
AZD1480 but enhanced the drug sensitivity of ccRCC cell
lines to CAY10603, navitoclax, MIM1, and other drugs
(Figure 11(d)). The high expression of SLC25A27 promoted
the drug resistance of ccRCC cell lines to GSK429286A,
AZD5582, CAP-232, TT-232, and TLN-232 but enhanced
the drug sensitivity of ccRCC cell lines to amuvatinib,
TANK_1366, and PLX-4720 (Figure 11(e)).

3.13. Prognostic Potential of the MTG-Based Signature in
chRCC. ChRCC is another subtype of RCC, accounting for
about 5% [32]. The aberration and overexpression of mito-
chondrial DNA are considered to be the main characteristics
of chRCC tissues [33–35]. Davis et al. [33] found an increase
in the importance of a distinct mitochondrial respiratory
program in this disease, and an increase in oxidative phos-
phorylation is maintained in complex I-altered tumors, indi-
cating a metabolic shift supporting for the growth of this
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Figure 8: Establish and evaluate a nomogram. (a) Univariate Cox regression analysis for the risk score and clinical variables in the TCGA
cohort; (b) multivariate Cox regression analysis for the risk score and clinical variables in the TCGA cohort; (c) the nomogram for predicting
ccRCC patients at 1, 3, and 5 years; (d–f) calibration curves at 1, 3, and 5 years for the nomogram based on the TCGA cohort; (g) Kaplan-
Meier survival curve analysis for overall survival grouped by the median risk score in the TCGA cohort based on the nomogram; (h) time-
dependent ROC curves measuring the predictive value of the risk score in the TCGA cohort based on the nomogram; (i) Kaplan-Meier
survival curve analysis for overall survival grouped by the median risk score in the E-MTAB-1980 cohort based on the nomogram; (j)
time-dependent ROC curves measuring the predictive value of the risk score in the E-MTAB-1980 cohort based on the nomogram. (The
statistical method was a log-rank test for a single factor, with only one test and the reported P value was the P value).
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tumor. Considering that mitochondrial dysregulation plays
an important role in chRCC, we further explored the prog-
nostic value of the MTG-based signature in chRCC. The
expression matrix of 65 patients with chRCC containing
OS, DFS, DSS, PFS, and other clinical prognostic informa-
tion was obtained from the cBioPortal database. We used
the same formula to calculate the risk score for each chRCC
patient. Similarly, patients with chRCC were divided into
low-risk and high-risk groups based on the median risk
score. Kaplan-Meier survival analysis showed that high-risk
chRCC patients had significantly lower OS (P = 0:017,
Figure S9A), DFS (P = 0:029, Figure S9C), DSS (P = 0:007,
Figure S9E), and PFS (P = 0:013, Figure S9G) than low-risk
chRCC patients. The predicted AUC values also showed that
the prognostic signature has good predictive performance
(Figure S9B, D, F, H). These results showed that the MTG-
based signature also had an important value in predicting
the prognosis of patients with chRCC.

3.14. Verification of the Expression Levels of the Target Genes
in ccRCC and Normal Renal Tissues by RT-qPCR. The actual
expression levels of common ICI genes (KDR, KIT, and
VEGFR), angiogenesis-related genes (PD-1, PD-L1, and
CTLA4), and prognostic-related MTGs (ACAD11,
ACADSB, BID, PYCR1, SLC25A27, and STAR) in ccRCC
and normal renal tissues were detected by RT-qPCR to fur-
ther evaluate the reliability of the prognostic signature. The
analysis results are shown in Figure 12. The mRNA expres-

sion of KIT, PD-1, PD-L1, CTLA4, ACADSB, PYCR1,
SLC25A27, and STAR in ccRCC tissues was significantly
lower than that in adjacent nontumor renal tissues. How-
ever, the mRNA expression of KDR, VEGFR ACAD11,
and BID in ccRCC tissues was significantly higher than that
in adjacent nontumor renal tissues.

4. Discussion

Mitochondria are primarily involved in bioenergy metabo-
lism and cellular homeostasis, including the production of
ATP through oxidative phosphorylation, the decomposition
of fatty acids through β oxidation, the production of reactive
oxygen species, and the initiation and execution of apoptosis
[36, 37]. There are also multiple mtDNA copies in mito-
chondria, which mainly encode rRNAs, tRNAs, and proteins
necessary for electron transport and oxidative phosphoryla-
tion, as well as the genetic repair mechanism of mitochon-
dria [38, 39]. Mitochondrial dysfunction is thought to be a
hallmark of many diseases. Notably, cellular metabolic
reprogramming and imbalance of the redox system have also
been recognized as major markers of tumor transformation
[40]. Mitochondrial dysfunction caused by a variety of rea-
sons including the mtDNA mutations, mitochondrial respi-
ratory chain enzyme dysfunction, oxidative stress, and
cancer or tumor suppressor signals can change cell meta-
bolic pathways, can destroy the intracellular redox homeo-
stasis, and leads to cell apoptosis and treatment resistance,
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Figure 9: Assessment of immune cell infiltration and immunotherapy. (a) Stacked bar chart of the distribution of 22 immune cells in each
ccRCC sample in the TCGA cohort; (b) radar plot of immune cell infiltration grouped by the median risk score in the TCGA cohort; (c)
proportional correlation matrix of immune cell; (d) TIDE prediction score grouped by the median risk score in the TCGA cohort; (e)
immunotherapeutic responses grouped by median risk score in the TCGA cohort. (The statistical method was t-test; the reported P
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which damage the cell steady state, promoting the develop-
ment of genetic instability and cancer [15, 40]. At present,
most research on mitochondria has focused on the function
of individual genes. Few studies have used expression profile
data to systematically explore the molecular characteristics
and prognostic potential of MTGs.

With the development of bioinformatics technology,
many methods can be used to screen and identify key genes,
including the classic differential analysis and the recently
popular WGCNA analysis. Herein, as we have been using
the traditional method of difference analysis, guided by
TCGA cohort transcriptome analysis, we identified 114 dif-
ferentially expressed MTGs associated with oxidative stress.
Functional enrichment analysis of these MTGs was then
performed to understand their biological functions and
molecular mechanisms. Next, the Cox regression analysis
was used to identify 11 prognostic MTGs and build a signa-
ture. We further explored the correlation between the prog-
nostic MTGs and signature with common clinical variables,
upstream regulatory mechanisms, immune cell infiltration
and immunotherapy, and drug sensitivity of various ccRCC
cell lines.

After univariate Cox, LASSO, and multivariate Cox
regression analyses, 11 genes were identified which were
most associated with prognosis, including ACAD11,
ACADSB, BID, PYCR1, SLC25A27, and STAR. As a mem-
ber of the acyl-CoA dehydrogenase family, ACAD11 is
highly expressed in a variety of human organs, including
the kidney, and plays an important role in energy homeosta-

sis in pathophysiological processes [41]. Jiang et al. [42] also
found that ACAD11 acts as an important metabolic target of
p53 during its prosurvival function. As a member of the
acyl-CoA dehydrogenase family, the main function of
ACADSB is to dehydrogenate acyl-CoA derivatives. It has
been reported that ACADSB is low expressed in poorly dif-
ferentiated hepatocellular carcinoma cells [43]. Zhang et al.
[44] also showed that ACADSB was low expressed in ccRCC
tissues and could serve as a potential target for diagnosis and
treatment of ccRCC. BID is one of the only proteins in BH3
that control BAK and BAX and is believed to play a key role
in the apoptotic signaling pathway [45]. PYCR1 is a mito-
chondrial intimal protein that is the rate-limiting step in
proline synthesis. PYCR1 has been reported to be upregu-
lated in many human cancers, including prostate cancer,
thereby promoting cancer progression [46]. Zhuang et al.
[47] found that the downregulation of PYCR1 inhibited
the proliferation of hepatocellular carcinoma cells and pro-
moted apoptosis by inhibiting the JNK/IRS1 pathway.
SLC25A27 encodes uncoupling protein-4 (UCP4), a mem-
ber of the larger mitochondrial anion carrier protein family.
Chu et al. [48] found that overexpression of UCP4 in SH-
SY5Y neuroblastoma cells reduced oxidative stress but also
unexpectedly increased cellular ATP levels. Ho et al. [49]
showed that UCP4 promotes cancer cell growth in neuro-
blastoma cells by interacting with mitochondrial complex
II to increase ATP supply. STAR regulates steroid hormone
biosynthesis by promoting cholesterol conversion to preg-
nenolone [50]. Studies have shown that malfunctions in
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Figure 10: Expression of common immune checkpoint inhibitor genes and targeted genes under MTG-based prognostic signature
stratification and their effect on clinical prognosis of patients with ccRCC. The expression levels of immune checkpoint genes and
targeted genes were compared between high-risk and low-risk groups in TCGA cohort. (a) KDR; (b) KIT; (c) VEGFA; (d) PD-1; (e) PD-
L1; (f) CTLA4. Kaplan-Meier survival curve analysis for overall survival among four patient groups grouped by the MTG-based
prognostic signature and (g) KDR, (h) KIT, (i) VEGFA, (j) PD-1, (k) PD-L1, and (l) CTLA4. (The statistical method was a t-test with
only one test and a log-rank test for a single factor, with only one test, and the reported P value was the P value).
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Figure 11: Relationship between the prognostic MTG expression level and drug sensitivity of ccRCC cell lines. The plot shows the
correlation between the expression status of (a) ACADSB, (b) BID, (c) PYCR1, (d) STAR, and (e) SLC25A27 genes relative to the
sensitivity of several ccRCC cell lines to various drugs. (The statistical method was Pearson correlation analysis. The reported P value
was the fdr value).
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steroid production mechanisms involving androgen or
estrogen biosynthesis are associated with the pathogenesis
of many malignancies [51]. Moreover, in our study, GSEA
analysis and Pearson correlation analysis further revealed
that these 6 MTGs may affect redox homeostasis, energy
production, immune infiltration, RNA modification, and
metastasis mechanism of ccRCC. These results suggest that
these MTGs play an important role in many tumors and
may be involved in the tumorigenesis and progression of
ccRCC. However, further experiments are needed to explore
the specific functions and molecular mechanisms of these
MTGs.

Subsequently, we developed a prognostic signature based
on these 11 MTGs. The Kaplan-Meier method showed that
patients in the high-risk group had significantly shorter
OS. The ROC curve indicated that the signature had high
accuracy in predicting 1-, 3- and 5-year survival rates. We
found that the signature could accurately distinguish
patients with poor prognosis under different clinical variable
stratification. The prognostic risk score was also associated
with disease progression in ccRCC tumors.

Additionally, we also revealed the upstream regulatory
network of these prognostic genes and identified 32 TFs
involved in the regulation of these genes, which are worthy
of further study. GO and KEGG analysis indicated that these
differentially expressed MTGs were mainly concentrated in
metabolic processes of biomolecules such as lipids, proteins,
nucleic acids, apoptosis pathways, and redox processes.
Indeed, mitochondria as an important organelle produce
energy and participate in a variety of biological processes;
its dysfunction can cause the TCA cycle enzyme destruction,
electronic respiratory chain leakage, and the subsequent oxi-
dative stress, which change the cell metabolism and signal
transduction pathways, leading to the resistance to apoptosis
and treatment, significantly promoting the development of a
variety of human cancers [40]. At the same time, mitochon-
dria are also the core of immunity, which determines the fate
of immunity. Mitochondria connect various metabolic path-
ways to every subpopulation of immune cells, from T cells to
macrophages [12]. Our results also found significant differ-

ences in immune cell infiltration and immunotherapy
response rates between the high-risk and low-risk groups.
Besides, the relationship between the expression levels of
these MTGs and the drug sensitivity of various ccRCC cell
lines was also analyzed, which may help guide clinical
treatment.

In recent years, with the progress of biomolecular sci-
ence, more and more new molecular biomarkers have been
developed and provided new insights for the biology of
ccRCC. This has led to the development of cancer-related
biomarkers as well as new targeted therapies including pro-
liferation markers such as Ki-67, p53, and PTEN; the
hypoxia-inducible factor pathway; carbonic anhydrase IX;
and vascular endothelial growth factor (VEGF) [52]. Various
prognostic signatures have been developed from the per-
spectives of somatic mutations, gene methylation differ-
ences, gene expression differences, posttranscriptional
modification differences, and immune pathways of ccRCC
[53–55]. Chen et al. [7] established a three-gene signature
to predict prognosis of ccRCC. Chen et al. [8] developed a
seven-gene signature to predict OS of ccRCC. Few signatures
have been used clinically. Hua et al. systematically studied
the immune-related phenotypes of ccRCC and their rela-
tionship with prognosis and developed a signature of five
immune-related genes to predict the prognosis of ccRCC
[56]. Marquardt et al. [17] also recently proposed a unique
histologically independent subgroup, the mixed subgroup,
characterized by enhanced mitochondria and weakened
angiogenesis-related genetic signatures. In our study, we sys-
tematically analyzed the biological functions and molecular
mechanisms of MTGs in ccRCC and developed a new prog-
nostic signature based on 6 MTGs, which was different from
the existing signatures and further advanced the research of
Marquardt et al.

Overall, this study provides a new understanding of the
tumorigenesis and progression of ccRCC from the perspec-
tive of mitochondria. These 6 MTG-based prognostic signa-
ture could accurately distinguish ccRCC patients with poor
prognosis. Moreover, these prognostic MTGs have impor-
tant biological functions and clinical value. Nevertheless,
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our study still has some limitations. On the one hand, our
model is based on retrospective analysis and needs to be val-
idated in prospective studies. On the other hand, this study
is mainly based on the analysis of bioinformatics technology,
but the functional mechanism and interaction of genes are
complex and more experimental data are needed for verifi-
cation and evaluation. Moreover, although the low-risk
group had a better immunotherapy response, this result is
based on bioinformatics predictions and requires further
validation in prospective cohorts.

5. Conclusions

We have systematically investigated the molecular charac-
teristics of MTGs associated with oxidative stress and their
prognostic potential. We have also revealed the complex bio-
logical functions and regulatory networks of these MTGs,
which will contribute to the further understanding of the
molecular mechanisms involved in ccRCC tumorigenesis
and progression. Besides, we developed a new prognostic
signature that can accurately distinguish patients with poor
prognosis. This will enrich the treatment strategy for
patients with ccRCC and provide certain guidance for clini-
cal work from the perspective of targeting mitochondria.
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