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The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the
diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid
contents of the extract were 613:65 ± 2:38 and 152:83 ± 1:56mg/100 g dry weight, respectively. The extract exhibited
in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration
(IC50) values of 30:91 ± 0:23, 16:81 ± 0:51, 41:29 ± 1:82, and 42:39 ± 2:24μg/mL. In vitro anti-inflammatory studies using
membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with
respective IC50 values of 54:45 ± 2:89, 93:62 ± 3:04, and 56:60 ± 2:34μg/mL, while in vitro hypoglycemic analysis of the
extract revealed inhibition of α-amylase (IC5064:59 ± 3:29 μg/mL) and enhancement of glucose uptake by yeast cells.
Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-)
induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion,
attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase,
and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid
chromatography (HPLC) analysis identified the presence of catechin (6:81e − 1 ppm), rutin (8:46 e − 1 ppm), myricetin, apigenin
(4:019 e − 1 ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23min,
and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic
properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting
glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T.
garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.

1. Introduction

Diabetes mellitus (DM) is a category of metabolic disorders
that affect glucose, lipid, and protein metabolism and conse-
quently affect the overall health status [1, 2]. The prevalence
of diabetes is very high, affecting millions of people globally
[3]. It is characterized by the development of insulin resis-
tance, abnormal insulin signaling, oxidative stress [4],
inflammation [5], and organ dysfunction [6], leading to
decreased life quality and high mortality [7]. In the past few
decades, DM, particularly type 2 DM (T2DM), has become
a global health problem that threatens millions of people in
both developed and developing countries [2]. According to
the Diabetes Atlas (10th edition) of the International Diabe-
tes Federation (IDF) [8], there are 537 million people living
with diabetes in 2021, and about 783 million cases are
expected by 2045 [8], compared to 151 million sufferers in
2000 [9–11].

Although the pathogenesis and pathophysiology of T2DM
are extremely complex and not fully understood, accumulat-
ing evidence has revealed that free radical generation, oxida-
tive stress, and inflammation play critical implicative roles in
the development of T2DM [12, 13]. Inflammation, a complex
physiological response to injury and infection, plays a pivotal
role in the development of chronic disorders, including
arthritis, asthma, atherosclerosis, and cancers [14]. Experi-
mental and clinical studies have provided evidence of the
important roles of inflammation in DM [15, 16]. Reactive
nitrogen species (RNS) and reactive oxygen species (ROS)
were clearly implicated in the pathology of various diseases
including aging, cancers, cardiovascular diseases (CVD),
neuronal impairment, and diabetic complications [14, 17].
During hyperglycemia, the generation of free radicals (RNS
and ROS), autooxidation of glucose, and depletion of endog-
enous antioxidants lead to oxidative stress and inflammatory
conditions, apoptosis of pancreatic islet β cells, and impaired
insulin secretion [18]. In addition, inflammation and oxida-
tive stress also contribute to the development of diabetic
complications such as hypertension, retinopathies, nephropa-
thies, and neuropathies [19, 20].

Over the years, synthetic and chemical antioxidants and
antidiabetic medications have been developed for treating
diabetes and its associated complications [21]. However,
their clinical applications have been limited by the loss of
efficacy and more importantly by associated side effects
including diarrhea, lactic acidosis, flatulence, and acute hep-
atitis [22, 23]. Hence, there is a need to focus on seeking new
alternatives. Moreover, evidence from traditional health
practice and experimental studies suggested that natural
products, particularly medicinal plants, are rich sources of
therapeutic agents that can offer better efficacy with minimal
side effects compared to conventional therapies [24–26].
Thus, exploring bioactive metabolites from medicinal plants
may offer multieffect glycemic control while modulating oxi-
doinflammatory aberrations and improving prognoses of
diabetes and its complications.

Thespesia garckeana F. Hoffm., known as ‘snot apple’ or
‘kola of Tula,’ is a reputable medicinal plant that is widely
distributed in Africa and some other tropical countries
[27, 28]. As a traditional medicine, the plant is widely used
for treating rheumatism, infections, diabetes, liver diseases,
reproductive impairment, and other diseases [28, 29].
Several biological activities of the plant were also reported
in the literature [28, 30–32]. Herein, we evaluated the hypo-
glycemic, antioxidant, and anti-inflammatory effects of the
diethyl ether fraction of T. garckeana using various
in vitro and in vivo models. Further characterization of
the extract revealed the presence of various compounds
which were subjected to a pharmacoinformatics analysis,
thus unveiling their drug-likeness, good pharmacokinetics
(PKs), and potential hypoglycemic properties. Altogether,
our study established the preclinical efficacy of T. garckeana
extract against inflammation, glycemic impairment, and
oxidative stress, suggesting its future use for developing
alternative therapies against diabetes complications.

2. Materials and Methods

2.1. Plant Collection, Extraction, and Fractionation. Thespe-
sia garckeana plant was obtained from the Gombe State,
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Tula Village, Kaltungo Local Government Area (Latitude
9°48'51″N and Longitude11°18'32″E) Nigeria. Plant authenti-
cation was conducted at the Ebonyi State University, Nige-
ria, and a specimen voucher identification number was
reported. The pulp was air-dried to a constant dry weight
at 25°C for 2 weeks before been subjected to pulverization
with the aid of a mechanical blending machine. Three hun-
dred grams (300 g) of the pulverized sample was subjected to
cold maceration in 1.5 L of methanol for 72h. The resulting
crude extract after concentration was further subjected to
fractionation with diethyl ether, ethyl acetate, and n-
butanol successively and the resulting fractions; diethyl ether
(7.9% yield), ethyl acetate (3.10% yield), and n-butanol
(2.45% yield) fractions were concentrated in a rotary vac-
uum evaporator under reduced pressure. The resulting
diethyl ether fraction (dietl-eth_T. garckeana) which dem-
onstrated the highest yield and phytochemical compositions
in preliminary screening was used for subsequent analysis.

2.2. Analysis of Total Phenol and Flavonoid Contents. The
total flavonoid content of the dietl-eth fraction of T. garck-
eana was determined according to the method of Chang
et al. [33], while the total phenol content was evaluated using
the Folin-Ciolcalteau’s reagent as described by Singleton
et al. [34]. Gallic acid (total phenols) and quercetin (total fla-
vonoids) were used to prepare the calibration curves.

2.3. In Vitro Antioxidant Assays. The in vitro antioxidant
effects of dietl-eth_T. garckeana were evaluated using the
DPPH, FRAP, ABTS, and LPO assays. The DPPH assay
was conducted based on the scavenge ability of the extract
on DPPH radicals [35]. FRAP activity was assayed according
to the method of Oyaizu [35]. The extract was incubated in
K3[Fe(CN)6] supplemented phosphate buffer at 50°C for
20min, after which 10% TCA was added. The resulting
solution was centrifuged and color development in the
presence of 0.1% ferric chloride was monitored at 700nm.
The thiobarbituric acid-reactive substance (TBARS) proto-
col described by Panjamurthy et al. [36] was employ for
the LPO analysis, while the ABTS assay was done as
reported by Re et al. [37].

2.4. In Vitro Hypoglycemic Assays. Standard analysis proto-
col for alpha-amylase inhibition described by Worthington
[38] was employed for the in vitro hypoglycemic analysis
of the extract. Briefly, the extract/acarbose (12.5~ 100μg/
mL) mixed in an enzymatic porcine pancreatic solution
was incubation with a starch solution for 30min at 37°C,
followed by the addition of 10μL of HCl (1M) and iodine
reagent for color development. In the analysis of glucose
uptake by yeast cells, glucose solution (5~ 25mM) was
incubated (37°C for 10min) with the extract. A yeast sus-
pension was added to the reaction mixture and incubated
for another 45-60min, after which glucose concentration
was estimated.

2.5. In Vitro Anti-Inflammatory Assays. The in vitro anti-
inflammatory activities of the dietl-eth_T. garckeana were
evaluated by using the human red blood cell (RBC and

HRBC) membrane stabilization, inhibition of protein dena-
turation, and proteinase inhibitory assays. The protein dena-
turation inhibition was assayed as described of Mizushima
and Kobayashi [39], while the method of Oyedepo and
Femurewa [40] was used for the proteinase inhibition assay.
In the HRBC assay, a 10% human RBC suspension was incu-
bated with the extract solution at 50-55°C for 30min [41].
The resulting solution was centrifuged at 2500 rpm for
5min, and the reaction changes was monitored at 560nm.

2.6. Analysis of Toxicity and Extract Tolerated Dose. The
dietl-eth_T. garckeana was subjected to an acute toxicity
study to evaluate its safety and maximum tolerated dose
upon oral administration according to the protocol
described by Lorke [42]. Briefly, a total of eighteen (18) rats
were grouped into six (6) and administered with 10, 100,
1000, 1600, 2800, and 5000mg/kg bw of dietl-eth_T. garck-
eana to groups I-VI, respectively. The extract was adminis-
tered once orally, after which the rats were observed for any
sign of adverse toxicity and mortality within 14 days’ period.

2.7. Oral Glucose Tolerance Test (OGTT). The OGTT was
conducted according to the method described by Sisay
et al. [43]. A total of twelve (12) overnight starved rats were
grouped into 5 (3 rats per group) and treated with 2.0mL/kg
normal saline, 5mg/kg glibenclimide, 150mg/kg, and
300mg/kg dietl-eth_T. garckeana for groups I-IV, respec-
tively. After 30 minutes of treatment, 2 g/kg bw of glucose
was orally administered to rats in each group. The blood glu-
cose level was determined at 0 minutes (basal blood glucose
level) and at intervals of 30 for a period of 2 hrs.

2.8. Analysis of In Vivo Antidiabetic Activities in Rats. The
dietl-eth_T. garckeana was evaluated for the in vivo antidia-
betic effects in albino rats. Experimental rats were acquired
from the experimental rodent facility of AE-FUNAI, Nigeria.
Animal experiments were consented by the ethical commit-
tee of the AE-FUNAI, Nigeria. Streptozotocin (STZ; 40mg/
kg) was intraperitoneally administered to overnight starved
rats, and rats with FBS > 200mg/kg were considered diabetic
[44]. Rats were rationed into 4 groups and treated with the
dietl-eth_T. garckeana at 150 (group 1) and 300mg/kg
(group 2), 2mL/kg normal saline (group 3), and 200mg/kg
metformin (group 4). Healthy rats were assigned to the fifth
group to serve as the control. Treatments were given on a
daily basis for a period of 21 days via oral route. The fasting
blood sugar concentration and animals’ body weight were
checked during the study period.

2.9. In Vivo Anti-Inflammatory Analysis (Xylene-Induced
Ear Swelling Assay). The dietl-eth_T. garckeana was evalu-
ated for its in vivo anti-inflammatory effects in mice using
a xylene-induced ear edema test [45, 46]. Healthy mice were
divided into five (n = 5) groups and administered orally with
saline, dietl-eth_T. garckeana (150 and 300mg/kg BW), or
200mg/kg aspirin for 7 days. On the eighth day, the poste-
rior and anterior surfaces of the rat’s right ear were scrubbed
with 0.02mL aliquot of xylene. Measurement of the ear
thickness was done, and the ear inflammation volume was
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computed as the weight differences between the right and
the left ears. Orbital blood sample was also collected and
analyzed for the levels of white blood cell counts.

2.10. Collection and Processing of Samples. Experimental rats
were euthanized under diethyl ether vapor for few minutes,
and blood were obtained through cardiac puncture. The
coagulated blood was centrifuged for 15min (3000× g) and
the separated serum were stored at 4°C [47, 48]. The rat’s
pancreases and liver tissues were harvested, homogenized
in phosphate buffer (0.1M, pH7.4, 1 : 10w/v) and centri-
fuged at 10,000× g for 10min at 4°C.

2.11. Tissue Assays for Antioxidant Parameters. The in vivo
antioxidant effects of the extract were evaluated in liver
homogenate using the lipid peroxidation (LPO), superoxide
dismutase (SOD), reduced glutathione (GSH), and catalase
(CAT) assays. The LPO assay was conducted by measuring
the tissue levels of TBARSs [49], while the modified colori-
metric method of Kum-Tatt and Tan [50] was adopted for
GSH assay. The activity of SOD was evaluated by using an
established protocol [51]. The tissue homogenate was incu-
bated with carbonate buffer (pH10.2) in the presence of
0.3mM adrenaline. The increase in absorbance at an interval
of 30 s were monitored at 480nm [51]. CAT activity was
determined using a standard protocol [52]. The liver
homogenate (0.1mL) in phosphate buffer (0.01M, pH7.0)
was incubated with 2M hydrogen peroxide (H2O2) for
20min. This was followed by the addition of a dichromate
acetate reagent to terminate the reaction. The changes in
absorbances were monitored at the wavelength of 620nm
and the activity of CAT was expressed as a unit of H2O2/
mg protein [52].

2.12. Measurement of Insulin Levels. The Insulin ELISA kit
(Calbiochem-Behring Corp, CA; catalog no. IN374S) was
used for the analysis of pancreatic and serum insulin con-
centrations as per the manual instructions.

2.13. High-Performance Liquid Chromatography (HPLC).
The dietl-eth_T. garckeana was subjected to HPLC analysis
according to the method described in our previous study
[20]. A hundred milligram (100mg) of dietl-eth_T. garck-
eana was dissolved in five millilitres (5mL) of an HPLC
grade methanol. The extract solution was filtered and run
on the HPLC (Agilent Technologies 1200) with the follow-
ing chromatographic conditions: stationary phase (Hypersil
BDS C18), mobile phase (acetonitrile and 0.1% formic acid),
column dimension of 250mm × 4:0mm, injection volume of
10μL, a flow rate of 0.6mL/min, detector wavelength of
280nm, and at gradient mode of elution.

2.14. Pharmacoinformatics Analysis

2.14.1. Analysis of Drug-Likeness and ADMET-PK
Properties. The most abundant compounds identified from
the dietl-eth_T. garckeana were subjected to analysis of
physicochemical properties, drug-likeness, PKs (ADMET),
and medicinal chemistry using the ADMET-Lab, ADMET-
Sar, and Swiss-ADME servers [53]. The human-intestinal

absorption and permeability by blood-brain barrier (BBB)
were modeled through the BOILED-EGG and support
vector machine (SVM) tools [53].

2.14.2. Analysis of Ligand Receptor Interactions Using
Molecular Docking. The most abundant bioactive compound
characterized from the extract was subjected to an analysis
of ligand-receptor interactions using molecular docking.
The crystal three-dimensional (3D) forms of the compounds
were built by the Avogadro visualization tool (version 1.XX)
[54], while the PDB files of the target receptors including
alpha-amylase and alpha-glucosidase were downloaded
from the Protein Data Bank. The mol2 files were trans-
formed into PDB files using PyMOL software, while the
PDB formats were transformed to PDBQT using AutoDock
Vina [55]. Water molecules were detached, while hydrogen
atoms in polar forms and Kollman charges were added to
the compounds during predocking preparations [56, 57].
The version 8 of AutoDock Vina tool was used for the
receptor-ligand docking as described in previous studies
[56, 58, 59], while visualization was conducted using the
PyMOL and Discovery studio tools [60].

2.15. Data Analysis. The GraphPad vers. 8.0 software was
used for the statistical analysis of replicate data. The one-
way type analysis of variance and Student’s t-test were
explored for statistical comparison between groups. Data
are presented as the mean ± standard error of themean
(SEM), and statistical annotation of “∗,” “∗∗,” or “∗∗∗,” were
used to represents the statistical differences corresponding to
“p < 0:05,” “p < 0:001,” and “p < 0:001,” respectively.

3. Results and Discussion

3.1. Thespesia garckeana Fraction Exhibited Dose-Related In
Vitro Antioxidant Activities. Plants, particularly those that
are rich source of flavonoid and polyphenolic compounds,
have been effective against various diseases including can-
cers and diabetes [61]. These phytochemicals are known to
exhibit several biological activities including antioxidants,
antimicrobial, anticancer, anti-inflammatory, and antidia-
betic, etc. [62]. Interestingly, our results demonstrated that
dietl-eth_T. garckeana contains total phenol contents of
613:65 ± 2:38mg/100 g dry weight and total flavonoid con-
tents of 152:83 ± 1:56mg/100 g dry weight. The flavonoid
and phenol contents reported in this study are higher than
the total phenol (34.32 and 25.34mg/100 g) and flavonoid
(13.45 and 7.65mg/100 g) contents previously reported for
crude methanol and ethyl-acetate extracts of T. garckeana
[28]. The presence of significant-high amounts of phenol
and flavonoid contents in the dietl-eth_T. garckeana
suggested the ability of the extract to scavenge free radicals,
prevent oxidative stress and manage diabetes [62].

The formation of free radicals and oxidative stress play
important roles implicated in the development of T2DM
[12, 13]. Therefore, the role of antioxidants in preventing
the formation of free radicals is crucial to the control of
DM [61]. Our in vitro studies revealed significant and
dose-related antioxidant activities of the dietl-eth_T.
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garckeana in four different in vitro models of antioxidant
assays; DPPH, FRAP, LPO, and ABTS, with IC50 values of
30:91 ± 0:23 (Figure 1(a)), 16:81 ± 0:51 (Figure 1(b)), 41:29
± 1:82 (Figure 1(c)), and 42:39 ± 2:24μg/mL (Figure 1(d)),
respectively. Through the analysis of TBARS levels, we
uncovered that the malonaldehyde (MDA) formation has
been significantly compromised by dietl-eth_T. garckeana.
In addition, the hydrogen donating properties of the
extract as a means of radical scavenging has been demon-
strated by the DPPH assay [63]. The reduction of Fe3+/
Fe2+ as suggested by the FRAP assay also confirmed the
scavenging ability of dietl-eth_T. garckeana, thereby trans-
forming reactive radical element into a more stable prod-
uct. Phenols and flavonoids were implicated in the free
radical scavenging abilities and defensive properties of
plants against various illnesses [64]. Consequently, the
high flavonoid and phenolic contents of dietl-eth_T.
garckeana may be appraised for the antioxidants activity
of the extract.

3.2. Thespesia garckeana Fraction Exhibited Dose-Related
In Vitro Anti-Inflammatory Activities. Inflammation, a
complex physiological response to injury and infection,
plays a pivotal role in the development of chronic disor-
ders, including arthritis, asthma, atherosclerosis, cancer,
and DM [14]. Interestingly, T. garckeana exhibited dose-
related anti-inflammatory activities. Our in vitro anti-
inflammatory studies using membrane stabilization, protein
denaturation, and proteinase activities revealed the effective-
ness of the extract with respective IC50 values of 54:45 ± 2:89,
93:62 ± 3:04, and 56:60 ± 2:34μg/mL (Figures 2(a)–2(c)).
The erythrocytic membrane exhibits some similarities with
the lysosomal membrane and its stabilization implies that
the dietl-eth_T. garckeana may well stabilize lysosomal
membranes [65]. This is important for restraining the
inflammatory response by halting the lysosomal releases of
active neutrophils, such as proteases and bacterial enzymes,
which may induce tissue inflammation and injury upon extra-
cellular release [66]. The dietl-eth_T. garckeana promoting
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Figure 1: Diethyl-ether fraction of Thespesia garckeana (dietl-eth_T. garckeana) exhibited dose-related in vitro antioxidant activities. Bar
graphs showing extract dose vs. inhibition effect of the dietl-eth_T. garckeana on (a) 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, (b)
ferric-reducing antioxidant power (FRAP), (c) lipid peroxidation (LPO), and (d) 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid
(ABTS). Values are the mean ± SEM (n = 3). Different superscript letters indicate significant differences (p < 0:05) between the extract
doses. IC50: half-maximal inhibitory concentration.
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membrane stabilization also suggests its potential for mitigat-
ing phospholipases release thereby preventing the generation
and activities of inflammatory mediators [67].

Proteinase inhibitory activity was studied to further
explain the anti-inflammatory mechanism of dietl-eth_T.
garckeana. Neutrophils contains high levels of serine pro-
teinase [65] that plays a vital tissue damaging role during
inflammatory events [68] and inhibitors of this proteinase
protect against the damage [69]. Interestingly, the dietl-
eth_T. garckeana exhibited dose related antiproteinase activ-
ity with IC50 of 56:60 ± 2:34μg/mL. These results provide
evidence for proteinase inhibition as an additional mecha-
nism of the anti-inflammatory effect of dietl-eth_T. garck-
eana. Altogether, these data suggest that T. garckeana
extract would be useful for averting inflammatory complica-
tions that could be associated with diabetes.

3.3. Thespesia garckeana Fraction Demonstrated Safety
Profile in Acute Oral Toxicity Study. According to the data
obtained from this study, dietl-eth_T. garckeana demon-
strated a good safety profile with a 50%lethal dose ðLD50Þ >
500mg/kg bw and a safe dose of 1000mg/kg bw (Table 1).
No animal mortality was observed during the study. In addi-

tion, rats dosed with 10, 1000, and 1000mg/kg bw were
bereft of adverse health or physiological changes, suggesting
the safety of the extract at doses ≤ 100mg/kg bw. Con-
versely, rats treated with 1600, 2800, and 5000mg/kg exhib-
ited varying levels of adverse effects ranging from
restlessness, hyperactivity, redness of the eyes, and profuse
breathing. According to Hodge and Sterner [70], substances
that demonstrate an LD50 of 5000mg/kg in rats should be
considered harmless substances. This result is in agreement
with the findings of Iyojo et al. [71], who reported no mortal-
ity in rabbits administered different extracts of T. garckeana
pulp at 5000mg/kg. Altogether, dietl-eth_T. garckeana
demonstrated high LD50 and is safe for use as an oral remedy
at doses ≤ 100mg/kg bw. Thus, the high safety of this plant
upon oral exposure justifies the widespread use of this
plant for treating various ailments by traditional healers
in northern Nigeria.

3.4. Thespesia garckeana Fraction Exhibited Dose-Related
In Vitro Hypoglycemic Activities. The inhibition of
carbohydrate-metabolizing enzymes and regulation of blood
glucose levels are very critical to the management of DM
[72]. The dietl-eth_T. garckeana also demonstrated a
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Figure 2: Diethyl-ether fraction of Thespesia garckeana (dietl-eth_T. garckeana) exhibited dose-related anti-inflammatory activities in vitro.
Bar graphs showing extract dose vs. inhibition effect of the dietl-eth_T. garckeana on (a) inhibition of protein denaturation, (b) inhibition of
proteinase activities, and (c) membrane stabilization. Values are the mean ± SEM (n = 3). IC50: half-maximal inhibitory concentration.
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hypoglycemic effect via inhibition of α-amylase (IC50: 64:59
± 3:29μg/mL) and enhanced glucose (5, 10, and 25mM)
uptake by yeast cells in a dose-related manner (Figure 3).

Inhibitors of α-amylase, a starch-catabolizing enzyme,
are widely used as oral hypoglycemic agents for the regula-
tion of sugar levels of T2DM patient [73]. However, most
of these inhibitors are synthetic with of off-limit activity
and associated side effects [74]. Consequently, the current
results verify that the dietl-eth_T. garckeana exerts its hypo-
glycemic via the inhibition of carbohydrate-catabolizing
enzymes, including the α-amylase. The inhibitory activities
of the dietl-eth_T. garckeana on α-amylase activities sug-
gests the attenuation of postprandial blood glucose increase
by decreasing the carbohydrates flow into the bloodstream
after carbohydrate intake [75].

Glucose is preferred by yeast as a primary source of fuel,
and glucose absorption by yeast cells is simulate that occur-
ring in the mammalian intestinal lumen; thus, yeast has
become a commonly used model to study glucose absorption
[76]. According to the present study, dietl-eth_T. garckeana
significantly enhanced glucose uptake by yeast cells in a
dose-related manner. This is important for the efficient uti-
lization and control of glucose levels. Interestingly, a linear
relationship between glucose concentration and rates of glu-
cose uptake by the yeast cells was observed. This is in line
with the finding of Keshala et al. [61] who reported a
concentration-dependent increase in glucose uptake by yeast
cells in the presence of plant extract. Collectively, the dietl-
eth_T. garckeana exhibited dose-related in vitro hypoglyce-
mic activities and, thus, could be regarded as a natural
product with potential for the management of DM.

3.5. The dietl-eth_T. garckeana demonstrated hypoglycemic
effect in Oral glucose tolerance test. In the present study,
the evaluation of dietl-eth_T. garckeana for possible antidia-
betic effect was also conducted using the oral glucose toler-
ance test. There were initial increases in glucose levels at
30 minutes of glucose dosing after which progressive
decreases were observed from 30 minutes to 2 hours in all
the treatment as well as the control rats. However, significant
(p < 0:05) decreases in the glucose levels of rats treated with
the 300mg/kg dietl-eth_T. garckeana, as well as the standard

control group, were observed when compared with the non-
treated glucose-loaded rats (Figure 4). Our result has shown
that the extract can decrease postprandial blood glucose
levels and improve peripheral glucose uptake and utilization
in rats. The OGTT corroborate the effects of the plant
extracts on insulin release by the B cells of the islets of Lan-
gerhans in diabetic rats. Postprandial elevated sugar level is
with an increased risk of diabetes-associated secondary com-
plications [77]. Therefore, the OGTT suggested the potential
usefulness of dietl-eth_T. garckeana in T2DM subjects with
insulin resistance prone to elevated postprandial sugar
level [78].

3.6. The dietl-eth_T. garckeana Demonstrated Hypoglycemic
Effect and Improved Insulin Secretion in STZ-Induced
Diabetic Rats. Previous experimental studies have proved
the therapeutic efficacy of medicinal plants in animal models
of diabetes, inflammation, and oxidative stress-associated
diseases [79–81]. The in vivo antidiabetic effects of the
dietl-eth_T. garckeana was evaluated in STZ-induced dia-
betic rats. Interestingly, our in vitro findings corroborated
with the data generated in vivo. We found that treatment
of the STZ-induced diabetic rats with dietl-eth_T. garckeana
caused significant and progressive decreases in the fasting
blood sugar (FBS) levels in a dose-related manner
(Figure 5(a), Table 2) and prevented the body weight loss
(Figure 5(b), Table 3), while diabetic untreated rats exhibited
progressive increases in FBS levels and body weight loss. At
the end of the treatment duration, the extract at 150 and
300mg/kg demonstrated 62.67% and 78.88% hypoglycemic
effects, respectively, while metformin demonstrated higher
hypoglycemic activity of 84.25%. Thus, the gradual decreases
in FBS and improvement of body weight recorded in the T.
garckeana-receiving animal when compared with the
untreated diabetic rats presaged the ameliorative effects of
the fraction on experimentally induced diabetes.

Under a physiological condition, the pancreatic cells reg-
ulate blood glucose levels by regulating β cells of Islets of
Langerhans’s activity through insulin secretions. Therefore,
the hyperglycemia induced by STZ may be attributed to
the impairment of insulin release as a consequence of the
destroyed β cells of Islets of Langerhans in the pancreas

Table 1: Acute oral toxicity profiles of diethyl-ether fraction of Thespesia garckeana in rats.

dietl-eth_T.
garckeana (mg/kg)

Mortality Adverse effect
Two weeks’ posttreatment observation

(loss of weight, sign of toxicity)

10 0/3 Nil Nil

100 0/3 Nil Nil

1000 0/3 Nil (MTD) Nil

1600 0/3 Restlessness (10-15mins) Nil

2900 0/3
Rubbing of the mouth on the wall of the cage
(about 20mins); restlessness (about 20mins)

Nil

5000 0/3
Rubing of cages (20-30mins), redness of the eye (30mins),

restlessness (30mins), fur erection (30mins), profuse breathing
(24 h), weakness (only in day 2)

Nil

MTD: maximum tolerated dose.
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[82]. Indeed, we found that the STZ-induced diabetic non-
treated rats exhibited significant (p < 0:05) decreases in the
pancreatic and serum (Figure 5(c)) insulin levels as well as
histological distortion of the pancreas (Figure 5(d)) when
compared with the control rats, while administrations of
the dietl-eth_T. garckeana significantly (p < 0:01) increased
the serum and pancreatic insulin levels of the 300mg/kg-
treated diabetic rats only. The serum insulin level in
150mg/kg-treated rats was not significantly (p > 0:05) differ-
ent from diabetic nontreated rats. Furthermore, the pancre-
atic section of the STZ-induced diabetic nontreated rats
shows a pancreatic architecture with loose connective tissue.
The parenchymatous portion of acini and islet are distorted
and most enriched by adipose tissue (Figure 5(d)). However,
in a similar architecture to the normal control rats, the pan-
creatic section of rats treated with metformin, and the
300mg/kg extract receiving rats show the well-preserved
pancreatic architectures, comprising lobules of exocrine
acini separated by thin fibrous septa. Normal islets of Lan-
gerhans are seen, and there were no features of significant
inflammation or damage seen. These ameliorative effects
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Figure 4: Effect of the diethyl-ether fraction of Thespesia garckeana
(dietl-eth_T. garckeana) on blood glucose levels in oral glucose
tolerance test (OGTT). Values are the mean ± SEM. ∗p < 0:05,
∗∗p < 0:01.
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Figure 3: Diethyl-ether fraction of Thespesia garckeana (dietl-eth_T. garckeana) demonstrated in vitro dose-related hypoglycemic activities.
Bar graphs showing extract dose vs. inhibitory effects of the dietl-eth_T. garckeana on (a) α-amylase inhibition, and yeast glucose uptake
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of the extract on pancreatic architecture, activity, and
insulin secretion might have promoted the effective
glucose uptake and utilization [83] and thus restored the

glycemic status of the rats. Altogether, this study provides
preclinical evidence supporting the potential therapeutic
benefits of dietl-eth_T. garckeana in stimulating insulin
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secretion and attenuating hyperglycemia in strepzotocin-
induced diabetic rats.

3.7. The dietl-eth_T. garckeana Exhibited Antioxidant
Activities in Rats with STZ-Induced Diabetes. Inflammation
and oxidative stress contribute to the development of dia-
betic complications such as hypertension, retinopathies,
nephropathies, and neuropathies [19, 20]. The generation
levels of ROS are controlled by the levels endogenous antiox-
idant including CAT, GSH, and SOD [84, 85]. In the present
study, analysis of liver biochemical parameters of oxidative
stress in rats with STZ-induced diabetes revealed significant
decreases in the liver activities of antioxidant enzymes
including SOD (p < 0:01; Figure 6(a)), CAT (p < 0:05;

Figure 6(b)), and GSH (p < 0:01; Figure 6(c)) and increased
MDA levels (p < 0:001; Figure 6(d)) in STZ-induced diabetic
rats compared to the respective normal controls.

The liver is a central detoxification organ of the body
and plays a vital role in regulating glucose homeostasis
[86]. As a group of insulin-sensitive tissues, the liver is
among the primary organs highly susceptible to the effects
of hyperglycemia-provoked oxidative stress, which may
impair liver integrity [87]. Hyperglycemia, mainly caused
by insulin resistance, induces the generation of free radi-
cals by the activated Kupffer cells (phagocytic hepatic
macrophages) that help in maintaining the integrity of
liver cells [88]. However, these cells are highly susceptible
to the effects of the free radicals generated by their own

Table 3: Effect of diethyl-ether fraction of Thespesia garckeana on body weight gain in STZ-induced diabetic rats.

Groups 0 3 7 14 21 Weight gain (%)

Normal 157:05 ± 2:00 159:01 ± 1:54 165:22 ± 1:31 169:80 ± 1:29 176:53 ± 2:64 11:05 ± 0:19
Untreated 146:85 ± 3:86 146:03 ± 9:38 138:83 ± 8:60 136:17 ± 4:05 126:79 ± 3:30 −15:82 ± 0:03
150mg/kg Dietl_T.G 163:26 ± 9:92 160:26 ± 8:93 169:25 ± 10:64 169:60 ± 8:61 169:33 ± 5:30 4:01 ± 2:85
300mg/kg Dietl_T.G 158:27 ± 0:72 156:42 ± 1:34 160:63 ± 0:51 161:54 ± 0:68 162:19 ± 1:08 2:40 ± 1:09
Metformin 160:20 ± 0:88 154:37 ± 2:84 158:42 ± 4:19 163:93 ± 3:81 169:60 ± 1:49 5:53 ± 0:31
Dietl_T.G: diethyl-ether fraction of Thespesia garckeana.
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Figure 6: The diethyl-ether fraction of Thespesia (dietl-eth_T.) garckeana demonstrated antioxidant activities in diabetic rats. Bar graphs
show the effect of the dietl-eth_T. garckeana on levels of (a) superoxide dismutase (SOD), (b) catalase (CAT), (c) reduced glutathione
(GSH), (d), and malonaldehyde (MDA) in diabetic rats. Data =mean ± SD, n = 3. “∗∗∗p < 0:001,” “∗∗p < 0:01,” and “∗p < 0:05”.

Table 2: Effect of diethyl-ether fraction of Thespesia garckeana on blood glucose levels in STZ-induced diabetic rats.

Groups 0 3 7 14 21 Glucose reduction (%)

Normal 89:66 ± 1:76 88:06 ± 3:60 87:06 ± 4:58 90:66 ± 3:71 85:05 ± 1:15 —

Untreated 84:05 ± 3:00 442:50 ± 17:50 415:5 ± 5:500 441:50 ± 18:50 518:50 ± 12:50 —

150mg/kg Dietl_T.G 82:03 ± 3:01 474:50 ± 6:50 319:50 ± 14:50 258:5 ± 54:5 193:55 ± 19:05 62.67

300mg/kg Dietl_T.G 87:00 ± 3:00 419:50 ± 2:50 269:60 ± 4:40 125:70 ± 4:30 109:46 ± 5:87 78.88

Metformin 86:00 ± 2:08 433:33 ± 24:03 210:66 ± 15:76 169:33 ± 35:25 81:66 ± 4:25 84.25

Dietl_T.G: diethyl-ether fraction of Thespesia garckeana.
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Table 4: In vitro anti-inflammatory effects of the diethyl-ether fraction of Thespesia (dietl-eth_T.) garckeana.

Treatment Dose (mg/kg BW) Swelling rate WBCs (×109)
dietl-eth_T. garckeana 150 16:71 ± 1:19∗∗∗ 106:00 ± 1:73∗∗∗

dietl-eth_T. garckeana 300 10:41 ± 1:56∗∗∗ 98:00 ± 1:1561∗∗∗

Aspirin 200 13:67 ± 1:20∗∗∗ 101:00 ± 3:46∗∗∗

Untreated control 2.5mL/normal saline 77:33 ± 1:76 178:3:46 ± 3:46
Normal control Normal control — 106:00 ± 2:31∗∗∗

Values are the mean ± SD (n = 3). BW: body weight; WBCs: white blood cells; ∗∗∗ p < 0:001.
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immune reactions and the surrounding cells [89]. The
excessive ROS production results in irreversible oxidative
alterations of macromolecules including the carbohydrates,
lipids, and proteins [90], thereby leading to increased oxi-
dative stress and triggering the cascade of inflammatory
events that activates the transcription of proapoptotic
genes and damages hepatocytes [91, 92].

Therefore, the reduced SOD and CAT activities in the
liver of STZ-induced diabetic rats may be associated with
the free radical generations which inturm decreases the
activities of these enzymes. GSH is a cellular defense antiox-
idant molecule that protects against the progressive destruc-
tion of the ß cell [93]. The increases in free radicals’
productions in the diabetic rat result in oxidative damage
to membrane lipids and proteins and eventually causes a
decrease in the levels of GSH, CAT, and SOD as recorded
in rats with STZ-induced diabetes. However, our results
revealed that treatment with the dietl-eth_T. garckeana
attenuated depleted levels of GSH, CAT, and SOD and

decreased the LPO. These observations validate the potential
of dietl-eth_T. garckeana in preventing free radical genera-
tion and maintaining the antioxidant status of diabetic rats
[93]. This finding corroborated with literature on oxidative
stress-alleviating properties of plant extracts in hyperglyce-
mic rodent [94]. Our findings, therefore, revealed the T.
garckeana’s ability to ameliorate oxidative impairment and
restore antioxidant status of rats in hyperglycemic condition.

3.8. The dietl-eth_T. garckeana Demonstrated In Vivo Anti-
Inflammatory Activities in Xylene-Induced Ear Swelling of
Mice. An in vivo analysis of the anti-inflammatory proper-
ties using a xylene-induced ear swelling model in mice
revealed that the dietl-eth_T. garckeana significantly
(p < 0:001) prevented xylene-induced ear swelling compared
to the untreated control. The anti-inflammatory effect dem-
onstrated by the extract was accompanied by a significant
(p < 0:001) decrease in WBC counts of treated mice com-
pared to the untreated control (Table 4). Collectively, our
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Figure 9: Docking of luteolin with α-amylase. (a) 2-Dimensional depiction of the luteolin complex with α-amylase, (b) 3-dimensional (3D)
view of the hydrophobic interactions in the complex, and (c) surface representation of luteolin fitted within the binding cavity of the target.
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results demonstrated that the dietl-eth_T. garckeana exhib-
ited an anti-inflammatory effect in vivo in addition to its
in vitro anti-inflammatory effects.

3.9. HPLC Characterization of the dietl-eth_T. garckeana. To
characterized the dietl-eth_T. garckeana we conducted an
HPLC analysis (Figure 7) and identified the presence of cat-
echin (6.81e-1 ppm), rutin (8.46 e-1 ppm), myricetin, api-
genin (4.019 e-1 ppm), and luteolin (15.09 ppm) with
respective retention times (RTs) of 13.64, 24.269, 27.781,
29.58, and 32.23min. HPLC chromatograms and chemical
structures of the compounds are displayed in Figure 7.
Luteolin appeared to be the most abundant compound in
the dietl-eth_T. garckeana, and thus, we evaluated its pro-
spective for targeting glucose metabolizing enzymes and an
inflammatory mediator.

3.10. Drug-ADMET and Likeness Modeling of Compounds
Identified from the dietl-eth_T. garckeana. The goal of mod-
ern drug discovery and development is to identify a drug
candidate with desirable properties within the shortest pos-

sible period of time and to avoid time- and cost-consuming
approaches which in most cases produces disappointing
outcome in the clinics [95, 96]. Hence, drug-likeness and
PK analysis is considered an important aspect of the mod-
ern drug discovery and development. Our modeling analy-
sis of the drug-PK, and drug-likeness revealed that
apigenin, myricetin, luteolin, and catechin identified from
the dietl-eth_T. garckeana (Figures 8(a) and 8(b)) were
potential drug-like molecules. These compounds passed
the drug absorbability test and have desirable bioavailability
attribute. P-glycoproteins (P-gp) are responsible for propel-
ling compounds and drugs out of the cells [97]. The iden-
tified compounds from the dietl-eth_T. garckeana are
nonsubstrate or inhibitors of Pgp, thus suggesting their
stability and optimal drug delivery [98]. This was also evi-
dent by their absorption and permeability record. The high
volume of distribution and low binding of plasma protein
by the drug further ascertain the good bioavailability and
hinted at the potential good therapeutic index of the com-
pounds but were non-BBB permeant (except for catechin)
(Figure 8(b), Table 5). Cytochrome P450 (CYP450) is a
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Figure 10: Docking of luteolin with α-glucosidase. (a) 2-Dimensional depiction of the luteolin complex with α-glucosidase, (b) 3-
dimensional image of the hydrophobic links in the complex, and (c) surface representation of luteolin fitted within the binding cavity of
the target.
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heme containing enzyme family that play central metabolic
role on exogenous and endogenous substances [99]. Hence,
impeding the activities of these enzyme isoforms may lead
to deficient drug metabolism and toxic drug accumulation.
Providentially, our data indicated that among the 5 iso-
forms analyzed, the compounds were nonsubstrate and
had inhibitor tendencies for cytochrome P450 1A2
(CYP1A2) and CYP3A4. However, they were nonsubstrate
nor inhibitors of CYP2C9, CYP2D6, and CYP2C19. Not-
withstanding, luteolin demonstrated its ability to be a sub-
strate for P450 CYP3A4 and CYPC19, while catechin
demonstrated its ability to be a substrate for CYP2D6
(Table 5). The presence of these isoforms in the liver and
intestines indicates that these organs are sites of clearance
of the compounds. Among the five compounds, luteolin
and catechin demonstrated the best and most similar half-
lives of 0.745 and 0.720 h, high clearance rates of 1.919 and
1.914mL/min/kg, and a high safety profile with LD50 values

of 737.444 and 860.605mg/kg, respectively. Interestingly,
luteolin and catechin demonstrated nontoxic attributes; non-
human ether go-go-related gene (hERG) blockers, nonhepa-
totoxic, and were nonirritants in Skinsen assays. Collectively,
our analysis revealed that among the five compounds
identified, luteolin and catechin exhibited the best drug-
PK and drug-likeness characteristic and, thus, were used
for receptor-ligand simulation analysis.

3.11. Receptor-Ligand Simulation Analysis Revealed
Luteolin’s Properties for Targeting Glucose-Metabolizing
Enzymes and an Inflammatory Mediator.Molecular docking
is an innovative and widely approved strategies for mimick-
ing a small-molecule interaction with a target receptor/pro-
tein [57, 100, 101]. It provides qualitative and quantitative
estimation of the affinity between a compound and the cor-
responding protein/receptor [102]. It also gives a preamble
insight into mechanistic aspect of the compound and its
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Figure 11: Molecular docking of luteolin with cyclooxygenase. (a) A 2-dimensional (2D) image of the luteolin complex with
cyclooxygenase, (b) 3-dimensional (3D) image of the hydrophobic interactions in the complex, and (c) surface representation of luteolin
fitted within the binding cavity of the target.
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behavior when in contact with the corresponding target
[103–107]. Docking analysis in the present study revealed
that luteolin docked efficiently to the substrate interaction
domain of α-amylase with a binding affinity of –8.6 kcal/
mol. The complex was bound by four hydrogen bonds to
Gln63 (2.62Å), Asp300 (2.81Å), Arg195 (2.16Å), and
Glu233 (2.32Å); pi-pi stacked (Trp59), pi-anion (Asp300),
and several van der Waals forces including His305,
Leu162, Asp197, His299, Tyr62, Trp58, Ala198, Thr163,
and Leu165 (Figure 9). In addition, the complex was bound
by four hydrophobic contacts with Thr62A and TRP59A
with interaction distances of 3.80, 3.52, 3.75, and 3.64Å.

Luteolin interacted with glucosidase by –8.5 kcal/mol
binding efficacy. Luteolin was interposed to the cavity of glu-
cosidase mainly by hydrogen bonds with Ser150 and
TRP143 residues of glucosidase domain in respective prox-
imity of 3.28 and 2.52Å. The luteolin-glucosidase complex
stabilization was also achieved by a pi-anion interaction with
Asp136, two alkyl bonding with Pro139A and Pro139B, and
several van der Waals forces, including Lys134A, Asp215,
Lys134B, Asn141, Asn142A, Thr138, Asn142B, Ala151,
Leu144, Ser150, and Trp152, molded at the luteolin back-
bone. In addition, there were three hydrophobic contacts
with Thr138A (3.75Å), Asn142A (3.75Å), and Lys134B
(3.80Å), and the carboxylate group of luteolin formed a salt
bridge interaction with the binding domain of alpha-
glucosidase (Figure 10).

The luteolin-cyclooxygenase complex was stabilized by
several pi interactions, including pi-alkyl (Val295), pi-
sigma (Leu391), amide-pi-stacked (Ala202), and pi-pi T
shape (His388), yielding a high ligand-binding affinity of –
8.8 kcal/mol. In total, 13 van der Waals forces with Val444,
Phe404, Phe395, Phe407, Phe200, Gln203, His207, His386,
Phe210, Tyr385, Leu390, Trp387, and Thr206 residues of
the cyclooxygenases were found around the luteolin back-
bone. In addition, hydrophobic contact of Gln203A with
proximity of 3.80Å was found in the complex (Figure 11).
Overall, data presented in this study provides some scientific
affirmation based on preclinical model of the anti-inflamma-
tory, hypoglycemic, and antioxidant properties of the T.
garckeana extract. This hinted at its potentiality for explora-
tion in the development of alternative therapies for the man-
agement and possibly treatment of diabetes complication

4. Conclusions

The present study provides experimental evidence of the
therapeutic efficacy of the diethyl-ether fraction of Thespe-
sia garckeana for treating diabetes. The extract not only
enhanced the activities of antioxidant enzymes but also
inhibited inflammatory responses, and demonstrated
in vivo antidiabetic effects in experimental models. The
compound most abundant (luteolin) in the fraction dem-
onstrated good drug-PK and drug-likeness and prospective
for the targeting of glucose-catabolizing enzymes. Thus,
the present study provides preclinical insights into the bio-
active constituents of T. garckeana, its anti-inflammatory
and antioxidant effects, and its potential for treating
diabetes.
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