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Objective. To investigate the molecular function of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta
(PIK3CB) underlying Alzheimer’s disease (AD). Methods. RNA sequencing data were used to filtrate differentially expressed
genes (DEGs) in AD/nondementia control and PIK3CB-low/high groups. An unbiased coexpression network was established
to evaluate module-trait relationships by using weight gene correlation network analysis (WGCNA). Global regulatory network
was constructed to predict the protein-protein interaction. Further cross-talking pathways of PIK3CB were identified by
functional enrichment analysis. Results. The mean expression of PIK3CB in AD patients was significantly lower than those in
nondementia controls. We identified 2,385 DEGs from 16,790 background genes in AD/control and PIK3CB-low/high groups.
Five coexpression modules were established using WGCNA, which participated in apoptosis, axon guidance, long-term
potentiation (LTP), regulation of actin cytoskeleton, synaptic vesicle cycle, FoxO, mitogen-activated protein kinase (MAPK), and
vascular endothelial growth factor (VEGF) signaling pathways. DEGs with strong relation to AD and low PIK3CB expression were
extracted to construct a global regulatory network, in which cross-talking pathways of PIK3CB were identified, such as apoptosis,
axon guidance, and FoxO signaling pathway. The occurrence of AD could be accurately predicted by low PIK3CB based on the
area under the curve of 71.7%. Conclusions. These findings highlight downregulated PIK3CB as a potential causative factor of AD,
possibly mediated via apoptosis, axon guidance, and FoxO signaling pathway.

1. Introduction

Alzheimer’s disease (AD), referring to an irreversible neuro-
degenerative disorder, is manifested in cognitive decline,
along with behavioral and psychiatric abnormalities of vary-
ing extent [1, 2]. The core hallmarks of AD comprise intra-
cellular hyperphosphorylated tau and extracellular amyloid-
beta (Aβ) plaques, which progressively deteriorate with loss
of neurons and synaptic elements [3–7]. Pathologically, Aβ
peptides are derived from the continuous cleavage of amy-
loid precursor protein (APP) by β- and γ-secretases, known
as the amyloidogenic pathway related to neurodegeneration

[8, 9]. This is in competition with the nonamyloidogenic
process of α-secretase cleaving APP that prevents Aβ forma-
tion by releasing soluble amyloid precursor protein alpha
(sAPPα) [10]. Imbalance of these two pathways leads to
Aβ accumulation, which further elicits early synaptic alter-
ations and ultimately synaptic loss, a process thought to be
regulated by phosphoinositide 3 kinase (PI3K) [11, 12]. Mul-
tiple isoforms of PI3K are existed in higher eukaryotes,
which can be categorized into three classes (I-III) according
to sequence homology and substrate preference [13]. The
main function of PI3K is to catalyze the phosphorylation
of phosphatidylinositol on the 3-hydroxyl group of the
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inositol ring, successively processed by isoforms from class
III, II to I [14, 15]. Such products of phosphorylated lipids,
in turn, provide an anchor for the assembly of downstream
proteins that trigger complex intracellular signaling cascades
[14]. As an important signaling molecular, dysregulation of
PI3K is ubiquitously observed in the development of many
diseases, including AD [16]. Despite of no cure presently
available for the disease, the exploration of causative factors
or crucial regulators (e.g., PI3K) associated with AD may
delay or even prevent the occurrence and progression of AD.

Traditionally, class I PI3K is the most concerned isoform
of PI3K family, which consists of a regulatory subunit and a
catalytic subunit that play pivotal roles in cell proliferation,
differentiation, and survival (or apoptosis) [17–19]. In terms
of the catalytic subunit of class I PI3K, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB) is
highly expressed in neurons implicated in synapse formation
and cell cycle regulation [20, 21]. Several lines of evidence
have demonstrated that PI3K signaling pathways are linked
to the pathophysiology of AD. For instance, TREM2 allevi-
ates neuroinflammation and cognitive impairment through
PI3K/AKT/FoxO3a signaling in AD mice; conversely, this
neuroprotective effect of TREM2 can be eliminated with
PI3K inhibitors [22]. Similar results are also replicated by
sulforaphene administration, which attenuates neuroinflam-
matory response and hyperphosphorylation of tau via mod-
ulating the PI3K/Akt/GSK-3β pathway [23]. To the best of
our knowledge, the pathogenic mechanism whereby dysreg-

ulation of PIK3CB mediates AD is not well understood.
Toward this, we sought to conduct a comprehensive geno-
mic analysis on basis of gene expression profile and func-
tional annotations [24], which might shed light on the
molecular role of PIK3CB in the pathogenesis of AD.

2. Materials and Methods

2.1. Data Resources.Microarray RNA sequencing (RNA-seq)
data from middle temporal gyrus of 78 human samples
(46AD patients and 32 age-matched nondementia controls)
were accessible through Gene Expression Omnibus (GEO)
Series accession number GSE109887 [25, 26]. Illumina
HumanHT-12V4.0 expression beadchip was used to detect
the expression of 16,790 annotated genes with 31,700
probes. To reduce prediction error on cross studies, the nor-
malization of gene expression profiles was processed with
the normalizeBetweenArrays function in R package [27].

2.2. Gene Set Enrichment Analysis (GSEA). GSEA is a widely
used computational method assessing whether enrichment
of a predefined gene set is statistically significant between
two biological states [28]. During the process of functional
annotation, 1000 permutations were set up to screen biolog-
ical processes (BP) of gene ontology (GO) terms utilizing
ClusterProfler, enrichplot and GSEABase packages [29]. The
visualization of GSEA data was accomplished by ggplot2
package. A pvaluecutoff of 0.05 was determined as the
screening threshold for significant enrichment.

2.3. Differential Expression Analysis. Taken the average
expression value of PIK3CB to be the boundary, enrolled
samples were dichotomized into PIK3CB-low and
PIK3CB-high cohort. Using lmFit and eBayes functions, we
identified the differences of gene expression in AD/control
and PIK3CB-low/high groups, respectively [30]. A fold
change ðFCÞ > 1:7 combined with a false discovery rate
(FDR)-adjusted p cutoff of < 0.05 was adopted to define dif-
ferentially expressed genes (DEGs) [31–33]. Analysis of two-
dimensional hierarchical cluster was carried out by R soft-
ware of limma package [32]. Volcano plot and heat map
were employed to visualize the expression of DEGs in the
screening and cluster analyses.

2.4. Coexpression Network Analysis. Following the default
parameters of weight gene correlation network analysis
(WGCNA), overlapping DEGs between AD/control and
PIK3CB-low/high cohorts were disposed to create an unbi-
ased coexpression network. The preponderance of WGCNA
is that it converts intricate microarray data into gene coex-
pressed modules, providing insight into a signal network
that may be associated with phenotypic traits of interest
[34]. To ensure the reliability of network outcomes, sample
clustering diagram was plotted to eliminate outliers with
low inter-array correlation using hclust function. An appro-
priate soft-thresholding power of 12 was selected with pick-
SoftThreshold function to achieve the integral connectivity
of gene coexpression modules, so that the network utmost
approaches the authentic biological state [35]. Module
eigengene (ME) is the first major element for a module,
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Figure 1: Flow chart of research design. AD: Alzheimer’s disease.
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known as the module representative that accounts for the
maximum possible variability of all genes in a module [36].
Correlation coefficients of all genes with each ME were cal-
culated to construct a hierarchical clustering tree, by which
branches of >30 genes were reassembled into coexpression
modules with unique color tags [37, 38]. Functional enrich-
ment analyses were performed to filtrate Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways using
clusterProfiler package.

2.5. Global Regulatory Network and Cross-Talking Pathways
of PIK3CB. Genetic phenotype and intramodular connectiv-
ity were measured by gene significance (GS) and module
membership (MM), respectively, the relationships of which
were plotted in a scatter diagram adopting verboseScatterplot
function [39]. Based on an online database of Search Tool
for the Retrieval of Interacting Genes (STRING, http://

www.stringdb.org/), the interaction between DEGs was
explored by establishment of protein-protein interaction
(PPI) network [40]. The cytoscape software was used to visu-
alize the global regulatory network, as well as the cross-
talking pathways of PIK3CB that were enriched by pathway
enrichment analyses [41, 42].

2.6. Analysis of Receiver Operating Characteristic Curve
(ROC). ROC analysis was conducted to estimate the classi-
fier performance of sequential output, including sensitivity
and specificity parameters, as measured by the area under
the curve (AUC) [43, 44]. Diagnostic performance of
PIK3CB to distinguish AD cases from nondementia controls
was assessed using pROC package in R. An AUC value of
100% indicated complete prediction, while 50% represented
random selection.
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Figure 2: Differential expression analysis. (a) PIK3CB expression between AD and nondementia controls. ((b) and (c)) Volcano plots of
DEGs in AD/control and PIK3CB-low/high cohorts: red indicates upregulated, while blue represents downregulated. (d) Heatmap of the
first 25 up- and downregulated DEGs: red to green indicates gene expression alterations from upregulated to downregulated. AD:
Alzheimer’s disease; DEGs: differentially expressed genes.
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Figure 3: Continued.
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2.7. Statistical Analysis. Continuous variables between AD
patients and nondementia controls were compared by
applying t test or the nonparametric Mann–Whitney U test.
During the process of WGCNA analysis, the statistical rela-
tionship between gene coexpressed modules and phenotypic
traits of interest was estimated by Pearson correlation coeffi-
cient (PCC) analysis. Using the approach of Hanley-McNeil
test, predictive accuracy of PIK3CB was verified by ROC
analysis, the result of which was quantified by AUC value.
Two-tailed p values of < 0.05 were defined as the standard
of statistical significance. All statistical analyses were con-
ducted by employing GraphPad Prism software (version
8.3.1) and R package (version 3.6.2).

3. Results

3.1. Overall Research Design. The workflow diagram of this
research was detailed in Figure 1. Herein, the GSE109887
dataset in GEO database was selected for bioinformatic min-
ing. Subsequently, an integrative method of differentially
expression analysis and clinical phenotype-based WGCNA
was employed to build AD-related gene coexpression mod-
ules by a comparison between AD and nondementia con-
trols. The cellular processes of each module were further
enriched by functional enrichment analysis, which provided
an understanding of the biological functions of coexpressed
genes at the cellular level. Thenceforth, we constructed a
global regulatory network based on module genes strongly
interacting with AD and PIK3CB, wherein the cross-

talking pathways of PIK3CB were identified. Additionally,
diagnostic performance of PIK3CB in AD prediction was
validated by ROC analysis.

3.2. Identification of Differentially Expressed Genes. Com-
pared with controls, the mean gene expression of PIK3CB
was significantly downregulated in AD patients
(7:38 ± 0:44 versus 7:76 ± 0:53; p < 0:01) (Figure 2(a)).
Through preliminary processing of microarray data, 16,790
background genes were generated for further DEG identifi-
cation. Significant differences in the expression of 2,675
genes (1,616 up- and 1,850 downregulated) were screened
in AD relative to nondementia cohort (Figure 2(b)), while
4,393 genes (2,096 up- and 2,297 downregulated) were dif-
ferentially expressed in PIK3CB-low versus high group
(Figure 2(c)). Subsequently, a total of 2,385 overlapping
DEGs (1,093 up- and 1,292 downregulated) were filtrated
between AD/control and PIK3CB-low/high groups. The
expression of the first 25 up- and downregulated DEGs in
AD versus nondementia controls was shown in heat map
(Figure 2(d)), which exhibited substantially different biology
between these two groups.

3.3. Coexpression Modules and Functional Enrichment
Analysis. During the process of hierarchical clustering detec-
tion of outliers by using average linkage, all samples passed
the cut-off line (height = 45) and could be enrolled in subse-
quent gene coexpression network analysis (Figure 3(a)). As
shown in Figure 3(b), coexpressed genes were clustered into
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Figure 3: Weighted correlation network analysis. (a) Sample clustering to detect outlines. (b) Dendrogram of genes clustered by different
module colors: gray represents noncoexpression genes. (c) Module-trait relationships: red to green indicates a positive to negative
correlation of module eigengenes with phenotypes. (d) KEGG enrichment results of coexpression modules. AD: Alzheimer’s disease;
KEGG: Kyoto Encyclopedia of Genes and Genomes.

7Oxidative Medicine and Cellular Longevity



Module membership vs. gene
p < 1e–200

Module membership vs. gene
p = 6.2e–65

Module membership vs. gene
p = 4.8e–07

0.5 0.6 0.7 0.8 0.9 1.0

Module membership in brown
module

Module membership in blue
module

Module membership in green
module

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.5 0.6 0.7 0.8 0.9 0.70 0.80 0.90 1.00

0.2

0.4

0.6

0.8

0.4

0.5

0.6

0.7

0.8

0.9

Module membership vs.gene 
p = 0.042

Module membership vs.gene 
p < 1e–200 

Module membership vs.gene 
p = 0.042

0.10

0.20

0.30

0.0 0.2 0.4 0.6 0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Module membership in grey
module

Module membership in turquoise
module

Module membership in yellow
module

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

(a)

(b)

Figure 4: Continued.

8 Oxidative Medicine and Cellular Longevity



five coexpression modules by WGGNA, implying that genes
in each cluster were transcriptionally correlated; whereas the
remaining noncoexpressed genes were grouped into a non-
functional module, namely, the gray module. Heatmap of

module-trait relationships (Figure 3(c)) revealed that green
and turquoise modules had the significantly positive correla-
tion with AD (green: correlation coefficient = 0:5, p = 4e − 06
; turquoise: correlation coefficient = 0:55, p = 2e − 07) and
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Figure 4: Module-pathway regulatory network and ROC analysis. (a) Scatter plot of module membership related to gene significance. (b)
Global regulatory network based on PIK3CB-interacting genes: node size reflects the connectivity between genes; red indicates upregulated;
blue and yellow represent downregulated. (c) Cross-talking pathways of PIK3CB: yellow is the downregulated PIK3CB. (d) AUC value of
PIK3CB in predicting AD onset. AD: Alzheimer’s disease; AUC: area under the curve; ROC: receiver operating characteristic curve.
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Figure 5: Gene set enrichment analysis. (a) Gene functional annotation of biological processes in AD. (b) Gene functional annotation of
biological processes in PIK3CB-low group. AD: Alzheimer’s disease.
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negative correlation with PIK3CB expression (green:
correlation coefficient = −0:79, p = 1e − 17; turquoise:
correlation coefficient = −0:88, p = 1e − 25); while brown,
blue, and yellow modules were negatively correlated with
AD (brown: correlation coefficient = −0:53, p = 6e − 07; blue:
correlation coefficient = −0:47, p = 2e − 05; yellow:
correlation coefficient = −0:52, p = 1e − 06) and positively
relevant to PIK3CB expression (brown: correlation
coefficient = 0:57, p = 6e − 08; blue: correlation coefficient =
0:96, p = 4e − 42; yellow: correlation coefficient = 0:63, p = 7
e − 10). Functional enrichment analysis of KEGG pathways
(Figure 4(d)) showed that DEGs in blue module were
enriched in oxidative phosphorylation and long-term poten-
tiation (LTP); DGEs of brown module were involved in
GABAergic synapse and regulation of actin cytoskeleton;
DEGs in green module participated in herpes simplex virus
1 infection; DEGs of turquoise module were enriched in
apoptosis, axon guidance, FoxO, mitogen-activated protein
kinase (MAPK), and vascular endothelial growth factor
(VEGF) signaling pathways; DEGs in yellow module were
involved in synaptic vesicle cycle. Accordingly, the specific
mechanistic pathways of coexpressed genes in each module
in AD were functionally screened out.

3.4. Module-Pathway Regulatory Network and ROC Analysis.
As shown in Figure 4(a), scatter diagram between MM and
GS exhibited a significant correlation between intramodular
connectivity and genetic phenotypes in the coexpression
modules (blue: correlation coefficient = 0:96, p < 1e − 200;
brown: correlation coefficient = 0:68, p = 6:2e − 65; green:
correlation coefficient = 0:46, p = 4:8e − 07; turquoise:
correlation coefficient = 0:81, p < 1e − 200; yellow:
correlation coefficient = 0:25, p = 0:0079), suggesting that
the five coexpression modules were prominently associated
with low expression of PIK3CB in AD patients. To accu-
rately identify the mechanistic pathways of PIK3CB in AD
onset, DEGs strongly interacting with PIK3CB (meeting
the inclusion criteria of MM> 0:7 and GS > 0:5) were
extracted to construct a global regulation network
(Figure 4(b)) based on STRING database. Using pathway
enrichment analyses, further cross-talking pathways of
PIK3CB, such as apoptosis, axon guidance, and FoxO signal-
ing pathway, were determined in the network (Figure 4(c)).
The ROC analysis (AUC = 71:7%) showed that low PIK3CB
performed a good performance in differentiating AD cases
from nondementia controls (Figure 4(d)).

3.5. GESA Validation in Biological Processes. To validate the
potential functional mechanisms involved by PIK3CB in
AD, GSEA was performed for BP enrichment according to
a predefined gene set. The enriched BP in AD cohort
(Figure 5(a)) was primarily linked to calcium ion regulated
exocytosis, endothelial cell differentiation, learning, neuro-
transmitter secretion, signal release form synapse, and syn-
aptic vesicle transport. The functions of core enrichment
genes in the PIK3CB-low group (Figure 5(b)) were mainly
distributed in BP of learning, synapse assembly, synaptic
vesicle cycle, signal release from synapse, neurotransmitter
secretion, and synaptic vesicle transport. These data under-

lined that low PIK3CB expression might contribute to the
pathogenesis of AD through biological processes related to
learning, neurotransmitter secretion, signal release form
synapse, and synaptic vesicle transport.

4. Discussion

To improve our understanding of the AD phenotype modi-
fied by PIK3CB, we took advantage of the RNA-seq data to
screen differentially expressed genes between AD and non-
dementia controls for integrative genomic analysis. The
results of GSEA showed that functions of core enrichment
genes were distributed in the BP of learning, neurotransmit-
ter secretion, signal release form synapse, and synaptic vesi-
cle transport. Historically, neurotransmitters have been
described as the fundamental neurochemicals of signaling
between presynaptic and postsynaptic neurons, responsible
for the maintenance of synaptic and cognitive function
[45–48]. Of particular note was that these biological pro-
cesses were significantly associated with AD and low
PIK3CB expression, indicating an important role of PIK3CB
in AD pathogenesis. Consequently, this promoted us to con-
struct a global regulatory network and coexpression modules
of DEGs interacting with PIK3CB to illuminate the genomic
mechanism of PIK3CB in the development of AD.

The findings emerging from WGCNA revealed that
DEGs of coexpression modules were significantly correlated
with AD and PIK3CB expression, which were enriched in
apoptosis, axon guidance, LTP, synaptic vesicle cycle, FoxO,
MAPK, and VEGF signaling pathways. There is evidence
that APP aggregates in axonal growth cones, acting as a cor-
eceptor for axon guidance and cell migration cues through
its interaction with the extracellular matrix [49–51]. More
specifically, sAPPα—the secreted product of α-secretase
APP cleavage—antagonizes an inhibitor of axon guidance
cue termed Sema3A, contributing to cell movement and
axon outgrowth [52]. As supported by evidence in neural
stem cell-derived neurons, inhibition of sAPPα secretion
abolishes depolarization-induced neurite outgrowth and
elongation [53]. Furthermore, sAPPβ—the secreted product
of β-secretase APP cleavage—not only promotes rapid neu-
ral differentiation but also loosens intercellular adhesion,
which is thought to be critical for axonal outgrowth
[54–56]. In addition, Aβ—the secreted product of β- and
γ-secretase APP cleavage—is the major culprit of AD that
impedes axon outgrowth by inducing allosteric collapse of
growth cone, giving rise to impaired cognitive recovery
[57, 58]. Altogether, the evidence presented above strongly
points to a linkage between axon guidance and AD neurode-
generation. Axon guidance molecules including nerve
growth factor (NGF) and insulin-like growth factor (IGF-
1) have been shown to control axonal growth, a process that
relies on tight regulation and localized activation of PI3K
[59]. It has long been recognized that PI3K can both stabilize
polymerized microtubules and interfere with microtubule
polymerization, thus, modulating microtubule dynamics
prerequisite for NGF-induced axon elongation [60]. Coinci-
dent outcomes have also been reported in an in vitro model
of a biocompatible guidance device where a linear
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propagation of IGF-1 gradients sequentially directs axon
outgrowth [61]. Notably, an essential step in the initiation
of axonal outgrowth is precisely the activation of PI3K by
IGF-1 and its receptors [62, 63]. By contrary, inhibition of
PI3K enhances the response to growth cone collapse, which
in turn hinders axon elongation [64, 65], consistent with our
findings of low PIK3CB-mediated AD pathogenesis involv-
ing axon guidance.

An extensive array of studies support that apoptosis
underlies the pathogenic mechanisms of neuronal cell death
in AD. Analytic results of postmortem brain tissues pro-
vided evidence for a 50-fold increase of apoptosis in AD
patients relative to nondementia controls [66]. As the most
prevalent genetic risk factor for AD, apolipoprotein E4
(apoE4) has been identified to trigger apoptosis, leading to
a series of detrimental consequences such as impaired neu-
roplasticity and cognitive decline [67]. This is confirmed
by in vitro cell cultures that apoE4 induces an increase of
apoptotic cell death in a subtype-specific manner [8, 68,
69]. Additionally, Takuma et al. found that mitochondrial
dysfunction and endoplasmic reticulum- (ER-) induced
stress had implications in the execution of apoptosis relevant
to AD [70]. One plausible interpretation is that Aβ depletes
ER Ca2+ reserves to promote excessive uptake of Ca2+ into
mitochondria, causing cytosolic Ca2+ overload and thus to
activate the mitochondrial-mediated apoptosis [71]. On the
other hand, a growing body of research has directly or indi-
rectly linked PIK3CB to apoptosis. In the rat model of sub-
arachnoid hemorrhage, ErbB4-induced activation of
PIK3CB increased yes-associated protein (YAP) expression,
a terminal effector of Hippo signaling that dramatically
improved neurological deficits and apoptosis; meanwhile,
inhibition of ErbB4 or YAP knockdown could eliminate this
anti-apoptotic effect [72]. Likewise, subsequent in vitro
experiment on human glioma cell lines demonstrated that
inhibition of PIK3CB by AZD6482 induced apoptosis and
cell cycle arrest, as detected using flow cytometry with propi-
dium iodide staining [18]. In fact, PIK3CB has attracted con-
siderable attention as a selective survival factor for cancer
therapy based on its critical role in apoptosis [73–76].

Taking into consideration that Aβ increases the produc-
tion of reactive oxygen species (ROS), AD may be at higher
risk due to mitochondrial oxidative stress through FoxO sig-
naling pathway [77, 78]. Upregulation of FoxO transcrip-
tional activity has been shown to drive the expression of
genes related to antioxidative response by inducing epige-
netic modification, contributing to intracellular metabolic
homeostasis and oxidative stress clearance [79]. This activa-
tion, however, is supposed to be moderate rather than sus-
tained, since the latter mode yields apoptosis instead of
resistance to oxidative stress [80–82]. During the progres-
sion of AD, inhibition of FoxO disrupts mitochondrial
energy metabolism through excessive release of ROS, result-
ing in impaired synaptic transmission and neuronal apopto-
sis [83, 84]. As supported by an in vitro experiment from
animal AD models, Aβ-induced Ros activates p66Shc, an
adaptor protein that triggers phosphorylation (i.e., inactiva-
tion) of FoxO, which aggravates the accumulation of oxida-
tive stress and thus to neuronal and synaptic loss [85].

Relatedly, in response to oxidative stress stimuli, PI3K acti-
vates a downstream serine/threonine kinase, termed as pro-
tein kinase B (PKB) or Akt, which further negatively
regulates FoxO transcriptional factors related to cell cycle
and apoptosis [86, 87]. From our point of view, these data
are in line with our computational results on the involve-
ment of low PIK3CB in AD pathophysiology via apoptosis
and FoxO signaling pathway.

Based on the scatter diagram of the relationship between
MM and GS, DEGs strongly interacting with PIK3CB were
extracted to construct the global regulatory network for
functional annotation, illustrating the value of integrating
epigenetic data for understanding complicated mechanisms.
The cross-talking pathways of PIK3CB revealed that molec-
ular functions of downregulated PIK3CB in AD were
derived from apoptosis, axon guidance, and FoxO signaling
pathway. The vulnerability of such pathways appears to be
strikingly apparent at low PIK3CB levels, subsequently con-
tributing to the onset of AD in a variety of pathogenic mech-
anisms [62, 72, 77, 88]. According to the AUC of 71.7%, low
PIK3CB exhibited a good diagnostic performance in AD
prediction, indicating that PIK3CB may be capable of a
genetic risk factor of AD. Consistently, recent evidence from
adult drosophila melanogaster suggests that human Aβ pep-
tide is a candidate site for PI3K phosphorylation, the toxicity
of which can be suppressed by co-expression of PI3K [11].
Future in vivo or in vitro experiments are needed to verify
the mechanistic pathways of low PIK3CB-mediated AD neu-
rodegeneration that are proposed in this in silico research.

5. Conclusion

In aggregate, integrative genomic analysis is an effective
approach to uncover pleiotropic roles of PIK3CB underlying
AD development. Our findings lend strong support to the
notion that low PIK3CB expression is involved in the path-
ogenesis of AD through apoptosis, axon guidance, and FoxO
signaling pathway.
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