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Sepsis is a systemic inflammatory response syndrome caused by a dysregulated host response to infection. Peroxisome
proliferator-activated receptor gamma (PPARγ) exerts anti-inflammatory and antioxidative properties. To investigate the
potential effects of PPARγ on sepsis-induced liver injury and determine the related mechanisms, C57BL/6 male mice were
subjected to cecal ligation and puncture (CLP) to create a sepsis model which was treated with GW1929 or GW9662 to
upregulate or downregulate the expression of PPARγ. We found that upregulation of PPARγ decreased the serum aspartate
aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), and liver pathological damage and improved
the 5-day survival rate. Increased expression of PPARγ also decreased sepsis-induced reactive oxygen species (ROS) by
promoting the expression of Nrf2. In addition, upregulated PPARγ inhibited the expression of the TXNIP/NLRP3 signaling
pathway by reducing ROS-induced injury in the liver during sepsis, which further reduced NLRP3-mediated pyroptosis and
the inflammatory response. The role of PPARγ was further examined in in vitro experiments, where lipopolysaccharide- (LPS-)
treated HepG2 and Hep3B cells were incubated with GW1929 or GW9662 to upregulate or downregulate the expression of
PPARγ. We found that upregulated PPARγ ameliorated LDH release and improved cell viability. Our results indicated that
increased expression of PPARγ reduced ROS levels and inhibited the TXNIP/NLRP3 signaling pathway, resulting in decreased
pyroptosis and reduced liver dysfunction during sepsis.

1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection and is a major global
public health challenge [1]. As one of the most vulnerable
organs, the liver can be damaged at any stage during sepsis.
Severe liver dysfunction often results in a poor prognosis
during sepsis [2]. The mechanism of sepsis-induced liver
injury is complex and involves many signaling pathways.
Overproduction of reactive oxygen species (ROS), induced

by mitochondrial dysfunction, is thought to play an impor-
tant role in the pathogenesis of many different diseases, such
as organ dysfunction in sepsis [3–5]. ROS can not only
directly damage cells or tissues but also indirectly activate a
series of damage-related signaling pathways [6, 7]. Recent
studies have revealed that ROS is a fundamental factor in
triggering pyroptosis by activating the NOD-like receptor 3
(NLRP3) inflammasome [8, 9].

Pyroptosis is a newly discovered programmed cell death
process that occurs in many organs, including the liver,
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during acute or chronic inflammation. Pyroptosis is induced
by inflammasomes, leading to the release of cellular con-
tents, particularly the inflammatory mediators IL-1β and
IL-18, eventually causing excessive inflammatory responses
[10, 11]. NLRP3 proteolyzes pro-caspase-1 into cleaved cas-
pase-1, which converts pro-IL1β into IL-1β. This process
exerts a protective effect during the early stages of sepsis
[12, 13]. A constant increase in the NLRP3-mediated release
of these proinflammatory cytokines into tissues induces an
excessive inflammatory response and leads to tissue damage.
Recent studies have found that NLRP3-mediated pyroptosis
leads to the depletion of immune cells, thus aggravating
organ dysfunction during sepsis [14, 15]. However, few stud-
ies have revealed the importance of pyroptosis in sepsis-
induced liver injury. Nevertheless, inhibition of pyroptosis
may be a novel therapeutic approach for sepsis-induced liver
injury.

Peroxisome proliferator-activated receptor gamma
(PPARγ) is an important member of the PPAR family. Its
biological functions are complex and diverse. PPARγ plays
a significant role in protecting the liver from inflammation,
oxidation, fibrosis, accumulating fat, and tumors. However,
studies on the role of PPAR in sepsis-induced liver injury
are still scarce. PPARγ is a nuclear receptor that negatively
regulates inflammation induced by ROS under either infec-
tious or pathological conditions. Chorley et al. [16] found
that activation of PPARγ directly regulates the Nrf2 path-
way, which mediates the expression of antioxidant defense
genes. ROS is considered a crucial factor in the development
of pyroptosis as it increases the expression of thioredoxin-
interacting protein (TXNIP); PPARγ thus could be a poten-
tial target for pyroptosis [17]. We hypothesized that PPARγ
inhibits overproduction of ROS by promoting Nrf2 expres-
sion to reduce NLRP3-mediated pyroptosis and alleviates
sepsis-induced liver injury. This study is aimed at determin-
ing whether PPARγ affects septic liver injury and at elucidat-
ing the underlying potential mechanisms.

2. Materials and Methods

2.1. Animals. Six-week-old C57BL/6 male mice were
obtained from the Animal Feeding Center of Xi’an Jiaotong
University Health Science Center. All animals were main-
tained in a specific pathogen-free room with constant tem-
perature (23°C) and 12 h light and night exposure. All
laboratory procedures were authorized by the Institutional
Animal Care and Use Committee of the Ethics Committee
of Xi’an Jiaotong University Health Science Center, China.

2.2. Sepsis Model. To create a sepsis model, mice were anes-
thetized with sodium pentobarbital (50mg/kg, ip, once) and
received a 1.5 cm midline laparotomy to expose the cecum.
The cecum was lighted almost 1/3 tip and punctured twice
with a 14-gauge needle, and the cecal contents were
squeezed from the perforation site and placed back. Then,
the abdominal cavity was closed in layers. All animals were
returned to their cages keeping the body temperature at
36-38°C until completely recovery. In the control group,

the mice were only incised in the abdomen without perforat-
ing and ligating the cecum [18].

2.3. Cell Culture and Cell Treatment. HepG2 and Hep3B
cells were purchased from the Cell Bank of Shanghai Insti-
tutes for Biological Science (Shanghai, China). HepG2 and
Hep3B cells were grown in DMEM medium at 37°C with
5% CO2. DMEM medium was supplemented with 10% fetal
bovine serum (FBS), 100U/mL penicillin, and 100mg/mL
streptomycin. HepG2 and Hep3B cells (1 × 105 cells mL-1)
were plated in 24-well plates in DMEM medium. Washing
twice with PBS, the cells were stimulated with 1μg/mL LPS
to create an activated inflammatory cell model. Twenty-
four hours after stimulation, cell supernatants and HepG2
and Hep3B cells were collected to biochemical analysis.

2.4. Experimental Design. Mice were divided into four
groups: control, cecal ligation and puncture (CLP), CLP
+GW9662 (GW96), and CLP+GW1929 (GW19) (n = 20
for each group). Mice in the control group underwent a
sham laparotomy. Mice in the CLP group underwent CLP.
To explore the protective effect of PPARγ on septic mice,
mice in the CLP+GW96 and CLP+GW19 groups were intra-
peritoneally injected with GW9662 (PPARγ inhibitor,
10mg/kg) or GW1929 (PPARγ agonist, 20mg/kg) one hour
before CLP operation. The liver tissues and blood samples
were harvested from five anesthetized mice. The other 15
mice were fed for 120 h to determine the survival rate and
body weight changes. The CLP+GW19+CDDO group (pos-
itive-control group) was intraperitoneally injected with
GW1929 (10mg/kg) and CDDO-EA (40mg/kg).

To explore the role of PPARγ in sepsis, HepG2 and
Hep3B cells were pretreated for 30min with GW9662
(5μM) or GW1929 (10μM) to downregulate or upregulate
the expression of PPARγ, respectively, and then stimulated
with LPS to mimic inflammatory stimulation. The positive
control group was treated with GW1929 (10μM) and
CDDO-EA (20μM) to upregulate the expression of both
PPARγ and Nrf2.

2.5. Histologic Analysis. Twenty-four hours after CLP, a pro-
portion of mouse liver specimens was harvested and fixed
with formalin for paraffin embedding. Hematoxylin and
eosin (HE) staining was performed according to the stan-
dard protocol. Histological score in the liver was evaluated
by quantitative measurement of tissue damage through a
blinded observer way with a light microscope. Liver histo-
logical score was the sum of the individual score grades from
0, minimal damage; 1, mild damage; 2, moderate damage; to
3, severe damage for each of the following 6 items: cytoplas-
mic color fading, vacuolization, nuclear condensation,
nuclear fragmentation, nuclear fading, and erythrocyte sta-
sis, ranging from 0 to 18 [19]. A representative field was cho-
sen for application.

2.6. Quantification of Organ Function and Injury. Twenty-
four hours after CLP, the mice were sacrificed to obtain
the serum samples for evaluating the function of the liver.
The liver function was estimated by testing the levels of
serum total bilirubin (TBIL), aspartate aminotransferase
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(AST), and alanine aminotransferase (ALT). The levels of
AST, ALT, and TBIL were measured by an automated proce-
dure in the First Affiliated Hospital of Xi’an Jiaotong
University.

2.7. Cytokine Levels. The liver tissue and cell supernatant
were used to measure the release of IL-1β, IL-6, and TNF-
α via commercial kits (San Ying Biotechnology, China)
according to the manufacturer’s instructions.

2.8. Dihydroethidium (DHE) Staining and ROS Activity
Assay. Twenty-four hours after the LPS/CLP, HepG2 cells
and liver tissues were immediately processed through DHE
staining, as previously described [20]. The sections were
photographed by a fluorescence microscope and the fluores-
cence intensity calculated with ImageJ software. The liver
tissues were also collected to measure the levels of malon-
dialdehyde (MDA), glutathione (GSH), and superoxide
dismutase (SOD) by commercial biochemical kits (Nanjing
Jiancheng, China).

2.9. Immunofluorescence (IF) Staining. Immunofluorescence
staining for PPARγ, Nrf2, and TXNIP expression was per-
formed as previously described [21]. In short, the cells and
tissue sections were washed with PBST and blocked with
5% goat serum and incubated with the primary antibody
rabbit anti-PPARγ (1 : 200, CST, USA), Nrf2 (1 : 200, CST,
USA), and TXNIP (1 : 200, San Ying Biotechnology, China)
overnight at 4°C. After washing again, the cells and tissue
sections were incubated with the fluorescent secondary anti-
body (goat anti-rat antibody or goat anti-rabbit antibody,
Servicebio, China, diluted 1 : 100) for 1 hour. Finally, the
cells and tissue sections were counterstained with DAPI (4′
-6-diamidino-2-phenylindole) and observed with a fluores-
cence microscope.

2.10. Western Blot Analysis. Briefly, protein in liver tissues
was extracted using RIPA lysis buffer at 14,000 rpm for
15min at 4°C. Protein concentration was determined using
bicinchoninic acid (BCA). Protein was loaded on sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred onto polyvinylidene difluoride
(PVDF) membranes and blocked with 8% skim milk. Then,
membranes were incubated with 1 : 1000 dilution of rabbit
anti-Nrf2 antibody (CST, USA), anti-HO-1 antibody (San
Ying Biotechnology, China), anti-ASC antibody (CST,
USA), anti-TXNIP antibody (San Ying Biotechnology,
China), anti-NLRP3 antibody (Beyotime Biotechnology,
China), anti-ASC antibody (San Ying Biotechnology,
China), anti-caspase-1 antibody (Abcam, USA), and anti-
IL-1β antibody (Abcam, USA) and 1 : 10,000 dilution of
mouse anti-β-actin antibody (San Ying Biotechnology,
China) overnight at 4°C. After washing with PBST, the blots
were incubated with 1 : 10,000 dilution of secondary anti-
bodies (Abmart, China). Finally, the proteins were observed
and photographed with the ECL (electrochemilumines-
cence) system. The protein electrophoresis bands were ana-
lyzed by the ImageJ software normalized to β-actin as a
reference.

2.11. Immunohistochemical (IHC) Analysis. A proportion of
liver tissue specimens was harvested and fixed with formalin
for paraffin-embedded and cut into sections 4μm thick.
Immunohistochemistry was used to measure the expression
of NLRP3 and 8-OHdG. Briefly, each section was incubated
with primary antibodies against 8-OHdG (1 : 200; San Ying
Biotechnology, China) and NLRP3 (1 : 200; Beyotime Bio-
technology, China) overnight at 4°C after a series of proce-
dures (deparaffin, antigen retrieval, rinse, and block). The
samples were washed 3 times with PBS and incubated with
secondary antibodies at 37°C for 30min and then and
enriched with DAB (diaminobenzidine tetrahydrochloride)
and counterstained with hematoxylin and observed with
microscopic examination.

2.12. Cell Viability Assay and LDH Detection. The cell viabil-
ity was evaluated with the Cell Counting Kit-8 (CCK-8,
Abcam, US) following the manufacturer’s description. The
optical density (OD) values were measured at 450nm.

Twenty-four hours after LPS stimulation, the LDH activ-
ity was measured by commercial kit (Nanjing Jiancheng,
China). Mixing the 100μL reaction and 100μL supernatant
in 96-well plates for 0.5 hours at 37°C, the absorbance of
samples was tested by a microplate reader at 490nm.

2.13. Statistical Analysis. The measurement data were shown
as mean ± SD, and categorical data were shown as the num-
ber (percentage) in the group. Differences among multiple
groups were assessed by one-way analysis of variance
followed by the Student-Newman-Keuls post hoc test to
determine significant differences. Kaplan-Meier survival
curves and log-rank test were used to estimate the survival
rate among multiple groups. To test whether the activation
of PPARγ alleviated weight changes in septic mice, repeated
measures MANOVA was run on 5 days for the three groups,
using Bonferroni post hoc comparisons to determine signif-
icant differences. All tests were two-tailed, and P value of
<0.05 was considered to indicate statistical significance.
The GraphPad Prism software (USA) was used to make
the figure.

3. Results

3.1. PPARγ Alleviated Sepsis-Induced Liver Injury. To
explore the effect of PPARγ on septic liver damage, blood
samples and liver tissue were collected for liver function
determination and histological evaluation. Mice were intra-
peritoneally administered GW9662 (10mg/kg) or GW1929
(20mg/kg) to downregulate or upregulate PPARγ expres-
sion one hour before CLP operation. Hematoxylin and eosin
(HE) staining revealed CLP induced marked congestion,
inflammatory cell infiltration, necrosis, and degeneration in
the liver. It is noteworthy that upregulation of PPARγ by
GW1929 attenuated the pathological changes in the liver.
The histological scores also showed notable damage in septic
mice 24 h after CLP. Upregulated PPARγ in the CLP+GW19
group exhibited reduced histological damage compared to
that in the CLP and CLP+GW96 groups (P < 0:0001)
(Figures 1(a) and 1(b)). We next determined liver function
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Figure 1: Continued.
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by measuring the levels of total bilirubin (TBIL), aspartate
aminotransferase (AST), and alanine aminotransferase
(ALT). On comparing the levels between control and CLP
groups, the results showed that the levels of TBIL, AST,
and ALT were significantly increased after CLP (P < 0:0001
). The CLP+GW96 group showed the highest increase
among the groups. The upregulation of PPARγ attenuated
this increasing trend (Figures 1(c)–1(e)). Moreover, the mice
were monitored to evaluate their weight changes and 5-day
survival rates (Figures 1(f) and 1(g)). The results showed
that the weight of mice in the CLP+GW19 group was lower
than that of mice in the CLP and CLP+GW96 groups
(P < 0:05). In addition, log-rank test analysis of the 5-day
survival curves for CLP-induced sepsis demonstrated that
the survival rate of the CLP+GW19 group was higher than
that of the CLP and CLP+GW96 groups (P = 0:0112). Based
on these results, we conclude that PPARγ has a protective
effect on liver function during sepsis.

3.2. PPARγ Reduced ROS Injury in Sepsis-Induced Liver
Injury. PPARγ negatively regulates ROS during inflamma-
tion. ROS are crucial components of pyroptosis. To clarify
the inhibitory effect of PPARγ on pyroptosis, we used
DHE staining to measure ROS levels in both HepG2 cells
and liver tissues after LPS or CLP. The DHE fluorescence
intensity was significantly increased after LPS or CLP, espe-
cially in the CLP+GW96 group. Upregulated PPARγ signif-
icantly attenuated this effect (Figures 2(a)–2(d)). 8-OHdG is
a product of oxidative DNA damage caused by ROS. To fur-
ther determine the antioxidative property of PPARγ, we
used immunohistochemically stained 8-OHdG
(Figures 2(e) and 2(f)). The results of IHC staining showed
that in comparison to the CLP and CLP+GW96 groups,
upregulation of PPARγ in the CLP+GW19 group decreased

the number of 8-OHdG-positive cell. Moreover, the levels of
malondialdehyde (MDA) in the CLP group were increased
compared with those in the control group. The CLP
+GW96 group showed a greater increase in MDA levels than
the CLP+GW19 group. The levels of glutathione (GSH) and
superoxide dismutase (SOD) considerably decreased in the
CLP+GW96 group, and this decrease was reversed by the
activation of PPARγ (Figures 2(g) and 2(i)). These results
confirmed that PPARγ reduced sepsis-induced ROS injury
in the mouse liver.

3.3. PPARγ Inhibited ROS Injury via Activation of Nrf2. Nrf2
is the master regulator of ROS balance. To further explore
the protective effect of PPARγ on ROS injury, we used IF
staining to measure the expression of Nrf2 under conditions
of differential PPARγ expression (Figures 3(a) and 3(b)).
Nrf2 expression decreased in HepG2 cells 24 h after LPS
stimulation. GW96 treatment significantly inhibited the acti-
vation of Nrf2 compared to the LPS group. The number of
Nrf2 positive cells was higher in the LPS+GW19 group than
in the LPS and LPS+GW96 groups. In addition, we used IF
staining to measure the expression of Nrf2 in the liver tissues
(Figures 3(c) and 3(d)). These results above were consistent
with those of in vitro experiments, indicating that upregu-
lated PPARγ promoted the expression of Nrf2 to reduce
ROS injury. Western blot analysis was used to measure the
effect of PPARγ on Nrf2 and its downstream protein HO-1
(an antioxidant stress damage protein). The expression of
Nrf2 and HO-1 was reduced significantly in the CLP and
CLP+GW96 groups compared to that in control group,
and this effect was reversed by GW1929 treatment, consis-
tent with the results of IF staining (Figures 3(e) and 3(f)).
Based on these results, we concluded that PPARγ inhibited
ROS injury via activation of the Nrf2 signaling pathway.
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Figure 1: PPARγ reduces sepsis-induced liver injury. Liver tissue and blood samples were collected 24 h after CLP from 5 mice and
subjected to HE staining and liver function analysis. Fifteen mice were fed for 120 h to calculate the survival rate and body weight
changes. (a) Hematoxylin and eosin staining (H&E) of representative liver sections (scale bars: 50μm). (b) Histological score. The levels of
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Figure 2: PPARγ reduces ROS injury in sepsis-induced liver injury. (a, b) Dihydroethidium (DHE) fluorescence staining and fluorescence
intensity of HepG2 cells (scale bars: 50 μm). (c, d) DHE fluorescence staining and fluorescence intensity of the liver (scale bars: 50μm). (e, f)
8-OHdG immunohistochemical staining and the rate of positive cells in the liver (scale bars: 50μm). The levels of (g) malondialdehyde
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control group; #P < 0:01 versus the control group; €P < 0:05 versus the CLP group; $P < 0:01 versus the CLP group; &P < 0:05 versus the
CLP+GW96 group; γ P < 0:01 versus the CLP+GW96 group).
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9Oxidative Medicine and Cellular Longevity



3.4. PPARγ Suppressed Inflammatory Responses and
Pyroptosis in Septic Liver Injury. We next determined the
expression of TXNIP in the livers of septic mice
(Figures 4(a) and 4(b)). TXNIP expression was elevated dur-
ing septic liver injury but decreased after the upregulation of
PPARγ. We then used western blot analysis to measure the
expression of members of the TXNIP/NLRP3 signaling
pathway in vivo. The results showed that the expression of
TXNIP, NLRP3, cleaved caspase-1, apoptosis-associated
speck-like protein (ASC), and mature IL-1β was significantly
increased whereas the expression of Nrf2 was significantly
reduced in the CLP+GW96 and CLP groups compared with
that in the control group. GW1929 treatment effectively pro-
moted the expression of Nrf2 and inhibited the activation of
the TXNIP/NLRP3 signaling pathway (Figures 4(c) and
4(d)). These results confirmed that PPARγ activates Nrf2
to mitigate ROS damage, thereby inhibiting the expression
of the TXNIP/NLRP3 signaling pathway to reduce sepsis-
induced hepatocyte pyroptosis.

To confirm that the protective effect of PPARγ is related
to NLRP3-medited pyroptosis in septic liver injury, we used
IHC staining to determine the activity of the NLRP3 inflam-
masome (Figures 5(a) and 5(b)). Twenty-four hours after

CLP, the expression of NLRP3 was increased compared to
that in the control group. The PPARγ inhibitor group
showed the highest increasing trend among the three groups.
Upregulated PPARγ decreased the expression of NLRP3,
whereas upregulation of both PPARγ and Nrf2 showed the
most obvious effects of inhibition among the groups. Calcu-
lation of the number of NLRP3-positive cells confirmed
these results. We examined the levels of inflammatory fac-
tors in the liver tissue (Figures 5(c)–5(e)). The results
showed that the levels of TNF-α, IL-6, and IL-1β were
increased 24 h after CLP compared with those in the control
group. The CLP+GW96 group showed the highest increase
among the CLP groups. Activation of PPARγ suppressed
the inflammatory responses in the liver during sepsis. Acti-
vation of both PPARγ and Nrf2 showed the most obvious
effects among the groups. We also examined the levels of
the three inflammatory factors in HepG2 and Hep3B cell
supernatants (Figures 5(f)–5(h)), and the results were con-
sistent with those of the in vivo experiments. We then mea-
sured LDH release and cell viability in HepG2 and Hep3B
cells (Figures 5(i) and 5(j)). The results showed that PPARγ
could ameliorate LDH release and improve cell viability
compared to the LPS and LPS+GW96 groups. Activation
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of both PPARγ and Nrf2 showed the most obvious effects
among the groups. Based on these results, we conclude that
PPARγ and Nrf2 activation can alleviate inflammatory
responses and pyroptosis in mouse livers during sepsis.

4. Discussion

Sepsis is an intractable disorder characterized by multiorgan
damage, oxidative stress, inflammatory cytokine stimulation,
and altered circulation, but its pathogenesis remains largely
unclear [22]. Studies have highlighted the important role of
NLRP3-mediated pyroptosis in sepsis [23]. Reducing
sepsis-induced damage by inhibiting pyroptosis is a poten-
tial therapeutic strategy. During sepsis, the liver is a vulner-
able organ, as manifested by cholestasis, and can be damaged
at any stage of sepsis. Septic liver injury often indicates poor
prognosis [24]. Owing to the limited treatment options
available for sepsis, reducing mortality resulting from sepsis
is challenging in clinical practice.

PPARγ is a ligand-activated transcription factor. Activa-
tion of PPARγ modulates the expression of several genes
involved in immunity, inflammation, metabolism, cell prolif-
eration, and cell differentiation [25]. A study showed that
PPARγ agonists reduced the inflammatory response and oxi-
dative stress in amodel of nonalcoholic cirrhotic mice, thereby
reducing liver damage [26]. This study demonstrated a protec-
tive effect of PPARγ against septic liver injury. After CLP, HE
staining showed marked congestion, inflammatory cell infil-
tration, necrosis, and degeneration in the liver tissues. Activa-
tion of PPARγ effectively alleviated liver damage, improved
liver function, and decreased the death rate in septic mice.

ROS play a key role in sepsis-induced injury. Mitochon-
drial damage induced by excessive ROS is a core event in
sepsis-induced liver dysfunction. Studies have shown that
PPARγ protects against hepatic ischemia/reperfusion injury

in mice by inhibiting action of ROS [27]. PPARγ also pro-
tects against burn-induced oxidative injury [28]. In this
study, we observed that PPARγ strongly reduced ROS-
mediated injury in hepatocytes during sepsis both in vivo
and in vitro. DHE staining showed an increase in fluores-
cence intensity after LPS/CLP, particularly in the PPARγ
inhibitor group. MDA is an indicator of the lipid damage
induced by ROS. After CLP, the secretion of MDA was
markedly increased in the PPARγ inhibitor group compared
to the other CLP groups. Furthermore, SOD and GSH are
critical enzymes involved in the defense against ROS. The
secretion of SOD and GSH was significantly decreased in
the PPARγ inhibitor group compared to the CLP group.
Results of IHC staining for 8-OHdG were consistent with
these results. Our data suggest that PPARγ protects against
septic liver damage by reducing ROS-induced injury.

Nrf2 is an intracellular transcription factor that regulates
the expression of a number of genes that encode antioxidant
enzymes to reduce ROS-induced injury. In the acute injury
phase, PPARγ directly restricts tissue damage by stimulating
the Nrf2/ARE axis to neutralize oxidative stress. After evaluat-
ing the expression ofNrf2 and its downstreammolecule HO-1,
we found that their expressionwas suppressed after CLP, espe-
cially following treatment with GW9662. GW1929 treatment
significantly reversed this trend, indicating that PPARγ inhib-
ited ROS injury via activation of the Nrf2 pathway. The effect
was most obvious when both PPARγ and Nrf2 were activated.

High levels of ROS induce NLRP3 expression via TXNIP
activation, indicating that TXNIP acts as a bridge between
ROS and NLRP3-mediated pyroptosis [8]. In lupus nephri-
tis, activation of Nrf2 inhibits gene transcription of the
NLRP3 inflammasome and inhibits the production of IL-
1β, a downstream product. Excessive ROS induces TXNIP
activation. Activated TXNIP directly activates NLRP3
inflammasome and induces pyroptosis. Accumulating

Ce
ll 

de
at

h
(%

 L
D

H
 re

le
as

e)

HepG2 Hep3B
0

20

40

60

⁎#$γ ⁎#$

⁎#$
⁎#$

⁎#

⁎

⁎#

⁎

(i)

Ce
ll 

vi
ab

ili
ty

 (%
 o

f c
on

tr
ol

)

HepG2 Hep3B
0

50

100

150

⁎#$γ ⁎#$⁎#$ ⁎#$

⁎# ⁎#
⁎ ⁎

Control
LPS+GW19
LPS

LPS+GW19+CDDO

LPS+GW96

(j)

Figure 5: PPARγ reduces sepsis-induced liver injury by alleviating inflammatory responses and pyroptosis. (a, b) NLRP3
immunohistochemical staining (scale bars: 50 μm) and the rate of positive cells in the liver. (c–e) Levels of TNF-α, IL-6, and IL-1β in
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evidence indicates that NLRP3-mediated pyroptosis results
in plasma membrane rupture and subsequently in a drastic
release of powerful proinflammatory factors such as IL-1β,
thereby resulting in a hyperinflammatory response to sepsis
[29]. Therefore, we measured the expression of proteins of
the TXNIP/NLRP3 signaling pathway. The data showed a
marked upregulation in the expression levels of TXNIP,
NLRP3, caspase-1, and IL-1β, suggesting that the NLRP3
inflammasome may contribute to liver dysfunction during
sepsis. Notably, activation of the TXNIP/NLRP3 signaling
pathway was markedly attenuated by GW1929 treatment.
The levels of IL-1β, IL-6, and TNF-α were decreased by
treatment with GW1929 indicating that the upregulation of
PPARγ inhibited the NLRP3-mediated inflammatory
responses. In addition, IL-1β, IL-6, and TNF-α levels were
significantly decreased following activation of both PPARγ
and Nrf2. Based on these results, we conclude that PPARγ
protects against septic liver damage by activating Nrf2 and
decreases NLRP3-mdiated pyroptosis by inhibiting ROS-
mediated injury.

The mechanism of septic liver damage is complex and
involves multiple molecular pathways. This study revealed
one possible mechanism of septic liver damage. However,
these findings require further elaborate research and
verification.

5. Conclusion

In conclusion, the current findings demonstrated that the
activation of PPARγ reduced ROS levels and inhibited the
TXNIP/NLRP3 signaling pathway to decrease pyroptosis
and reduce liver damage during sepsis. These findings may
contribute to the development of novel therapeutic agents
for attenuating sepsis-induced liver damage.
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