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For decades, ultrasound images have been widely used in the detection of various diseases due to their high security and efficiency.
However, reading ultrasound images requires years of experience and training. In order to support the diagnosis of clinicians and
reduce the workload of doctors, many ultrasonic computer aided diagnostic systems have been proposed. In recent years, the
success of deep learning in image classification and segmentation has made more and more scholars realize the potential
performance improvement brought by the application of deep learning in ultrasonic computer-aided diagnosis systems. This
study is aimed at applying several machine learning algorithms and develop a machine learning method to diagnose
subcutaneous cyst. Clinical features are extracted from datasets and images of ultrasonography of 132 patients from Hunan
Provincial People’s Hospital in China. All datasets are separated into 70% training and 30% testing. Four kinds of machine
learning algorithms including decision tree (DT), support vector machine (SVM), K-nearest neighbors (KNN), and neural
networks (NN) had been approached to determine the best performance. Compared with all the results from each feature,
SVM achieved the best performance from 91.7% to 100%. Results show that SVM performed the highest accuracy in the
diagnosis of subcutaneous cyst by ultrasonography, which provide a good reference in further application to clinical practice of
ultrasonography of subcutaneous cyst.

1. Introduction

Subcutaneous cyst occurs especially at younger age, espe-
cially in the head, arms, and back in youth. It is a soft or
a plurality of soft or firm balls with diameters ranging
from 1 to approximately 3 cm. Subcutaneous cyst is bur-
ied in the skin or subcutaneous tissue and adheres to the
skin and the base can move. There are small openings on
the skin. When the cyst is pushed, it adheres tightly to
the skin. Small pit appears when it is slightly depressed,
which is the opening of the duct where the gland directly
reaches the skin surface. Some openings are stuffed with
a black pimple-like plug to squeeze out white wax-like
substances [1–3]. The ultrasonic images of superficial epi-
dermoid cyst have certain specificity. The advantages of

ultrasound include high spatial resolution, portability,
convenience, and low cost. It is important to be able to
combine the physical examination results with the
patient’s medical history in ultrasonic examination. In
addition, real-time imaging allows manual compression,
limb movement, muscle contraction, and direct interac-
tion with patients during scanning [4]. By summarizing
and analyzing its acoustic features, it can effectively
improve the correct rate of clinical diagnosis and reduce
misdiagnosis and missed diagnosis [5, 6]. However, one
disadvantage of ultrasound is when the disease occurs in
deeper soft tissues. In these cases, the image resolution
is reduced, and auxiliary information about the mass,
such as physical examination results and medical history,
may be blurred [7].
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Machine learning is one of the branch in artificial intel-
ligence and has been widely used in multidisciplinary
research fields [8, 9], which is related to computer science,
statistics, and information theory [10, 11]. Algorithms are
used to analyze data and try to explore potential patterns
hidden in data to predict new information in machine learn-
ing [8, 12], with high precision, high speed, and convenient
expansion [13, 14]. The main application fields of deep
learning in ultrasound computer-aided diagnosis system
include breast disease diagnosis [15], liver disease diagnosis
[16], fetal ultrasound standard plane detection [17], thyroid
nodule diagnosis [18], and carotid artery ultrasound image
classification [19]. In recent years, machine learning algo-
rithms, such as decision tree (DT), support vector machine
(SVM), K-nearest neighbors (KNN), and neural networks
(NN), have been more and more frequently applied in med-
ical field [20–23].

However, limited relative studies on machine learning in
the diagnosis of subcutaneous cyst based on ultrasonography
have been reported. Thus, the motivation and novelty of this
study were to apply several machine learning algorithms to
diagnose subcutaneous cyst from clinical features extracted
from datasets and images of ultrasonography and find a
powerful alternative method for ultrasonic diagnosis of sub-
cutaneous cysts.

2. Materials and Methods

2.1. Data Acquisition. All datasets in this article are from
Hunan Provincial People’s Hospital in China. There are
133 patients that participated. Each patient has five ultra-
sound images record with 19 clinical features extracted
including gender, age, none blood flow, dotted blood flow,
dot-bar blood flow, rich blood flow, none echo, mixed echo,
low echo, medium echo, high echo, uniform internal echo,
nonuniform internal echo, clear boundary, unclear bound-
ary, regular form, irregular form, strong spot, and changes
of parenchyma echo. Figure 1 illustrates sample ultrasound
images of subcutaneous cyst.

2.2. Data Preparation. A machine learning applied method
is proposed to diagnose subcutaneous cyst in this article.
Clinical features are extracted from datasets and images of
ultrasonography. Figure 2 displays the workflow processes
for the machine learning applied diagnosis method in sev-
eral steps, which are presented in the following:

(1) Extract clinical features from datasets and ultra-
sound images

(2) Allocate feature types: there are two different feature
types in our method, categorical and numerical. To

Figure 1: Sample ultrasound images of subcutaneous cyst.
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Figure 2: Workflow diagram for machine learning applied diagnosis method.
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improve the accuracy of the diagnosis method, we
allocated these features into two types, Table 1 pre-
sents all the features and types

(3) Training algorithms: machine learning algorithms,
such as decision tree (DT), support vector machine
(SVM), K-nearest neighbors (KNN), and neural net-
works (NN), had been approached to determine the
best performance. The result indicated that the best
accurate algorithm is SVM. Feature 1 (gender) and
feature 2 (age) are excluded from target features, as
they are basic information of the patient, they do not
change or are not affected by cysts lesions. Therefore,
the target features in this research are 17 features,
which are from feature 3 to feature 19. In the training
stage, we start from target feature 3, the results indi-
cated that SVM provided the highest accuracy

(4) Testing algorithm: in this stage, the rest 30% of the
datasets is processed by SVM. We use the same tar-
get feature as the previous training. SVM achieves
100% accuracy

(5) Testing target features: each target feature is trained
and tested to validate the reliability of SVM. The rest
target features are from feature 4 to feature 19. We
compared with all the results from each feature,
SVM still achieved the best performance from
91.7% to 100%. This is a significant accuracy in diag-
nosing subcutaneous cyst

Statistical Processing

3. Results

3.1. Training Process. Four different types of machine algo-
rithms are applied. We separated datasets into two parts,
70% for training and 30% for testing. 19 features from 132
patients are computed. Since feature 1 and feature 2 are gen-
der and age, they are general information of patients and will
not be affected by any cyst lesions, and the target features in
this research are from feature 3 to feature 19. Initially, we set
feature 3, none blood flow, as the target feature, and the rest
of the features are attributes. To avoid datasets overfitting,
we use 5 cross-validation folds. After processing the training
by using DT, SVM, KNN, and ANN, the accuracy results are
99.2%, 100%, 92.4%, and 98.5%, respectively. SVM provides
best result for the diagnosis method. Table 2 indicates the
accuracy result for the training process.

3.2. Testing Process. To validate the reliability of the method,
SVM is tested by using the rest 30% of the datasets. The tar-
get features are the same as the previous training, which are
from feature 3 to feature 19. We start setting the target fea-
ture from feature 3. We also use 5 cross validation folds to
avoid datasets overfitting. As shown in Table 3, the testing
results slightly changed to DT (96.2%), SVM (100%), KNN
(95.5%), and ANN (98.5). Comparing with the results,
SVM still achieves 100% accuracy. It is the best algorithm
for the diagnosis method when we set the target feature as
feature 3.

3.3. Training and Testing for Each Target Feature. In the pre-
vious stage, we trained and tested feature 3 as a target fea-
ture, and the result indicated that SVM achieved the best
accuracy. Further training and testing are approached for
each target feature, from feature 4 to feature 19. Table 4 indi-
cates the testing results for 17 target features. In Table 4, the
target features are trained and tested by using DT, SVM,
KNN, and ANN. Comparing with the results in each col-
umn, SVM achieved the best performance (from 91.7% to
100%) for all the target features. The lowest accuracy from
SVM is 91.7% at target feature 19. The reason could be that
the datasets for feature 19 contains noise and uncertainties
that reduces the accuracy from all the algorithms. In that
column, we can find that DT is 87.1%, KNN is 90.9, and
ANN is 86.5. We compare the results, SVM (91.7) is still

Table 2: Machine learning algorithms for training.

Algorithm Accuracy (%)

Decision tree (DT) 99.2

Support vector machine (SVM) 100

K-nearest neighbors (KNN) 92.4

Artificial neural network (ANN) 98.5

Table 3: Machine learning algorithms for testing.

Algorithm Accuracy (%)

Decision tree (DT) 96.2

Support vector machine (SVM) 100

K-nearest neighbors (KNN) 95.5

Artificial neural network (ANN) 98.8

Table 1: 19 features extracted from datasets.

ID Feature Type

1 Gender Categorical

2 Age Numerical

3 None blood flow Categorical

4 Dotted blood flow Categorical

5 Dot-bar blood flow Categorical

6 Rich blood flow Categorical

7 None Echo Categorical

8 Mixed Echo Categorical

9 Low Echo Categorical

10 Medium Echo Categorical

11 High Echo Categorical

12 Uniform internal Echo Categorical

13 Nonuniform internal Echo Categorical

14 Clear boundary Categorical

15 Unclear boundary Categorical

16 Regular form Categorical

17 Irregular form Categorical

18 Strong spot Categorical

19 Changes of parenchyma Echo Categorical
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the best. Figure 3 is the column chart associated with
Table 5. SVM is in orange and is the highest in each column.
In this article, we found a machine learning method with
SVM achieved the significant accuracy (from 91.7 to 100%)
to diagnose subcutaneous cyst in addressing blood flow,
echo, internal echo, boundary, strong spot, and changes of
parenchyma echo.

4. Discussion and Conclusions

In this study, a total of 132 patients from Hunan Provincial
People’s Hospital in China participated. Four different types
of machine algorithms including decision tree (DT), support
vector machine (SVM), K-nearest neighbors (KNN), and
neural networks (NN) in machine learning method are
applied for the diagnose of subcutaneous cyst by ultrasonog-
raphy. Decision tree is an effective ultrasonic image classifi-
cation algorithm. It can learn classification rules from
unordered data [24, 25]. The decision tree algorithm uses
the divide and conquer strategy to divide the search space

of the problem into several subsets. From top to bottom,
each node determines the next node by calculating the
eigenvalue of the input sample. In the leaf node, the final
classification result is given [26]. In the case of small amount
of data and nondiversified eigenvalues, the construction of
decision tree is simple and fast. However, if the data volume
is large and the eigenvalues are large, the complexity of the
decision tree algorithm will be large. Support vector machine
has good performance on both small datasets and large data-
sets. However, with the increase of dataset size, the complex-
ity of support vector machine also increases. At the same
time, the choice of kernel function will also affect the perfor-
mance of support vector machine [27–29]. K-nearest neigh-
bors is a lazy and nonparametric algorithm that has the good
characteristics of being simple and easy to use and has a rea-
sonable accuracy [30].

Our research has limitations. First of all, the training set
data came from the same hospital, and we did not summa-
rize the basic information of patients and cysts. Second, no
matter training or testing datasets, the sample size is
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Figure 3: Column chart of testing results.

Table 5: Testing results for target features.

Accuracy (%) 11 12 13 14 15 16 17 18 19

DT 98.5 95.5 95.5 96.2 98.5 97.7 97.0 85.6 87.1

SVM 99.2 100 100 100 100 100 100 92.9 91.7

KNN 98.5 96.2 96.2 97.7 97.7 90.9 90.2 87.9 90.9

ANN 97.0 99.2 98.5 99.2 99.2 99.2 99.2 83.3 86.4

Table 4: Testing results for target features.

Accuracy (%) 3 4 5 6 7 8 9 10

DT 96.2 97.0 98.5 93.9 98.5 97.0 95.6 98.5

SVM 100 99.2 99.2 99.2 99.2 99.2 98.8 99.2

KNN 95.5 95.5 93.9 94.7 97.0 95.5 90.2 97.0

ANN 98.8 97.7 96.2 97.0 98.5 97.7 97.7 98.5
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relatively small. Therefore, these results need to be validated
in a larger cohort to determine the value of our model in
clinical practice.

All datasets are separated into two parts, which is 70%
for training and 30% for testing. Results show that SVM
achieved the best performance (from 91.7% to 100%) for
all the target features. The machine learning method devel-
oped in this study can help doctors diagnose the ultrasonic
images of patients with subcutaneous cysts more accurately.
However, other prospective cohort studies should be con-
ducted externally.
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