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Maternal Inflammation Exaggerates Offspring Susceptibility to
Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2
Pathway Activation
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The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal
inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to
investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which
it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and
18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and
subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were
assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related
proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and
inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However,
maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological
deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these
effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In
conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the
underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a
theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.

1. Introduction

Stroke represents the second leading cause of morbidity,
mortality, and health care costs worldwide [1]. Stroke is usu-
ally referred to as a condition caused by the occlusion or
hemorrhage of vessels supplying the brain with blood [2].

Ischemic stroke accounts for approximately 85% of all
strokes [3]. Thrombolytic therapy is one of the most effective
treatments for acute ischemic stroke, and it can promote cell
survival by restoring the blood supply to the ischemic area
[4, 5]. However, the restoration of blood flow and oxygena-
tion results in an exacerbation of tissue injury and a
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profound inflammatory response (reperfusion injury) [6].
Therefore, elucidating the molecular mechanism of cerebral
ischemia–reperfusion (I/R) injury and the development of a
novel drug target are of great importance [7, 8].

During the early period of brain development, abnor-
mally elevated levels of proinflammatory cytokines likely
derail neurodevelopment, leading to brain dysfunction or
latent susceptibility to inflammation-triggered brain injury
later in life [9] and even resulting in higher susceptibility
to brain diseases, such as schizophrenia. For example, fetal
cortical neurons exposed to high concentrations of interleu-
kin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α)
experience disrupted dendritic development [10]. Longitudi-
nal studies in rat and mouse prenatal immune models
showed that prenatal inflammation-induced behavioral and
pharmacological abnormalities were progressive and only
shown during adolescence and adulthood in offspring
[11–14]. Maternal infection and inflammation can cause
neurological disorders and abnormal brain development
through a disrupted fetal microenvironment. Maternal
inflammatory exposure, an altered microenvironment, and
subsequent neuronal injury have been considered to be the
pathophysiologic basis for neurodevelopmental disorders
[15–18]. Studies have shown that exacerbated maternal
inflammatory responses confer susceptibility to preeclampsia
[19]. However, it is not clear whether maternal inflammatory
exposure can influence offspring susceptibility to cerebral I/R
injury. If yes, what are the mechanisms involved?

The pathophysiology of cerebral I/R injury is very com-
plex and involves multiple mechanisms, including bursts of
reactive oxygen species, calcium overload, excitotoxicity,
and neuroinflammation [20–22]. Oxidative stress and
inflammatory reactions stimulate further release of inflam-
matory factors in cerebral I/R injury [23–25]. Moreover,
suppression of oxidative stress and excessive inflammation
is generally effective at alleviating cerebral I/R injury
[26–28]. Cyclooxygenase-2 (COX-2) upregulation is a hall-
mark of inflammation, and the inhibition of COX-2 might
be effective in inhibiting COX-2-dependent prostanoids
induced by inflammatory stimuli [29–31]. Studies indicate
that the expression of COX precedes the appearance of
inflammatory factors in neurons and glial cells after brain
injury and secretes inflammatory factors to cause an inflam-
matory cascade [32]. Therefore, activation of COX may be
closely related to cerebral I/R injury. Prostaglandin D2
(PGD2), one of the COX-2-mediated metabolites of arachi-
donic acid, exerts physiological effects through the D-type
prostanoid receptor (DP1 and DP2) [33–35]. There is accu-
mulating evidence that inflammatory response cascades are
stimulated, leading to further apoptosis and necrosis of cells
[36]. Inflammation and apoptosis are involved in the mech-
anisms of cerebral I/R injury [7, 37–39].

In the present study, we first established a “double-hit”
model, which consisted of maternal inflammation induced
by lipopolysaccharide (LPS) and cerebral I/R injury in off-
spring. Second, we observed the effect of maternal LPS expo-
sure on susceptibility to cerebral I/R injury in offspring rats.
Next, we observed the effect of maternal LPS exposure on
susceptibility to cerebral I/R injury in primary neurons of

offspring and further administered COX-2 inhibitor, DP1
agonist/antagonist, and DP2 agonist/antagonist separately
to preliminarily assess the mechanisms of increased suscep-
tibility from the COX-2/PGD2/DP pathway in primary neu-
rons of offspring.

2. Materials and Methods

2.1. Animals. A total of 30 pregnant SD rats were provided
by the Laboratory Animal Centre of Chongqing Medical
University (SCXK (Chongqing) 2018-0003). Pups were gen-
erated by SD pregnant rats. All rats were housed in separate
cages under a 12-h light/dark cycle at 22± 2°C and 50 ± 10%
humidity with food and water ad libitum. This study was
approved by the Ethics Committee of Chongqing Medical
University, and all animal handling and treatment proce-
dures were in accordance with the Health’s Guide for the
Care and Use of Laboratory Animals.

2.2. Animal Model of Maternal Intraperitoneal Administration
of LPS. The model was established as previously described
[40–42]. The rats were injected with LPS (Escherichia coli,
serotype 055: B5; Sigma–Aldrich, St Louis, MO, USA)
(300μg/kg, intraperitoneally) at gestational Days 11, 14 and 18.

2.3. Middle Cerebral Artery Occlusion and Reperfusion
(MCAO/R) Model. Offspring adult male rats were subjected
to MCAO/R on postnatal day 60 (220-250g, n = 24). The
model was established as previously described [43]. The right
common carotid artery of rats was inserted with a 2 cm nylon
filament until it obstructed the middle cerebral artery. After
90min, the filament was withdrawn and reperfused for 24h.

2.4. Rat Primary Neuron Culture. Primary neuron culture
was performed as described previously with slight modifica-
tions [44]. Primary neurons were obtained from postnatal
day 0 SD rats. The hippocampus and cortices were isolated
and immersed in PSB buffer (Beijing Dingguo Biotechnol-
ogy Co., Ltd., China). Cells were cultured in neurobasal
medium (Gibco, USA) supplemented with 2% B-27 supple-
ment (Gibco, USA) at 37°C. The small tissue mass and dead
cells were removed by changing the culture medium 4-6 h
after seeding. The neuron cultures were used for subsequent
experiments to identify the purity of neurons after 7 d.

2.5. Oxygen-Glucose Deprivation and Reoxygenation (OGD/
R) Model. An OGD/R model was established in rat primary
neurons. The medium was replaced with glucose-free
DMEM (Gibco, Gaithersburg, MD, USA). Subsequently,
the primary neurons were transferred to an anaerobic incu-
bator equilibrated (1% O2, 94% N2, and 5% CO2) for 2 h at
37°C. After 2 h, the medium was replaced with neurobasal
medium supplemented with 2% B-27 and returned to a nor-
moxic incubator (95% O2 and 5% CO2) for 24 h at 37°C.

2.6. Experimental Grouping and Treatment. Experiment 1 is
as follows: To observe the effect of maternal LPS exposure
on the susceptibility to cerebral I/R injury in offspring rats,
pups were randomized into 4 groups. The N+ sham group
is as follows: maternal intraperitoneal saline injections and
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pups subjected to sham operation. The LPS+ sham group is
as follows: maternal intraperitoneal LPS injections and pups
subjected to sham operation. The N+MCAO/R group is as
follows: maternal intraperitoneal saline injections and pups
subjected to MCAO/R. The LPS+MCAO/R group is as fol-
lows: maternal intraperitoneal LPS injections and pups sub-
jected to MCAO/R, n = 12 in each group.

Experiment 2 is as follows: to observe the effect of cele-
coxib on the susceptibility to OGD/R in primary neurons of
offspring treated with prenatal LPS, the primary neurons of
offspring were randomized into 7 groups. The N+N group
is as follows: maternal intraperitoneal saline injections and
offspring primary neuron cultures. The LPS+N group is as
follows: maternal intraperitoneal LPS injections and offspring
primary neuron cultures. The N+OGD/R group is as follows:
maternal intraperitoneal saline injections and OGD/R-treated
offspring primary neurons. LPS+OGD/R is as follows:
maternal intraperitoneal LPS injections and OGD/R-treated
offspring primary neurons. The LPS+N+celecoxib group is
as follows: maternal intraperitoneal LPS injections and off-
spring primary neuron cultures administered celecoxib. The
N+OGD/R+celecoxib group is as follows: maternal intraper-
itoneal saline injections and OGD/R/celecoxib-treated off-
spring primary neurons. The LPS+OGD/R+celecoxib
group is as follows: maternal intraperitoneal LPS injections
and OGD/R/celecoxib-treated offspring primary neurons.

Experiment 3 is as follows: to observe the effect of DP1
agonist/antagonist or DP2 agonist/antagonist on the suscepti-
bility to OGD/R in primary neurons of offspring treated with
prenatal LPS, the offspring primary neurons were randomized
into 6 groups. The LPS+N+BW245C/BWA868C/DK-
PGD2/AZD1981 group is as follows: maternal intraperitoneal
LPS injections and offspring primary neurons administered
DP1 agonists, DP1 antagonists, DP2 agonists, and DP2 antago-
nists, respectively. The N+OGD/R+BW245C/BWA868C/
DK-PGD2/AZD1981 group is as follows: maternal intraperi-
toneal saline injections and OGD/R-treated offspring primary
neurons administered DP1 agonists, DP1 antagonists, DP2
agonists, and DP2 antagonists, respectively. The LPS+OGD/
R+BW245C/BWA868C/DK-PGD2/AZD1981 group is as
follows: maternal intraperitoneal LPS injections and OGD/R-
treated offspring primary neurons administered DP1 agonists,
DP1 antagonists, DP2 agonists, and DP2 antagonists, respec-
tively. The N+N group, LPS+N group, N+OGD/R group,
and LPS+OGD/R group were treated in the same manner
as in experiment 2.

2.7. Neurological Deficit Assessment. A modified neurological
grading score was used to evaluate the neurological test, n
= 12 in each group: 0: no deficit and normal spontaneous
movements, 1: left front leg was flexed but not circling clock-
wise, 2: left front leg was flexed and spontaneously circling
clockwise, 3: spin clockwise longitudinally, and 4: uncon-
sciousness and no spontaneous movement.

2.8. Cerebral Infarction Volume Assessment. Triphenyltetra-
zolium chloride (TTC) staining, as previously described
[45], was used to evaluate cerebral infarction volume, n = 3
in each group. The brains were rapidly extracted and cut

into five 2mm coronal slices and then placed in 2% TTC
solution (Sigma–Aldrich, St. Louis, MO, USA) for 20min
at 37°C and fixed with 4% paraformaldehyde. Cerebral
infarction volume was analyzed by ImageJ software (NIH,
Baltimore, MD, USA).

2.9. Histopathologic Examination. Hematoxylin and eosin
(HE) staining, as previously described [46], was used to eval-
uate histopathologic damage in the cortex and hippocam-
pus, n = 3 in each group. Rats were anesthetized with 5%
sodium pentobarbital and transcardially perfused with
250mL of PBS (0.1M; pH7.4) containing heparin followed
by 4% paraformaldehyde. After being sacrificed, the brains
of the rats were isolated and blocked in 4% paraformalde-
hyde. After paraffin embedding was performed, brain sec-
tions (5μm) were stained with HE. Normal cells showed
intact and clear nuclear membranes and nucleoli, and dam-
aged cells showed nuclear pyknosis, cellular vacuolization,
and disordered arrangement. The neuronal damage rate
was calculated as the number of damaged cells divided by
the total number multiplied by 100.

2.10. Neuronal Viability Measurement. A Cell Counting Kit-
8 (CCK-8, Sigma–Aldrich, USA) assay was performed to
determine cell viability. Ten microliters of CCK-8 solution
was added to each well, which was then incubated at 37°C
for 60min without light. The optical density (OD) values
of each well were measured at 450nm by using an
enzyme-linked immunoassay reader (BioTek, USA).

2.11. Neuronal Damage Measurement. Lactate dehydrogenase
(LDH) leakage rate (Beyotime, China) assays were performed
to determine neuronal damage and follow the operation steps
of the LDH test kit instructions. The optical density (OD)
values of each well were measured at 490nm by using an
enzyme-linked immunoassay reader (BioTek, USA).

2.12. Neuronal Apoptosis Measurement. Flow cytometry
analysis was performed to determine neuronal apoptosis and
followed the operation steps of the FITC-Annexin V Apopto-
sis Detection Kit (BD Pharmingen, San Diego, CA, USA).

TUNEL staining was performed by following the opera-
tion steps of the TUNEL fluorescence FITC kit (Roche, Indi-
anapolis, IN) to determine neuronal apoptosis. The nuclei of
primary neurons were stained with DAPI (Sigma–Aldrich).
TUNEL-positive cells were observed and captured with a
fluorescence microscope (Nikon, Inc., Japan).

2.13. Oxidative Stress Measurement. The oxidative stress
level was evaluated by the measurement of malondialde-
hyde (MDA) content and superoxide dismutase (SOD)
activity and was conducted according to the operation
steps of relevant detection kits (Jiancheng Bioengineering
Ltd., Nanjing, China).

2.14. Inflammation Measurement. Inflammation levels in
brain tissue homogenates, cell supernatants, and culture
medium were evaluated by the measurement of PGD2, TNF-
α, IL-1β, and IL-6 following the operation steps of ELISA kits
(Jiangsu Mei Biao Biological Technology Co., Ltd.)
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2.15. Protein Expression Measurement. Total protein samples
were extracted from the cortex and hippocampus using
RIPA lysis buffer. Protein concentrations were detected by
using a BCA Protein Assay Kit (Beyotime, China). Proteins
were separated and transferred onto a polyvinylidene fluo-
ride (PVDF) membrane (Millipore, USA). After blocking
with 5% bovine serum albumin (BSA), the membrane was
incubated overnight at 4°C with the primary antibody. Sub-
sequently, the HRP-conjugated secondary antibodies (1:
1000, Proteintech, China) were incubated with the mem-
branes for 1 h at room temperature. Finally, the levels of tar-
get proteins were visualized with a gel imaging apparatus
(Bio–Rad, USA). After three washes with TBST, the mem-
branes were incubated with HRP-conjugated secondary
antibodies (1: 1000, Proteintech, China) for 1 hour at RT
and were then washed with TBST an additional 3 times.
Finally, the expression of proteins was visualized with a gel
imaging apparatus (Bio–Rad, USA). The primary antibodies
used were as follows: antibody against COX-2 (1: 1000,
Abcam, UK), antibody against DP1 (1: 1000, Abcam, UK),
antibody against DP2 (1: 1000, Santa, UK), antibody against
caspase-3 (1: 1000, Abcam, UK), antibody against cleaved
caspase-3 (1: 1000, Cell Signaling Technology, UK), anti-
body against caspase-9 (1: 1000, Santa, USA), antibody
against Bcl-2 (1: 2000, Abcam, UK), and β-actin (1: 3000,
Proteintech, USA).

2.16. Statistical Analysis. All data are expressed as the
mean ± SD. GraphPad Prism 6 (GraphPad Software, USA)
was used for statistical analysis. One-way analysis of vari-
ance (ANOVA) followed by Tukey’s test was used to com-
pare multiple groups, and a t -test was used to compare
two groups. Data with nonnormal distributions were ana-
lyzed by a nonparametric test. p < 0:05 indicated a signifi-
cant difference.

3. Results

3.1. Maternal LPS Exposure Increased Neurological Deficit
and Cerebral Infarction Volume in MCAO/R Offspring
Rats. As shown in Figures 1(a) and 1(b), the neurologic def-
icit scores and cerebral infarction volume were not signifi-
cantly different between the LPS+ sham group and the
N+ sham group (p > 0:05). The neurological deficit scores
(p < 0:001) and cerebral infarction volume (p < 0:001) were
significantly increased in the N+MCAO/R group and the
LPS+MCAO/R group compared with the N+ sham group
and the LPS+ sham group. The neurological deficit scores
and cerebral infarction volume were significantly increased
in the LPS+MCAO/R group compared with the
N+MCAO/R group (p < 0:001).

3.2. Maternal LPS Exposure Increased Histopathologic
Damage in MCAO/R Offspring Rats. The histopathologic
damage in the cortex and hippocampus is presented in
Figure 1(c). The cells showed significant nuclear pyknosis,
vacuolization, and disordered arrangement in the
LPS+ sham group compared with the N+ sham group
(p < 0:05 and p < 0:01). The cells showed significant nuclear

pyknosis, vacuolization, and disordered arrangement in the
N+MCAO/R group and LPS+MCAO/R group compared
with the N+ sham group and the LPS+ sham group
(p < 0:001). The cells showed significant damage in the
LPS+MCAO/R group compared with the N+MCAO/R
group (p < 0:05 and p < 0:001).

3.3. Maternal LPS Exposure Increased Oxidative Stress and
Neuroinflammation in MCAO/R Offspring Rats. The results
in the cortex and hippocampus are presented in
Figures 2(a)–2(f). The activity of SOD was not significantly
different (p > 0:05), but the levels of MDA (p < 0:01 and
p < 0:001) and PGD2, TNF-α, IL-1β, and IL-6 (p < 0:05,
p < 0:01, and p < 0:001) were significantly increased in rats
in the LPS+ sham group compared with those of rats in
the N+ sham group. SOD activity (p < 0:05 and p < 0:01)
significantly decreased, but levels of MDA (p < 0:05, p <
0:01 and p < 0:001) and levels of PGD2, TNF-α, IL-1β,
and IL-6 (p < 0:05, p < 0:01, and p < 0:001) were signifi-
cantly increased in rats in the N+MCAO/R group and
the LPS+MCAO/R group compared with those of rats
in the N+ sham group and the LPS+ sham group. The
activity of SOD (p < 0:05) was significantly decreased, but
the levels of MDA (p < 0:05) and PGD2, TNF-α, IL-1β,
and IL-6 (p < 0:05, p < 0:01, and p < 0:001) were signifi-
cantly increased in rats in the LPS+MCAO/R group com-
pared with those of rats in the N+MCAO/R group.

3.4. Maternal LPS Exposure Increased the Expression of
COX-2, DP1, DP2, Caspase-3, Cleaved Caspase-3, Caspase-9,
and Bcl-2 in MCAO/R Offspring Rats. The results in the cor-
tex and hippocampus are presented in Figures 3(a) and 3(b).
The expression of COX-2, DP2, caspase-3, cleaved caspase-3,
and caspase-9 was significantly increased, but the expression
of DP1 and Bcl-2 was significantly decreased in rats in the
LPS+ sham group compared with that of rats in the
N+ sham group (p < 0:05, p < 0:01, and p < 0:001). The
expression of COX-2, DP2, caspase-3, cleaved caspase-3,
and caspase-9 was significantly increased, but the expression
of DP1 and Bcl-2 was significantly decreased in rats in the
N+MCAO/R group and the LPS+MCAO/R group com-
pared with that of rats in the N+ sham group and the
LPS+ sham group (p < 0:05, p < 0:01, and p < 0:001). The
expression of COX-2, DP2, caspase-3, cleaved caspase-3,
and caspase-9 was significantly increased, but the expression
of DP1 and Bcl-2 was significantly decreased in the
LPS+MCAO/R group compared with the N+MCAO/R
group (p < 0:05, p < 0:01, and p < 0:001).

3.5. Celecoxib Increased Neuronal Viability and Decreased
Neuronal Damage and Neuronal Apoptosis in OGD/R
Offspring Primary Neurons Treated with Prenatal LPS. Pri-
mary neuron morphological characteristics were observed
after 1, 3, 5, and 7 days of culture, and purity, identified by
NeuN immunofluorescence staining after 7 days of culture,
was greater than 95% (Figure S1A-B). To determine the
most efficient treatment time using OGD/R, the neuronal
viability and neuronal damage of primary neurons
subjected to 2 or 3 h of OGD followed by 24 h of
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reoxygenation were evaluated. The neuronal viability was
significantly decreased (p < 0:001), but neuronal damage
was significantly increased in the N+OGD/R (2 h) group
and the N+OGD/R (3 h) group (p < 0:001) compared with
the N+N group (Figure S2A-B). Moreover, neuronal
viability was lower in the N+OGD/R (3 h) group than in
the N+OGD/R (2 h) group (Figure S2A-B). Primary
neurons subjected to OGD/R for 2 h were chosen for the
follow-up experiments. No cell toxicity was observed at
celecoxib concentrations ranging from 1 × 10−12 M to 1 ×
10−6 M (p > 0:05) (Figure 4(a)). Celecoxib at a
concentration of 1 × 10−9 M significantly increased
neuronal viability (p < 0:01) but significantly decreased
neuronal damage in OGD/R-treated primary neurons
(p < 0:001) (Figures 4(b) and 4(c)). Celecoxib (1 × 10−9M)
was chosen for the follow-up experiments.

As shown in Figures 4(d), 4(e), and 5(a), the neuronal
viability (p < 0:01) was significantly decreased, but neuro-
nal damage (p < 0:001) and the number of TUNEL-
positive cells (p < 0:05) were significantly increased in the
LPS+N group compared with the N+N group. The neu-

ronal viability (p < 0:001) was significantly decreased, but
neuronal damage (p < 0:001) and the number of
TUNEL-positive cells (p < 0:001) were significantly
increased in rats in the N+OGD/R group and rats in
LPS+OGD/R group compared with that of rats in the
N+N group and the LPS+N group. The neuronal dam-
age (p < 0:001) and the number of TUNEL-positive cells
(p < 0:01) were significantly increased in rats in the
LPS+OGD/R group compared with that of rats in the
N+OGD/R group.

The neuronal viability (p < 0:01) was significantly
increased, but neuronal damage (p > 0:05) and the number of
TUNEL-positive cells (p > 0:05) had no statistical difference in
the LPS+N+celecoxib group compared with the LPS+N
group. The neuronal viability (p > 0:05) had no statistical differ-
ence, but neuronal damage (p < 0:001) and the number of
TUNEL-positive cells (p < 0:05) were significantly decreased
in the N+OGD/R+celecoxib group compared with the
N+OGD/R group. The neuronal viability was significantly
increased (p < 0:05), but neuronal damage (p < 0:001) and the
number of TUNEL-positive cells (p < 0:01) were significantly
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Figure 1: Effect of maternal LPS exposure on neurological deficit scores, cerebral infarction volume, and histopathologic damage in MCAO/
R offspring rats. (a) Maternal LPS exposure increased neurological deficits, n = 12. (b) Maternal LPS exposure increased cerebral infarction
volume, n = 3. (c) Maternal LPS exposure increased histopathologic damage in the hippocampus and cortex, n = 3. Scale bar = 50 μm and
10μm (×200 and ×400). Data are expressed as the mean ± SD, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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decreased in the LPS+OGD/R+celecoxib group compared
with the LPS+OGD/R group.

Flow cytometry assays and western blotting showed the
same findings as the CCK8 and LDH leakage rate assays
and TUNEL staining. The results of the flow cytometry assay
are presented in Figure 5(b). Prenatal LPS exposure and off-
spring primary neurons exposed to OGD/R significantly
increased neuronal apoptosis, but celecoxib significantly
decreased neuronal apoptosis. As shown in Figure 5(c), the
expression of caspase-3, cleaved caspase-3, and caspase-9
(p < 0:05 and p < 0:01) was significantly increased in the
LPS+N group compared with the N+N group. The expres-
sion of caspase-3, cleaved caspase-3, and caspase-9 was sig-
nificantly increased, but Bcl-2 was significantly decreased
in the N+OGD/R group and LPS+OGD/R group com-
pared with the N+N group and the LPS+N group
(p < 0:05 and p < 0:001). The expression of caspase-3,
cleaved caspase-3, and caspase-9 was significantly increased
in the LPS+OGD/R group compared with the N+OGD/R
group (p < 0:05, p < 0:01, and p<0.001). The expression of
caspase-3 was significantly increased, but Bcl-2 was signifi-

cantly decreased in the LPS+N+ celecoxib group compared
with the LPS+N group (p < 0:01 and p < 0:001). The expres-
sion of caspase-3, cleaved caspase-3, and caspase-9 was sig-
nificantly decreased, but Bcl-2 was significantly increased
(p < 0:05, p < 0:01, and p < 0:001) in the N+OGD/R+ cele-
coxib group compared with the N+OGD/R group. The
expression of caspase-3, cleaved caspase-3, and caspase-9
was significantly decreased in the LPS+OGD/R+ celecoxib
group compared with the LPS+OGD/R group (p < 0:05
and p < 0:001).

3.6. Celecoxib Inhibited Oxidative Stress and
Neuroinflammation in OGD/R Offspring Primary Neurons
Treated with Prenatal LPS. As shown in Figures 6(a)–6(f),
SOD activity (p < 0:001) was significantly decreased, but
MDA levels (p < 0:05) and levels of PGD2, TNF-α, IL-1β,
and IL-6 (p < 0:01 and p < 0:001) were significantly
increased in the LPS+N group compared with the N+N
group. SOD activity (p < 0:001) was significantly decreased,
but MDA levels (p < 0:001) and levels of PGD2, TNF-α,
IL-1β, and IL-6 (p < 0:01 and p < 0:001) were significantly
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Figure 2: Effect of maternal LPS exposure on oxidative stress and inflammation in the hippocampus and cortex of MCAO/R offspring rats.
(a, b) Maternal LPS exposure decreased SOD activity but increased MDA content, n = 6. (c)–(f) Maternal LPS exposure increased the levels
of IL-1β, IL-6, TNF-α, and PGD2, n = 6. Data are expressed as the mean ± SD, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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increased in the N+OGD/R group and the LPS+OGD/R
group compared with the N+N group and LPS+N group.
SOD activity (p < 0:05) was significantly decreased, but
MDA levels (p < 0:01) and levels of PGD2, TNF-α, IL-1β,
and IL-6 (p < 0:05, p < 0:01, and p < 0:001) were significantly
increased in the LPS+OGD/R group compared with the
N+OGD/R group. SOD activity (p < 0:05) was significantly
increased, but MDA levels (p < 0:01) and levels of PGD2,
TNF-α, IL-1β, and IL-6 (p < 0:05 and p < 0:01) were signifi-
cantly decreased in the LPS+N+ celecoxib group compared
with the LPS+N group. SOD activity (p < 0:001) was signif-
icantly increased, but MDA levels (p < 0:001) and levels of
PGD2, TNF-α, IL-1β, and IL-6 (p < 0:05, p < 0:01, and p <
0:001) were significantly decreased in the N+OGD/R+ cele-
coxib group compared with the N+OGD/R group. SOD
activity (p < 0:001) was significantly increased, but MDA
levels (p < 0:001) and levels of PGD2, TNF-α, IL-1β and
IL-6 (p < 0:05, p < 0:01, and p < 0:001) were significantly

decreased in the LPS+OGD/R+ celecoxib group compared
with the LPS+OGD/R group.

3.7. Celecoxib Downregulated COX-2/DP1-2 Signaling in
OGD/R Offspring Primary Neurons Treated with Prenatal
LPS. As shown in Figure 5(c), the expression of COX-2,
DP1, and DP2 was significantly increased in the LPS+N
group compared with the N+N group (p < 0:001). The
expression of COX-2, DP1, and DP2 was significantly
increased in the N+OGD/R group and LPS+OGD/R group
compared with the N+N group and the LPS+N group
(p < 0:01 and p < 0:001). The expression of COX-2, DP1,
and DP2 was significantly increased in the LPS+OGD/R
group compared with the N+OGD/R group (p < 0:001).
The expression of COX-2, DP1, and DP2 was significantly
decreased in the LPS+N+celecoxib group compared with
the LPS+N group (p < 0:01). The expression of COX-2,
DP1, and DP2 was significantly decreased in the N+OGD/
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Figure 3: Effect of maternal LPS exposure on the expression of COX-2, DP1, DP2, caspase-3, cleaved caspase-3, caspase-9, and Bcl-2 in the
hippocampus and cortex of MCAO/R offspring rats. (a) Maternal LPS exposure increased the expression of COX-2, DP2, caspase-3, cleaved
caspase-3, and caspase-9 but decreased DP1 and Bcl-2 in the hippocampus. (b) Maternal LPS exposure increased the expression of COX-2,
DP2, caspase-3, cleaved caspase-3, and caspase-9 but decreased DP1 and Bcl-2 in the cortex. Data are expressed as the mean ± SD, n = 4.
∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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R+ celecoxib group compared with the N+OGD/R group
(p < 0:01 and p < 0:001). The expression of COX-2, DP1,
and DP2 was significantly decreased in the LPS+OGD/
R+ celecoxib group compared with the LPS+OGD/R group
(p < 0:01 and p < 0:001).

3.8. DP1 Increased Neuronal Viability and Decreased
Neuronal Damage and Neuronal Apoptosis, and DP2
Decreased Neuronal Viability and Increased Neuronal
Damage and Neuronal Apoptosis in OGD/R Offspring
Primary Neurons Treated with Prenatal LPS. No toxicity
was observed at concentrations ranging from 1 × 10−5 to 1
× 10−9M DP1 agonist, DP1 antagonist, DP2 agonist, and
DP2 antagonist, as shown in Figure 7(a). A concentration
of 10−5M for DP1 agonist/antagonist and DP2 agonist/
antagonist was chosen for the follow-up experiments.

As shown in Figures 7(b) and 7(c), the neuronal viabil-
ity (p < 0:01 and p < 0:001) was significantly decreased, but
neuronal damage (p < 0:01) was significantly increased in
the LPS+N group compared with the N+N group. The
neuronal viability (p < 0:001) was significantly decreased,
but neuronal damage (p < 0:001) was significantly
increased in rats in the N+OGD/R group and
LPS+OGD/R group compared with that of rats in the
N+N group and the LPS+N group. The neuronal viabil-
ity (p < 0:05 and p < 0:01) was significantly decreased, but
neuronal damage (p < 0:05 and p < 0:01) was significantly
increased in the LPS+OGD/R group compared with the
N+OGD/R group. The DP1 agonist (BW245C) and DP2
antagonist (AZD1981) significantly increased neuronal via-
bility (p < 0:001) but significantly decreased neuronal dam-
age (p < 0:001). DP1 antagonist (BWA868C) and DP2
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Figure 4: Effect of celecoxib on neuronal viability and neuronal damage in OGD/R offspring primary neurons treated with prenatal LPS. (a)
No toxicity was observed at a celecoxib concentration of less than 1 × 10−9 M. (b, c) Celecoxib (concentrations less than 1 nM) increased
neuronal viability but decreased neuronal damage in OGD/R-treated primary neurons. (d, e) Celecoxib increased neuronal viability but
decreased neuronal damage in OGD/R primary neurons treated with prenatal LPS injection. Data are expressed as the mean ± SD, n = 10
. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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agonist (DK-PGD2) significantly decreased neuronal via-
bility (p < 0:05) but significantly increased neuronal dam-
age (p < 0:01).

Flow cytometry assays showed that prenatal LPS expo-
sure and offspring primary neurons exposed to OGD/R sig-
nificantly increased neuronal apoptosis. DP1 agonists
(BW245C) and DP2 antagonist (AZD1981) significantly
decreased neuronal apoptosis, while DP1 antagonist
(BWA868C) and DP2 agonists (DK-PGD2) significantly
increased neuronal apoptosis (Figure 7(d)).

4. Discussion

Epidemiologic and experimental findings implicate maternal
infection/inflammation in the etiology of brain injury in pre-
term newborns [47]. Inflammation is a key factor in the link

between infections during pregnancy and neurodevelop-
mental disorders [48]. Here, our purpose was to assess the
effect of maternal inflammation on susceptibility to cerebral
I/R injury in offspring and further reveal whether the mech-
anism is related to the COX-2/PGD2/DP pathway.

It is well known that LPS is effective in inducing an
inflammatory response; this concept is usually applied in
animal models to induce systemic inflammation [49, 50].
Abundant evidence indicates that maternal LPS exposure
promoted increased proinflammatory cytokines in the fetal
brain [51, 52]. These neuroinflammatory mediators can acti-
vate microglia, leading to neuronal excitation or neuronal
loss [53]. Preterm newborns exposed to intrauterine inflam-
mation are at an increased risk of neurodevelopmental dis-
orders [54–57]. Our results showed that neurological
deficit scores and cerebral infarction did not differ
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Figure 5: Effect of celecoxib on neuronal apoptosis and the COX-2 pathway in OGD/R offspring primary neurons treated with prenatal
LPS. (a) Celecoxib inhibited neuronal apoptosis detected by TUNEL staining, n = 3. Scale bar = 50 μm. (b) Celecoxib inhibited neuronal
apoptosis detected by flow cytometry. (c) Expression of COX-2, DP1, DP2, caspase-3, cleaved caspase-3, caspase-9, and Bcl-2 detected by
western blotting, n = 4. Data are expressed as the mean ± SD. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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significantly in offspring rats under maternal LPS exposure
but significantly increased the inflammatory response in off-
spring rats and offspring primary neurons. The precise
molecular mechanism underlying brain and behavioral dis-
orders induced by fetal brain inflammation remains poorly
understood. However, interestingly, peripheral and central
inflammation displayed signs of activation earlier than
behavioral and pharmacological impairments related to
schizophrenia in models of maternal immunity [58–61],
and the change in inflammation may not necessarily be con-
verted to significant behavioral disorders [9].

Oxidative stress can accelerate inflammation directly and
indirectly, which further increases oxidative stress [62]. In
the elevated inflammation, we observed that maternal LPS
exposure aggravated oxidative stress in the hippocampus
and cortex of offspring rats and offspring primary neurons.
Apoptosis is inextricably linked with excessive inflammatory
cascades and oxidative stress [63]. In our study, we observed
that in both offspring rats and offspring primary neurons,
maternal LPS exposure increased the level of neuronal apo-
ptosis but decreased the expression of antiapoptotic
proteins.

The fetal tissues and organs in the sensitive period of
development show permanent or programming changes
in their structure and function because of the adverse
intrauterine environment. These changes might signifi-

cantly increase offspring susceptibility to a variety of
chronic diseases, such as metabolic syndrome, fatty liver,
and depressive disorder. The development processes of
these diseases are accompanied by inflammatory and
immune changes [64, 65]. Early exposure to infection
and/or inflammation might induce underlying neuroin-
flammatory disorders, and these abnormalities could result
in progressive disease due to additional exposure to envi-
ronmental stimuli during postnatal life [66]. This is in
good agreement with a “double-hit” model, indicating that
the etiologies of diseases might be involved in multiple
environments during the different phases of brain develop-
ment [67–69]. Our research demonstrated that compared
to MCAO/R or OGD/R treatment alone, maternal LPS
exposure exacerbated neurologic deficits and cerebral
infarction volume in MCAO/R offspring rats and aggra-
vated the inflammatory response, oxidative stress, and
apoptosis in MCAO/R offspring rats and OGD/R offspring
primary neurons. These results indicated that maternal
inflammation increased offspring susceptibility to cerebral
I/R injury.

COX-2 is a critical enzyme for exacerbating inflamma-
tion by catalyzing PGs, and the expression of COX-2, which
is closely involved in cerebral I/R injury, was observed in our
preliminary experiments [70]. Thus, we observed whether
the COX-2 pathway is involved in primary neuronal injury
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Figure 6: Effect of celecoxib on oxidative stress and inflammation in OGD/R primary offspring neurons treated with prenatal LPS. (a, b)
Celecoxib increased SOD activity but decreased MDA content. (c)–(f) Celecoxib decreased levels of IL-1β, IL-6, TNF-α, and PGD2. Data
are expressed as the mean ± SD, n = 6. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 7: Continued.

11Oxidative Medicine and Cellular Longevity



in offspring caused by maternal inflammatory exposure. The
results showed that maternal LPS exposure caused derange-
ments of the COX-2 pathway in primary neurons of off-
spring. Notably, compared to OGD/R treatment alone,
maternal LPS exposure exacerbated the disorder of the
COX-2 pathway in OGD/R-treated offspring primary neu-
rons. Furthermore, we found that the effect of maternal
LPS exposure on offspring was reversed by the COX-2 inhib-
itor celecoxib.

The findings in the current study indicated that PGD2
had a neuroprotective effect on glutamate-induced neuronal
damage [71], and that PGD2 caused several proapoptotic
effects in hippocampal neuron injury induced by PPARγ
ligands [72]. The COX-2 expression is positively correlated
with DP2 but negatively correlated with DP1 in T2DM rats
[73]. DP1 was found to have protective effects against per-
manent focal cerebral ischemia-induced brain injury in mice
[74]. DP2 mediates Ca2+ upregulation and activates protein
kinase C (PKC), causing significant activation of inflamma-
tory and immune pathways [75, 76]. We observed that
DP1 inhibited the OGD/R-induced injury of offspring pri-
mary neurons exacerbated by maternal inflammation,
including increased neuronal viability and decreased neu-
ronal apoptosis/damage. However, we found that DP2
potentiated the OGD/R-induced injury of offspring pri-

mary neurons exacerbated by maternal inflammation,
including increased neuronal apoptosis/damage and
decreased neuronal viability. Overall, our results indicated
that maternal inflammation increased offspring susceptibil-
ity to cerebral I/R injury via activation of the COX-2/
PGD2/DP2 pathway.

The clear role of maternal inflammation observed in
our study indicated that inhibition of maternal inflamma-
tion could exert a neuroprotective effect in offspring. Our
study provides further preclinical evidence that maternal
inflammation could exert a neuroprotective effect mainly
through the COX-2/PGD2/DP2 pathway. There is a strong
association among maternal infection/inflammation, brain
development abnormalities, and brain injuries/susceptibil-
ity to brain injuries. Our results clearly show that inhibi-
tion of maternal inflammation represents an effective
preventative and therapeutic protective strategy in the pre-
natal environment. Of course, there are several limitations
to our study. First, we observed activation of the COX-2/
PGD2/DP2 pathway post-MCAO/R. However, how mater-
nal inflammation activates the COX-2 pathway is
unknown. In subsequent studies, we will focus on whether
this effect of maternal inflammation on COX-2 is direct or
indirect. Second, glial cells, including microglia and astro-
cytes, are the major mediators of neuroinflammation [77].
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Figure 7: Effect of DP1 agonist/antagonist and DP2 agonist/antagonist on neuronal viability, neuronal damage and neuronal apoptosis in
OGD/R offspring primary neurons treated with prenatal LPS. (a) The concentration of DP1 agonist/DP1 antagonist/DP2 agonist/DP2
antagonist showed no toxicity ranging from 1 × 10−5 to 1 × 10−9 M. (b) DP1 agonist and DP2 antagonist increased neuronal viability, but
DP1 antagonist and DP2 agonist decreased neuronal viability. (c) DP1 antagonist and DP2 agonist increased neuronal damage, but DP1
agonist and DP2 antagonist decreased neuronal damage. (d) DP1 antagonist/DP2 agonists increased neuronal apoptosis, but DP1
agonists/DP2 antagonist decreased neuronal apoptosis detected by flow cytometry. Data are expressed as the mean ± SD, n = 10. ∗p < 0:05
, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Further research is needed to explore the unique modula-
tory effects of neuronal-glial cell cocultures and whether
our findings could be observed in glial cells. Third, our
study focused on PGD2; what about PGE2? Were PGE2
and receptors also further induced by maternal inflamma-
tion? Can blocking PGE2 synthesis/signaling have similar
effects? In follow-up research, we will study PGD2 and
PGE2 interventions simultaneously to further clarify the
downstream effects of the maternal inflammation-
mediated increase in the COX-2 protein expression.

5. Conclusions

Maternal inflammation exacerbated neuronal apoptosis
through the upregulation of proinflammatory cytokines
and oxidative stress, subsequently contributing to brain
injury in offspring rats and primary neuron injury in off-
spring. More importantly, maternal inflammation increased
susceptibility to cerebral I/R injury both in offspring rats and
offspring primary neurons through the above mentioned
processes. Moreover, the increased susceptibility to OGD/R
in primary neurons of offspring was mediated by the activa-
tion of the COX-2/PGD2/DP2 pathway. Inhibition of COX-
2 and DP2 and activation of DP1 decreased, while inhibition
of DP1 and activation of DP2 increased the susceptibility to
OGD/R-induced primary neuron injury in offspring. Sche-
matic presentation of the susceptibility of the offspring to
cerebral I/R injury increased with maternal inflammation
(Figure 8). Maternal inflammatory exposure caused an
inflammatory response, oxidative stress, and neuronal apo-
ptosis via the activation of the COX-2/PGD2/DP2 pathway,
ultimately increasing offspring susceptibility to cerebral I/R
injury.
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Supplementary Materials

Figure S1: morphological characteristics and identification of
primary neurons. (a) Primary neuron morphological charac-
teristics were observed after 1, 3, 5, and 7 days of culture.
Scale bar = 100 μm. (b) Neurons were identified by the neu-
ronal marker NeuN after 7 days of culture. The purity of
the neurons was >95%. Scale bar = 100 μm and 50μm. Fig-
ure S2: determine the most efficient OGD/R treatment time.
A neuronal viability was analyzed by a CCK-8 assay. (b)
Neuronal damage was analyzed by an LDH leakage rate

Neuroinflammation

COX-2
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PGD2Maternal inflammation (LPS)

Cerebral ischemia-reperfusion injury

Apoptosis

Figure 8: Schematic presentation of the susceptibility to cerebral I/
R injury in offspring increased by maternal inflammation. Maternal
inflammation exacerbates the inflammatory response, oxidative
stress, and neuronal apoptosis via the activation of the COX-2/
PGD2/DP2 pathway, which in turn increases offspring
susceptibility to cerebral I/R injury.
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assay. Primary neurons subjected to 2 h OGD treatment and
24 h reoxygenation were the most efficient treatment time
and were chosen for the follow-up experiments. Data are
expressed as the mean ± SD, n = 10. ∗∗∗p < 0:001.
(Supplementary Materials)
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