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A naphthoquinone molecule known as plumbagin (PL), which has a wide range of pharmacological properties including
antitumor, antioxidation, anti-inflammation, and neuroprotective effects, is extracted from the roots of the medicinal herb
Plumbago zeylanica L. Plumbagin has been studied for its potential to treat Parkinson’s disease (PD). However, its effectiveness
and mechanism are still unknown. This study intends to evaluate plumbagin’s effectiveness against PD in vitro and in vivo.
Plumbagin partially repaired the loss of dopaminergic neurons in the nigral substantia nigra and the resulting behavioural
impairment caused by MPTP or MPTP/probenecid in mice. Furthermore, plumbagin treatment significantly inhibited the
TLR/NF-κB pathways. It reduced the TNF-α, IL-6, and IL-1β mRNA expression in PD mice induced by MPTP or MPTP/
probenecid, which was consistent with the findings in the inflammatory model of BV2 cells induced by MPP+ or LPS. In
addition, plumbagin treatment enhanced the microtubule-associated protein 1 light chain 3 beta (LC3) LC3-II/LC3-I levels
while decreasing the p-mTOR and p62 protein accumulation in PD mice induced by MPTP or MPTP/probenecid, which was
similar to the results obtained from the experiments in SH-SY5Y and PC12 cells induced by MPP+. Consequently, our results
support the hypothesis that plumbagin, by promoting autophagy and inhibiting the activation of the TLR/NF-κB signaling
pathway, is a promising treatment agent for treating Parkinson’s disease (PD). However, to confirm plumbagin’s anti-PD
action more thoroughly, other animal and cell PD models must be used in future studies.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
logical disorder after Alzheimer’s disease (AD). PD affects
around 2% of those over the age of 65 years. People under
the age of 40 have a minimal probability of developing PD
[1]. People’s health and quality of life are seriously damaged,
especially as they get older. Lewy bodies (LBs), which are
mainly comprised of α-synuclein, and the gradual degrada-
tion of dopaminergic neurons in the substantia nigra pars
compacta (SNpc) are two of the main pathogenic aspects
of Parkinson’s disease (PD) [2–4]. Dopamine (DA) neuronal

loss in the SNpc is the cause of PD symptoms such as tremors,
bradykinesia, rigid muscles, speech and motor deficits, pos-
tural and balance abnormalities, and problems with automatic
movements [5]. The pathogenesis of PD is complex and
closely related to mitochondrial dysfunction, oxidative stress,
neuroinflammation, abnormal aggregation of α-synuclein,
and autophagy dysfunction [6–9]. Levodopa is frequently used
in therapeutic intervention, although prolonged use might
have substantial negative effects. Interestingly, levodopa can-
not prevent neuron deterioration and only temporarily relieve
the symptoms. Therefore, the development of novel prophy-
lactic and therapeutic drugs is urgently required.
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Numerous neurological and behavioural conditions,
including AD, PD, and depression, are linked to neuroin-
flammation [10]. Neuroinflammation aggravates the dopa-
minergic neurons’ loss in PD. The widespread expression
of cytokines and chemokine receptors in dopaminergic neu-
rons has raised the possibility that these cells respond to
inflammatory mediators released by activated microglia
[11]. Chronic neuroinflammation, which is mediated by
neighbourhood microglia and, to a lesser extent, astrocytes
and oligodendrocytes, causes neuronal death in PD patients
[12]. Microglia are specialized immune cells that produce
inflammatory mediators in response to tissue injury [13,
14]. In both familial and sporadic PD patients, there is a
sudden increase in SNpc and microglia activation in the
olfactory bulb [12]. Microglial activation in the SNpc
olfactory bulb was dramatically elevated in familial and
sporadic PD patients [12].

Autophagy’s catabolic mechanism speeds up the
destruction of excessive or otherwise defective proteins and
organelles. Neurodegenerative disorders like PD are charac-
terized by the accumulation of abnormal proteins and/or
damaged organelles, and there is considerable evidence that
autophagy dysregulation plays a role in this process [15].
Autopsy evidence revealed that autophagy markers are dis-
rupted in several neurodegenerative diseases [16]. In a PD
model, clearing accumulating proteins through autophagy
is essential [17]. Abnormalities mostly cause PD in autoph-
agy, and increasing autophagy is one treatment method [18].

Numerous medicinal herbs have a wide range, low toxic-
ity, minimal side effects, and a variety of action targets.
Recent studies have suggested that Chinese herbal medicine
may contribute to treating and preventing PD. However,
adopting Chinese herbal medicine for PD treatment and
prevention has certain disadvantages. For instance, some
active components of Chinese herbal medicine have low bio-
availability, some have poor active ingredients and extrac-
tion efficiency, and some active ingredients are unstable
and disintegrate easily. The structure of some active compo-
nents of Chinese herbal medicine is unclear, which hinders
the study and application of its mechanism. The research
for Chinese herbal active components with high bioavailabil-
ity, a large volume of extraction and synthesis, clear and sta-
ble active ingredients, diverse action targets, and efficient PD
prevention and therapy has become increasingly important.

Plumbagin (PL) is a medicinal compound extracted
from the Plumbago zeylanica L. plant’s root [19]. Analysis
of its molecular structure revealed it to be a naphthoquinone
compound [20] that can be extracted and synthesized in
large amounts. The bioactive ingredient is stable. It has anti-
tumor [21, 22], antioxidation [23, 24], anti-inflammatory
[25, 26], and neuroprotective [27, 28] pharmacological prop-
erties, but its ability to prevent or treat Parkinson’s disease
and its molecular mechanism are unexplored. We sought
to determine whether plumbagin could protect dopaminer-
gic neurons in mice administered MPTP poisoning because
controlling autophagy and obstructing TLR/NF-κB inflam-
matory pathways are potential approaches to preventing
and treating PD. Additionally, the impact of plumbagin on
the TLR/NF-κB signaling pathway in the LPS-induced

BV2 cells model and the autophagy pathway in the MPP
+ -induced SH-SY5Y and PC12 cells PD model was assessed.
Our present results might be applied to the therapeutic use of
medicinal herbs for treating and preventing PD.

2. Materials and Methods

2.1. Chemical and Reagents. The plumbagin (purity >98%),
MPTP, MPP+, probenecid, LPS, and β-actin antibody were
purchased from Sigma Biotechnology Inc (MA, USA).
Millipore Corporation (USA) provided the anti-tyrosine
hydroxylase (TH) antibody. The primary antibodies for
TLR2, TLR4, and NF-κB p65 were obtained from Affinity
Biosciences Ltd (OH, USA). Cell Signaling Technology
(Shanghai, China) supplied the LC3B and p62 antibodies.
The p-mTOR antibody utilized in this work was obtained
from Santa Cruz Biotechnology Inc (TX, USA). The horse
serum, MEM medium, Ham’s F-12 medium, sodium pyru-
vate, MEM nonessential amino acids, and glutamine addi-
tive were all delivered by Gibco (Thermo Fisher Scientific,
USA). The ShuangRu Biotechnology Co., Ltd (Shanghai,
China) provided the fetal bovine serum.

2.2. Animals. To conduct this study, we used male C57/6J
mice that we obtained from Hunan Silaike Jingda Labora-
tory Animal Co. Ltd (China). Every cage had enough space
for five animals. They were kept at room temperature
(23 ± 2°C) with a relative humidity of 60 ± 10% and a 12-
hour light-dark cycle, with the food, water, and bedding
materials being rotated regularly. One week of preadminis-
tration acclimatization was permitted.

2.3. Subacute PD Mouse Model Induced by MPTP. Three-
month-old male C57BL/6 mice were randomly assigned to
one of four groups (n = 15 mice/group): control, MPTP, PL
+MPTP, or PL. Mice in the control and MPTP groups
received the vehicle intragastrically, while mice in the PL and
PL+MPTP groups received 5mg/kg of PL (Sigma-Aldrich,
USA) for 14 days. From day 15, after 1 h of intragastric gavage,
MPTP (Sigma-Aldrich, USA) was intraperitoneally injected in
the MPTP and PL+MPTP groups mice at a dose of 25mg/kg.
In contrast, normal saline was intraperitoneally injected in the
control and PL groups for 7 days. From day 22, each group
was administered via gavage for another 14 days. Before the
mice were put down and their brains were removed for immu-
nofluorescence and Western blotting, they underwent several
behavioural assessments.

2.4. MPTP/Probenecid Chronic PD Mouse Model. For this
study, 60 male C57BL/6 mice aged 3 months were split into
4 groups (n = 15 per group): control, MPTP/p, PL+MPTP/p,
and PL. For 14 days, mice in the PL and PL+MPTP/p groups
received intragastrical injections of 5mg/kg of PL (Sigma-
Aldrich). In contrast, mice in the control and MPTP groups
received intragastrical administrations of the vehicle. Mice in
the MPTP/p and PL+MPTP/p groups received 25mg/kg
MPTP (Sigma-Aldrich) subcutaneously for 30 minutes after
receiving 250mg/kg probenecid (Sigma-Aldrich) intragastri-
cally on day 15. At the same time, mice in the control and PL
groups received normal saline intraperitoneally 10 times for
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five weeks. In addition, PL and vehicle were both adminis-
tered intranasally for a total of 49 days. Moreover, PL and
vehicle were given intranasally for 49 days. Following the
behavioural examination, the mice were slaughtered, and
their brains were taken for immunofluorescence and
Western blotting.

2.5. Rotarod Test. The mice were trained for two days on the
rotarod (Xin Run, Shang Hai) at 10 rpm three times a day (at
30-minute intervals). Each mouse’s ability to remain on the
rotarod for a long time while the speed climbed from 0 to
30 revolutions per minute was noted. The last test result
was the average latency to fall off the rod, which was deter-
mined by doing 5 separate experiments.

2.6. Open Field Test. The mice spent 20 minutes roaming
freely in a 50 × 50 × 25 cm open field box (Xin Run, Shang
Hai). With the help of the Supermaze system’s built-in cam-
era, we were able to track the mice’s every step and calculate
their total distance travelled. The box was wiped down with
75% alcohol, and the mouse’ face and urine were removed
after each test to ensure no lingering odour would affect
the next mouse’ performance.

2.7. Immunofluorescence Staining. The substantia nigra of
mice brains was sectioned and frozen before being treated
with anti-TH (1 : 250, Millipore) at 4° C for one night. The
slices were washed and then incubated with a secondary
antibody (IgG (H+L)) for 1 hour at room temperature.
The Olympus microscope was used to capture the images.
We used ImageJ software to quantify the number of times
TH-positive dopaminergic neurons were detected in the
SNpc region.

2.8. Real-Time PCR Analysis. TRIzol (Invitrogen, USA) was
used to extract total RNA from the substantia nigra of mice
brains and BV2 cells. cDNA was synthesized with the help of
the cDNA Synthesis Kit (Monad). Amplification was per-
formed using Thermal Cyclers (Thermo Fischer Scientific,
USA) using the cDNA as templates for real-time PCR using
a Real-Time PCR Reagents Kit (Monad Biotech Co., Ltd,
Wuhan, China). The real-time PCR primers are listed in
Table 1.

2.9. Western Blotting. Nuclear and cytoplasmic protein was
isolated from mouse brain substantia nigra and cell using
the Beyotime Nuclear and Cytoplasmic Protein Extraction
Kit and RIPA buffer (Beyotime). The NanoDrop 2000 was
used to quantify protein concentrations (Thermo Fischer
Scientific, USA). Electrophoretically, protein extracts were
separated on sodium dodecyl sulfate-polyacrylamide (SDS-
PAGE) gels before being transferred to a PVDF membrane
(Merck Millipore, Germany). Primary antibodies were incu-
bated at 4°C overnight after being blocked in 5% BSA in the
TBST buffer for 1 h at room temperature. Anti-actin
(1 : 5000), anti-LC3B (1 : 1000), anti-p62 (1 : 1000), anti-
pmTOR (1 : 3000), anti-TLR2 (1 : 500), anti-TLR4 (1 : 500),
anti-NF-kappa B p65 (1 : 500), and anti-histone H3
(1 : 500) primary antibodies were diluted as described. The
PVDF membrane was incubated with HRP-labeled IgG anti-

body (1 : 10000) in TBST for 2 hours at room temperature
after being washed three times in TBST for 30 minutes.
Quantitative studies were performed using the ImageJ
program and the enhanced chemiluminescence technique
(Bio-Rad).

2.10. Cell Culture. Cell lines from SH-SY5Y cells, PC12 cells
from rat adrenal pheochromocytomas, and BV2 cells from
mouse microglia were obtained from the National Collection
of Authenticated Cell Cultures. Medium Eagle’s Medium
(MEM) was used to culture SH-SY5Y cells, and 10% FBS,
Ham’s F-12, sodium pyruvate solution, MEM nonessential
amino acid solution, glutamine additive, and 0.1% of
100 IU/mL penicillin-streptomycin combination were added
to the medium. PC12 cells were cultured in RPMI-1640
media with 5% fetal bovine serum, 10% horse serum, and
0.1% of 100 IU/mL penicillin-streptomycin. DMEM high-
glucose medium with 10% FBS and 0.1% of 100 IU/mL
penicillin-streptomycin combination was used to cultivate
BV2 cells. We used a 37°C incubator with a 5% CO2 envi-
ronment to cultivate the cells.

2.11. Cell Viability Assay. We examined plumbagin’s poten-
tial to suppress MPP+-induced cell apoptosis in PC12 and
SH-SY5Y cells using the cell counting kit-8 (CCK-8) assay.
In a 96-well plate, 8 × 103 PC12 and SH-SY5Y cells were
seeded per well. The cells were treated with 0, 0.001, 0.01,
and 0.1μM plumbagin for 24 hours. Afterwards, 500μM
MPP+ was added to the plumbagin incubation for 24 hours.
After adding CCK-8 reagents (Dojindo), we left the mixture
to incubate at 37°C for 4 hours on the move. A microplate
reader (Bio-Rad) was used to determine the absorbance at
450 nm.

2.12. Statistical Analyses. The data was analyzed using SPSS
22.0 and GraphPad Prism 8.0. The results were expressed
as a mean ± SEM. Tests of significance and one-way analysis
of variance (ANOVA) were used to examine the data. The
P value of < 0.05 was considered statistically significant.

Table 1: The primer sequences utilized in the present study.

Primer
name

Primer sequence

TNF–α
Forward 5′ - CGTCGTAGCAAACCACCAAG - 3′
Reverse 5′ - GACAAGGTACAACCCATCGG - 3′

IL–1β
Forward 5′ - AAGAAGAGCCCATCCTCTGTG - 3′
Reverse 5′ - TGTTCATCTCGGAGCCTGTAG - 3′

IL–6
Forward 5′ - TTGGGACTGATGCTGGTGAC - 3′

Reverse 5′ - GTGGTATAGACAGGTCTGTTGGG - 3′

GAPDH
Forward 5′ - GGTTGTCTCCTGCGACTTCA - 3′
Reverse 5′ - TGGTCCAGGGTTTCTTACTCC - 3′
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3. Results

3.1. Plumbagin Reduces Behavioural Abnormalities and
Decreases DA Neuron Loss in MPTP- or MPTP/Probenecid-
Induced PD Mice. In order to ensure the successful establish-
ment of the PD model, we also identified it by the expression
of α-synuclein protein by Western blotting. Compared with
the control group, α-synuclein protein increased significantly
after MPTP or MPTP/probenecid induction (Figure S1).
Mouse motor ability is often assessed using either the
rotarod test or the open field test, examples of standard
behavioural studies. The rotarod and open field tests showed
that MPTP-induced PD animals had considerably shorter
latency times and distances than control mice. But therapy
with plumbagin helped reduce the severity of the behavioural
issue (Figures 1(a) and 1(b)). We investigated the possible
protective impact of plumbagin on DA neurons since their
demise is associated with PD. Dopamine (DA) neurons in the
substantia nigra are greatly reduced in number in MPTP-
induced PD animals. While DA neurons are lost in MPTP-
induced PD rats, we found that plumbagin protects these
cells (Figures 1(e) and 1(f)). Compared to their acute
counterparts, chronic MPTP-induced PD animal models
reveal a moderate but progressive reduction in dopaminergic
neurons. This is similar to the degenerative process of PD, in
which DA neurons are gradually destroyed. Thus, we used
MPTP and probenecid to investigate the chronic PD mouse
model. We evaluated the efficacy of plumbagin in these mice
after inducing a long-term animal model of PD using MPTP
and probenecid. Figures 1(c) and 1(d) show that plumbagin
reduced behavioural impairment in PD mice and prevented
the loss of DA neurons (Figures 1(g) and 1(h)). These
findings suggest that plumbagin can be utilized as a treatment
for PD since it reduces symptoms similar to PD.

3.2. Plumbagin Inhibited MPTP or MPTP/Probenecid-
Induced TLR/NF‐κB Activation in PD Mice. Brains of many
damaged animal models produce inflammatory mediators
such as TNF-α, IL-1β, and IL-6, all of which are regulated
by pattern recognition receptors called Toll-like receptors
(TLRs). TLR2 and TLR4 expressions were significantly
higher in MPTP-induced PD model mice compared to the
control group, based on nuclear translocation of the nuclear
factor kappa B p65 protein (Figures 2(a)–2(e)). The treat-
ment of MPTP-induced PD mouse models with plumbagin
dramatically suppressed the expression of TLR2 and TLR4
proteins and the nuclear translocation of NF-κB p65 protein.
Previous research has shown that plumbagin may signifi-
cantly reduce inflammation in the substantia nigra of PD
mouse models (Figures 2(a)–2(e)). Proinflammatory cyto-
kines, such as TNF-α, IL-1β, and IL-6, stimulate the inflam-
matory cascade and are linked to the worsening or
development of PD; the NF-κB signaling pathway regulates
their expression.

Plumbagin’s effects on the mRNA expression of inflam-
matory factors TNF-α, IL-1β, and IL-6 were examined in the
substantia nigra of MPTP-induced PD animals. Increased
levels of TNF-α, IL-1β, and IL-6 mRNA expression were
seen in MPTP-induced PD animals, and their elevation

was partly attenuated by plumbagin administration, as
determined by real-time PCR (Figure 2(k)). In chronic PD
mice produced by MPTP and probenecid, plumbagin
decreased TLR2, and TLR4 protein expressions blocked the
nuclear translocation of NF-κB p65 protein (Figures 2(f)–
2(j)) and suppressed the production of TNF-α, IL-1β, and
IL-6 mRNA (Figure 2(l)). We also investigated how the
protein α-synuclein, a biomarker of neuroinflammation in
PD, is expressed. When MPTP or MPTP/probenecid was
induced, α-synuclein protein considerably increased com-
pared to the control group, and plumbagin therapy reversed
the effects of MPTP or MPTP/probenecid (Figure S2).

3.3. Plumbagin Inhibited MPP+ or LPS-Induced TLR/NF-κB
Activation in BV2 Cells. The molecular mechanism of PD
was studied by conducting cell studies. TLR2, TLR4, and
NF-κB p65 protein expressions were measured in inflamma-
tory models of BV2 cells triggered by MPP+ or LPS using
Western blotting. TLR2 and TLR4 protein expressions and
NF-κB p65 nuclear translocation were considerably upregu-
lated in BV2 cells after stimulation with MPP+ or LPS com-
pared to the control group. In contrast, plumbagin
administration reduced the expression of TLR2 and TLR4
proteins and dramatically prevented the nuclear transloca-
tion of NF-κB p65 protein in BV2 cells triggered by MPP+
or LPS (Figures 3(a)–3(j)). After showing that plumbagin
may reduce inflammation caused by MPTP and MPTP/pro-
benecid in PD mice, we looked into its influence on
inflammatory cytokines in BV2 cells caused by MPP+ or
LPS. The real-time PCR analysis showed that the mRNA
expression levels of TNF-α, IL-1β, and IL-6 in BV2 cells rose
in response to MPP+ or LPS stimulation. In contrast, treat-
ment with plumbagin somewhat attenuated the increase
(Figures 3(k) and 3(l)). These results implied that plumbagin
could effectively inhibit the inflammatory response induced
by MPP+ or LPS in BV2 cells.

3.4. Plumbagin Increased Autophagy in MPTP- or MPTP/
Probenecid-Induced PD Mice. Two major cellular processes
affect multiple neurological illnesses: neuroinflammation
and autophagy. Recent studies have demonstrated that regu-
lating microglia activation via mitochondrial autophagy can
increase neuronal survival in PD. Because it reduces neuro-
inflammation, autophagy also significantly positively affects
ischemia [29]. Decreased autophagy is thought to have a role
in neurodegenerative processes linked to chronic inflamma-
tory states [30]. As a result, we further investigated plumba-
gin’s effect on autophagy in MPTP-induced PD mice.
Compared to the control group, MPTP-induced PD mice
had higher levels of the autophagy substrate proteins p62
and p-mTOR, while LC3-II/LC3-I levels were lower. How-
ever, plumbagin treatment overcame this (Figures 4(a) and
4(b)). Additionally, we observed that plumbagin therapy
reduced the ratio of LC3-II/LC3-I and the expression levels
of autophagy substrate p62 and p-mTOR proteins in chronic
PD rats caused by MPTP and probenecid (Figures 4(c) and
4(d)). Based on these results, plumbagin was demonstrated
to improve autophagy in PD mice and enhance the clearance
of autophagy substrates.
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Figure 1: Plumbagin improves behavioural disorders and suppresses the loss of DA neurons in PD mice induced by MPTP or MPTP/
probenecid. (a) The open field and (b) rotarod tests were performed to detect motor deficits in each mice group with the vehicle, MPTP,
plumbagin+MPTP, and plumbagin (n = 15). (c) The open field and (d) rotarod tests were applied to detect motor deficits in each mice
group with the vehicle, MPTP/p, plumbagin+MPTP/p, and plumbagin (n = 15). (e) Immunofluorescence staining was performed to
detect TH-positive neurons in the SNpc of each mice group with the vehicle, MPTP, plumbagin+MPTP, and plumbagin (n = 3). Scale
bar = 100 μm. (f) Quantitative data of TH-positive neurons in SNpc of each mice group with the vehicle, MPTP, plumbagin+MPTP, and
plumbagin (n = 3). (g) Immunofluorescence staining was performed to detect TH-positive neurons in the SNpc of each mice group with
the vehicle, MPTP/p, plumbagin+MPTP/p, and plumbagin (n = 3). Scale bar = 100μm. (h) Quantitative data of TH-positive neurons in
SNpc of each mice group with the vehicle, MPTP/p, plumbagin+MPTP/p, and plumbagin (n = 3). Data is presented as the mean ± SEM,
∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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Figure 2: Continued.
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3.5. Plumbagin Improved Autophagy in the PD Models of SH-
SY5Y and PC12 Cells Induced by MPP+. Improving autoph-
agy is a possible therapeutic option for PD, and its deficit in
neurodegenerative illnesses is well established. Conse-
quently, we investigated the PD’s molecular mechanisms
using cell experiments. Before being exposed to 1mM and
500μM MPP+ for the same time in the SH-SY5Y and
PC12 cells, plumbagin was pretreated on the cells for 0,
0.001, 0.01, and 0.1μM on SH-SY5Y and PC12 cells for 24
hours. There was a statistically significant decrease in cell
viability compared to the control group after MPP+ treat-
ment. The MPP+-induced drop-in survival rate in SH-
SY5Y and PC12 cells were blocked at 0.1μM (Figures 5(a)
and 5(b)). Subsequently, using MPP+ to induce PD in SH-
SY5Y and PC12 cells, we examined how plumbagin affected
autophagy in these cells. In MPP+-induced PD models of
SH-SY5Y and PC12 cells, levels of the autophagy substrate
p62 and the p-mTOR protein were elevated, but LC3-II/
LC3-I levels were decreased. In contrast, plumbagin admin-
istration decreased the expression of the autophagy substrate
p62 and the p-mTOR protein while increasing the levels of
LC3-II/LC3-I (Figures 5(c)–5(f)).

3.6. Depiction of the Mechanism of Plumbagin against PD
through Anti-Inflammatory and Autophagy Regulation.
Multiple factors and mechanisms contribute to the patho-
genesis of PD. These mechanisms interact and influence
each other, posing several challenges to PD’s research and
treatment. Neuroinflammation and autophagy disturbances
are both important factors in PD. Neuroinflammation leads
to the pathogenesis of PD and the disturbance of autophagy,
which aggravates neuroinflammation. Our study demon-
strated that plumbagin possesses antineuroinflammatory
and autophagy-improving properties (Figure 6).

4. Discussion

Neuroinflammation has been observed in many PD
models, including neurotoxin-based models (such as 6-
hydroxydopamine andMPTP) and α-synuclein-based models
(such as α-synuclein transgenic animals, α-synuclein-based
viral transfection models, and misfolded α-synuclein fibril
administration models) [31]. Although the root cause of
neuronal loss is unknown, autopsy studies have shown that
the pathophysiology of PD is characterized by the substantia
nigra inflammation defined by persistent and excessive
microglia and astrocyte proliferation [32]. According to some
research, inflammation and immunological responses are dis-
ease markers and pathogenic factors in the aetiology of familial
and sporadic Parkinson’s disease. Patients with Parkinson’s
disease have active microglia in the SNpc and putamen [33].
Tumor necrosis factor-alpha (TNF-α), interleukin (IL-1β),
interleukin-6 (IL-6), chemokines, and active nitrogen (such as
NO) and ROS are released by activated microglia, which can
cause or aggravate the initiation of PD [34, 35]. Nuclear factor
erythroid 2-related factor 2 (Nrf2) is a transcription factor that
is a major regulator of endogenous antioxidant responses and
can inhibit NF-κB activity. Without Nrf2, the NF-κB inhibitor
(IκB) is rapidly degraded by the proteasome, thereby increasing
the NF-κB levels [36, 37]. Studies have shown that plumbagin
improves memory dysfunction in AD mice through the Nrf2/
ARE pathway [38]. Nrf2 activators are a potential therapy for
Parkinson’s disease [39].

Unlike astrocytes and neurons, microglia have several
Toll-like receptors (TLRs), which are a type of pattern recog-
nition receptor. In the brains of animal models with diverse
lesions, they can control NF-κB and take part in distinct
inflammatory responses, generating TNF-α, IL-1β, and IL-6.
Through their ability to activate glial cells and other inflamma-
tory factors, TLR2 and TLR4 are to blame for brain injury-
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Figure 2: Plumbagin suppressed TLR/NF-κB activation in PD mice induced by MPTP or MPTP/probenecid. (a) Western blotting analysis
of TLR2 and TLR4 in mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin. (b) Quantitative data of the TLR2 protein
levels in each mice group. (c) Quantitative data of the TLR4 protein levels in each mice group. (d) Western blotting analysis of NF-κB p65 in
mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin. (e) Quantitative data of the NF-κB p65 protein levels in each mice
group. (f) Western blotting analysis of TLR2 and TLR4 in mice treated with the vehicle, MPTP/probenecid, plumbagin+MPTP/probenecid,
and plumbagin. (g) Quantitative data of the TLR2 protein levels in each mice group. (h) Quantitative data of the TLR4 protein levels in each
mice group. (i) Western blotting analysis of NF-κB p65 in mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin. (j)
Quantitative data of the NF-κB p65 protein levels in each mice group. (k) The quantification of the mRNA levels of TNF-α, IL-1β, and
IL-6 in SNpc of mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin was examined by RT-qPCR (n = 3). (l) The
quantification of the mRNA levels of TNF-α, IL-1β, and IL-6 in the SNpc of mice treated with the vehicle, MPTP/p, plumbagin+MPTP/p,
and plumbagin examined by RT-qPCR (n = 3). Data is expressed as the mean ± SEM, ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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Figure 3: Plumbagin suppressed the activation of the TLR/NF-κB signaling pathway in BV2 cells induced by MPP+ or LPS. (a) Western
blotting analysis of TLR2 and TLR4 in the BV2 cells treated with vehicle, MPP+, PL+ MPP+, and PL. (b) Quantitative data of the TLR2
protein levels in the BV2 cells treated with vehicle, MPP+, PL+ MPP+, and PL. (c) Quantitative data of the TLR4 protein levels in the
BV2 cells treated with vehicle, MPP+, PL+ MPP+, and PL. (d) Western blotting analysis of NF-κB p65 in the BV2 cells with the vehicle,
MPP+, PL+ MPP+, and PL. (e) Quantitative data of the NF-κB p65 protein levels in the BV2 cells treated with vehicle, MPP+, PL+ MPP+,
and PL. (f) Western blotting analysis of TLR2 and TLR4 in the BV2 cells treated with vehicle, LPS, PL+ LPS, and PL. (g) Quantitative data of
the TLR2 protein levels in the BV2 cells treated with vehicle, LPS, PL+ LPS, and PL. (h) Quantitative data of the TLR4 protein levels in the
BV2 cells treated with vehicle, LPS, PL+ LPS, and PL. (i) Western blotting analysis of NF-κB p65 in the BV2 cells treated with vehicle, LPS,
PL+ LPS, and PL. (j) Quantitative data of the NF-κB p65 protein levels in the BV2 cells treated with vehicle, LPS, PL+ LPS, and PL. (k) The
quantification of the mRNA levels of TNF-α, IL-1β, and IL-6 in the BV2 cells treated with vehicle, MPP+, PL+ MPP+, and PL was examined
by RT-qPCR (n = 3). (l) The quantification of the mRNA levels of TNF-α, IL-1β, and IL-6 in the BV2 cells treated with vehicle, LPS, PL+
LPS, and PL was examined by RT-qPCR (n = 3). Data is expressed as the mean ± SEM, ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.

8 Oxidative Medicine and Cellular Longevity



related inflammation. There was an increase in both TLR2 and
TLR4 expressions in the blood and brain of people with PD
[40, 41]. NF-κB has a critical role in regulating neuroinflam-
mation. During quiescence, NF-κB heterodimers (p50 and
p65) are inactive in the cytoplasm, coupled to protein κB
inhibitors (IκB). In contrast, NF-κB is activated and initiates
transcription of downstream target genes such as TNF-α,
IL-1β, and IL-6 [42–44] when IκBα is phosphorylated and
degraded, allowing the NF-κB dimer p50 and p65 to enter
the nucleus. Therefore, indicators of NF-κB activation include
nuclear p65 expression and the generation of inflammatory
cytokines.

Plumbagin exerts an antineuroinflammatory effect by
reducing NF-κB levels, downregulating the expression of
iNOS and COX-2, and increasing the expression of Nrf2
and HO-1 on neuropathic pain induced by chronic com-
pression injury in SD rats. Plumbagin inhibits chronic peri-
odontitis by downregulating the TNF-α, IL-1β, and IL-6
expressions [28, 45]. In rats, it can also inhibit neuronal apo-
ptosis and intimal hyperplasia following cerebral ischemia,
as well as the inflammatory response induced by the TNF-
α/NF-κB pathway [46]. According to these investigations,
plumbagin inhibited NF-κB activation and downregulated
the expression of inflammatory factors. Our research
showed that plumbagin inhibited inflammation via the
TLR/NF-κB pathway, decreased TNF-α, IL-1β, and IL-6
mRNA expressions, and provided neuroprotection against
subacute and chronic PD mice models. Similarly, plumbagin
had the same effect in the inflammatory model of BV2 cells

induced by MPP+ or LPS. There is currently no cure for
Parkinson’s disease, but research on neuron inflammation
in the disease is advancing rapidly and could lead to a novel
neuroprotective therapy strategy [31].

Numerous intracellular protein aggregates can cause muta-
tions in neurodegenerative disorders, affecting autophagy and
changing substrate clearance [17]. It is widely known that
autophagy defects contribute to neurodegenerative diseases,
as evidenced by the accumulation of undigested autophagic
vesicles in the cytoplasm of surviving neurons. As a result, it
has been reported how autophagosomes accumulate in many
brain diseases (including severe AD and animal models), indic-
ative of a slowing lysosomal clearance rate. Several neurodegen-
erative diseases, such as PD and Lewy body dementia (LBD),
have been linked to autophagy dysfunction [18]. Recent studies
have correlated autophagy to the pathophysiology of familial
and idiopathic PD, and upregulating autophagy is an effective
treatment for PD [17]. The primary regulator of the
autophagy-lysosomal pathway (ALP), transcription factor EB
(TFEB), regulates the expression of genes necessary for the
development of lysosomes and autophagosomes [47, 48]. It
has been demonstrated that the phosphorylated form of TFEB
preferentially interacts with the chaperone-dependent E3 ubiq-
uitin ligase STUB1, resulting in ubiquitination and subsequent
degradation via the ubiquitin-proteasome pathway [49]. The
nuclear export of TFEB is controlled by mTOR-dependent
phosphorylation [50]. Due to an increase in the accumulation
of LC3, ubiquitinated proteins, autophagosomes, and sub-
strates, own modulation of TFEB significantly decreased ALP
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Figure 4: Plumbagin improved autophagy in PD mice induced by MPTP or MPTP/probenecid. (a) Western blotting analysis of LC3, p62,
and p-mTOR in mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin. (b) Quantitative data of the LC3-II/LC3-I, p62,
and p-mTOR protein levels in mice treated with the vehicle, MPTP, plumbagin+MPTP, and plumbagin. (c) Western blotting analysis of
LC3, p62, and p-mTOR in mice treated with the vehicle, MPTP/p, plumbagin+MPTP/p, and plumbagin. (d) Quantitative data of the
LC3-II/LC3-I, p62, and p-mTOR protein levels in mice treated with the vehicle, MPTP/p, plumbagin+MPTP/p, and plumbagin. Data are
presented as the mean ± SEM (n = 3). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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activity in rats with permanent middle cerebral artery blockage
[51]. Numerous studies have suggested that TFEB is a promis-
ing therapeutic target for PD [52].

The mammalian target of rapamycin (mTOR) is the pri-
mary regulator of autophagy in macrophages [53]. Multiple
signaling routes converge in the mTOR signaling pathway,
which has recently become the most-studied signaling sys-
tem due to its influence on autophagy via both upstream
and downstream signal transductions [54–56]. Inhibiting
mTOR stimulates autophagy and increases protein degrada-
tion through lysosomes [18]. Inhibiting p-mTOR can
activate the autophagy process [57]. The dysfunction of any
of the autophagy processes may damage the autophagy-
lysosomal pathway [18]. The protein 1 light chain, 3 beta
(LC3), which attaches to microtubules, plays an important
function in autophagy by assisting in the closure of auto-
phagosomes once they have formed [58]. The LC3-II/LC3-I
expression ratio may be utilized as a proxy for autophagy
activity because LC3-I becomes LC3-II during this process

[59]. P62, an autophagy substrate, is increased when autoph-
agy is suppressed but downregulated when induced [60, 61].

Also, plumbagin blocks Akt activation and downstream
targets, reducing the phosphorylation of two mammalian
targets downstream of mTOR [62]. Plumbagin inhibits
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt) signaling pathway. Studies have shown that plumbagin
may activate autophagy in a dose-dependent manner, block
the G2/M phase of cells, raise ROS levels, and inhibit the
PI3K/Akt/mTOR pathway by decreasing Akt and mTOR
phosphorylation [63]. These findings imply that plumbagin
may promote autophagy in cells. Plumbagin can reduce the
increase in p-mTOR protein in the substantia nigra of PD
mice models, enhance autophagy, and expedite the clearance
of autophagy substrates p62, thereby having a neuroprotective
role. Furthermore, plumbagin antagonized MPP+ damage to
SH-SY5Y and PC12 cells with improved autophagy.

Many studies on the anti-PD of active ingredients have
been reported, and exploring the anti-PD effect of plant-
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Figure 5: Plumbagin improved autophagy in the PD models of SH-SY5Y and PC12 cells induced by MPP+. (a) The effects of different doses
of plumbagin on cell viability in SH-SY5Y cells. SH-SY5Y cells were pretreated with vehicle or plumbagin (0.001 μM, 0.01μM, and 0.1 μM)
for 24 h, after which MPP+ (1mM) was added to the cell culture plate, and the mixture was incubated for another 24 h. Cell viability was
assessed by the CCK-8 assays. (b) The effects of different doses of plumbagin on cell viability in PC12 cells. PC12 cells were pretreated with
vehicle or plumbagin (0.001 μM, 0.01μM, and 0.1 μM) for 24 h, after which MPP+ (500 μM) was added to the cell culture plate, and the
mixture was incubated for another 24 h. Cell viability was assessed by using the CCK-8 assay. (c) Western blotting analysis of LC3, p62,
and p-mTOR in the SH-SY5Y cells treated with vehicle, MPP+, PL+ MPP+, and PL. (d) Quantitative data of the LC3-II/LC3-I, p62, and
p-mTOR protein levels in the SH-SY5Y cells treated with the vehicle, MPP+, PL+ MPP+, and PL. (e) Western blotting analysis of LC3,
p62, and p-mTOR in the PC12 cells-induced treatment with the vehicle, MPP+, PL+ MPP+, and PL. (f) Quantitative data of the LC3-II/
LC3-I, p62, and p-mTOR protein levels in the PC12 cells treated with the vehicle, MPP+, PL+ MPP+, and PL. Data are expressed as the
mean ± SEM (n = 3). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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active ingredients is a valuable research direction. Chlorogenic
acid has demonstrated neuroprotection in MPTP-intoxicated
rats through antioxidant and anti-inflammatory properties,
as well as apoptotic death of DA neurons caused by mitochon-
drial dysfunction [64, 65]. In mice exposed to rotenone,
ursolic acid reduced p62 and ubiquitin-aggregated proteins,
improved autophagic clearance, and mitigated the loss of DA
neurons [66]. Ursolic acid administration inhibited the neuro-
inflammation induced byMPTP, mainly reflected by reducing
the expression of the ionic calcium-binding adaptor molecule
1 (Iba1) and TNF-α and inhibiting the nuclear translocation of
NF-κB. [67]. Mucuna pruriens administration significantly
decreased glial fibrillary acidic protein (GFAP), iNOS, inter-
cellular cell adhesion molecule (ICAM), and TNF-α inflam-
matory parameters in MPTP-induced Parkinson’s disease
(PD) animals. It also inhibited NF-κB activation and increased
p-Akt1 activity. Additionally,Mucuna pruriens demonstrated
substantial antioxidant potential by inhibiting lipid peroxida-
tion and nitrite [68]. Mucuna pruriens reduces iNOS
expression in paraquat-induced PD mouse [69]. Moreover,
Withania somnifera has shown a significant improvement in
movement disorders and dopaminergic neuroprotection,
paraquat-induced Parkinsonism, and downregulation of iNOS
and Bax and induction of Bcl-2 protein expression in Maneb
[70, 71]. Hopefully, more active ingredients for PD will be
discovered in the future.

5. Conclusions

In conclusion, this work demonstrated that plumbagin
inhibits PD in both cell and animal models. Additionally,
plumbagin inhibits antineuroinflammation, induces autoph-
agy, and accelerates the clearance of autophagy substrates, all
of which contribute to its anti-PD effects in vivo and in vitro.
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