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Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass
and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a
variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids,
neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that
the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut
microbiota–muscle axis (gut–muscle axis) has been postulated, its causal link is still unknown. The impact of the gut
microbiota on skeletal muscle function and quality is described in detail in this review.

1. Introduction

Skeletal muscle is one of the largest organs, accounting for
roughly half of the total body weight. Skeletal muscle pro-
duces heat, regulates blood sugar, storing amino acids, and
alters the physiological characteristics of the body [1]. Skel-
etal muscle mass and function decline have been reported
to affect 8%–13% of older adults [2], with clinical effects
including frailty, loss of mobility, falls, fractures, disability,
and increased mortality [3]. Numerous factors contribute
to the loss of skeletal muscle mass and function, such as
inflammatory states [4], age-related changes in the hor-
monal environment [5], insulin resistance [6], gut physiol-
ogy [7], DNA damage, and mitochondrial dysfunction [8].
These mechanisms are enhanced in the presence of insuffi-
cient protein energy [9].

The physiological characteristics of skeletal muscle have
been extensively studied in the past few decades, providing
unique insights into the interconnection among organs
[10]. As with the products secreted by skeletal muscle, exter-
nal factors that may act on skeletal muscle can also play an

important role in peripheral tissues. The gut microbiota
has the potential to influence muscle function and quality
[11]. The gut microbiota is increasingly being seen as a key
factor in human wellbeing and disease, especially in older
adults [12]. Although the gut microbiota is known for its
role in nutrient absorption, it is closely associated with many
other physiological processes [13]. Therefore, the interaction
between the gut microbiota and human organs has become
the focus of recent research [14].

Recent studies have demonstrated the existence of a gut
microbiota-muscle axis, i.e., that muscle function and
metabolism are largely dependent on the quantity and com-
position of the gut microbiota, and that the gut microbiota is
expected to be a potential biological target for the prevention
and treatment of muscle-related diseases such as sarcopenia
and muscular dystrophy [15]. Furthermore, it is critical to
clarify how the gut microbiota affects exercise load, modu-
lates muscle function, and improves host fitness. The gut
microbiota has a profound effect on skeletal muscle function
and mass, and intervening in this axis may reverse the
decline in skeletal muscle function and mass [13, 15–19].
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This article reviews the progress of research on the effects of
gut microbiota on the biological function of skeletal muscle
and its mechanisms.

2. Gut Microbiota and Intestinal Barrier

2.1. Gut Microbiota. The human body consists of approxi-
mately 30 trillion cells that coexist with various microbial
communities [20]. The human gut microbiome consists of
10–100 trillion microbes that are highly diverse, complex,
constantly evolving, and colonize the digestive tract [21].
For host physiology, body homeostasis, and long-term
health, functional interactions between gut microorganisms
and hosts are critical. Although several studies have revealed
how the gut microbiota impacts the liver and intestinal
metabolism [22], there are few reports on how the gut
microbiota regulates skeletal muscle, which is also one of
the key metabolic organs [23]. The composition of the gut
microbiome is influenced by a variety of factors, including
genetics, age, diet, and exercise [24]. The human gut micro-
biota is dynamic throughout the life cycle, with the compo-
sition of gut microbes tending toward a steady state during
the early years, but new research has found that the gut
microbiota changes significantly in older adults (≥65 years)
[25]. Antibiotics are known to cause changes in the microbi-
ota composition, and older people are more inclined to use
antibiotics more frequently [26], which may be one of the
reasons for the changes in their gut microbiota composition.

To date, more than 9.9 million microbial genes have
been found in human feces, with Bacteroides and Firmicutes
accounting for the majority [27]. Probiotics are beneficial
bacteria (e.g., Lactobacillus, Bifidobacterium, Clostridium
butyricum, and Bacillus subtilis) [28]. Prebiotics are largely
found in our gastrointestinal tract. Prebiotics are organic
substances that the host cannot digest or absorb but which
benefit the host’s health. They feed beneficial bacteria and
promote the growth and reproduction of beneficial bacteria
[29]. The aging gut microbiota is highly characterized by a
decrease in microbial diversity and beneficial bacteria, as
well as a rearrangement of Bacteroides and Firmicutes, espe-
cially in older people, where individual differences in micro-
organisms can be greater [30, 31].

2.2. Intestinal Barrier. The intestinal tract of the organism
has a relatively complete functional barrier, and intestinal
barrier function refers to the function of the intestinal epi-
thelium that can separate the intestinal lumen from the
internal environment of the organism and prevent the inva-
sion of pathogenic antigens. The normal intestinal barrier
consists of mechanical barrier, chemical barrier, immune
barrier, and biological barrier together [32].

The mechanical barrier is an intact intestinal mucosal
epithelial structure closely connected to each other, which
consists of a mucosal layer, intestinal epithelial cells, inter-
cellular tight junctions, and submucosal lamina propria,
and the intact intestinal mucosal epithelial cells and tight
junctions between epithelial cells are the structural basis of
the mechanical barrier [33]. Gastric acid, bile, various diges-
tive enzymes, lysozyme, digestive juices, and antibacterial

substances produced by parasitic bacteria in the intestinal
lumen constitute the chemical barrier of the intestinal tract
[34]. Stomach acid can destroy bacteria entering the gastro-
intestinal tract and inhibit bacterial adhesion and coloniza-
tion of the gastrointestinal epithelium; lysozyme can
destroy the cell wall of bacteria and cause bacterial lysis;
digestive juices secreted by the intestine can dilute toxins
and flush the intestinal lumen, making it difficult for poten-
tially pathogenic bacteria to adhere to the intestinal epithe-
lium [35, 36]. The immune barrier of the gut consists of
immune cells, immune factors, and gut-associated lymphoid
tissue. Immune cells initiate immune responses and form the
intestinal mucosal immune system to protect the gut from
external stimuli [36]. Immune factors enhance gut barrier
function through immune rejection and bacterial clearance,
in which immunoglobulin IgA plays an important role in
regulating gut microbiota and maintaining immune homeo-
stasis [37]. Gut-associated lymphoid tissue neutralizes anti-
genic substances by triggering local immune responses and
can also secrete immunoglobulins to block the binding of
bacteria to intestinal epithelial receptors, thereby effectively
blocking the adhesion of harmful substances to the intestinal
mucosa [38]. The normal parasitic flora in the intestine
forms the biological barrier of the intestinal mucosa, and
the metabolism of the gut microbiota can also regulate the
mechanical, chemical, and immune barriers of the intestinal
tract [39]. The biological barrier of the gut maintains the
stability of the gut microbiota, and dysregulation of gut
microbial homeostasis can lead to a decrease in beneficial
microbes and an increase in harmful microbes, thereby
compromising the health of the host [40].

Since birth, the microbiota has colonized the gastrointes-
tinal tract and participates in many physiological processes
in the host. Intestinal immune and endocrine function,
energy homeostasis, and health are all influenced by the
complex microbiota [41], which regulates inflammatory
gene expression, innate immune effector cells (monocytes
and macrophages), glucose tolerance, and gut hormone
release, among other metabolic pathways [42, 43]. The gut
microbiota and the gut barrier interact with each other.
Intestinal cells regulate the composition of the gut microbi-
ota by secreting antimicrobial peptides, and conversely, the
gut microbiota can also affect the growth process of intesti-
nal epithelial cells [34]. In mice, depletion of the gut micro-
biota compromises the intestinal epithelium, leading to
altered patterns of microvillus formation and reduced cell
renewal [44]. Probiotics form a biofilm to cover the intesti-
nal mucosa, preventing the invasion of foreign bacteria,
and they also produce acidic metabolites that lower the pH
of the intestinal tract, thereby inhibiting the growth of harm-
ful bacteria [45]. In addition, the accumulation of anaerobic
bacteria and the invasion of exogenous pathogenic bacteria
can lead to dysbiosis of the gut microbiota, damage the
intestinal epithelial cells, and destroy the gut microbiota bar-
rier [46].

2.3. Gut Microbiota Affects Skeletal Muscle Mass and
Function. According to emerging evidence, the gut microbi-
ota appears to play a role in regulating several muscle
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metabolic pathways [47]. Individual differences in gut
microbiota relative abundance are linked to muscle mass
and body weakness [48, 49], and higher gut microbiota
diversity is linked to increased muscle mass [50]. In young
women, the diversity of the gut microbiota is also related
to skeletal muscle mass [51]. Increased numbers of Oscillos-
pira and Ruminococcus and decreased numbers of Barnesel-
lacae and Christensenellacea taxa are found in people with
muscle wasting and physical weakness [48]. When com-
pared to older people with low functional muscular strength,
those with higher levels of Prevotella, Barnesiella, and Barne-
siella intestinihominis have greater muscle strength [52].
Barnesiella and Prevotella have genes that produce short-
chain fatty acids (SCFAs) [53].

Several studies from rodents have suggested that gut
microbes may be related to the function and quality of skel-
etal muscle. The effects of gut microbiota shortage on skele-
tal muscle were studied in two animal investigations, which
revealed that a lack of gut bacteria causes muscle mass loss
[54, 55].The abundant Rikenellaceae group found in the
gut microbiota of older mice is linked to a dose-dependent
rise in muscular frailty index [56]. Higher Sutterella to Bar-
nesiella ratio, altered inflammation and immune function,
and decreased gastrocnemius and triceps size in rats with
muscle atrophy were compared with healthy adult rats
[47]. Comparison of germ-free (GF) mice lacking gut micro-
biota and pathogen-free (PF) mice with gut microbiota
revealed skeletal muscle atrophy and decreased muscle mass
in GF mice [23]. Ghrelin-deficient mice develop microbial
dysbiosis at a young age and then lose muscle mass and
function as they get older [57]. A decrease in gut bacteria
can directly lead to muscle atrophy, according to two new
studies [23, 54].

Antibiotics change the microbiota, and metronidazole
has been shown to upregulate the expression of neurogenic
atrophy-related proteins in skeletal muscle in earlier studies,
as well as histone deacetylase 4, myostatin (MyoG), and
FOXO1/FXOX3-mediated protein degradation, leading to
skeletal muscle atrophy, thereby reducing muscle mass in
the hind limb and muscle fiber volume in the tibialis anterior
muscle of mice [58]. Similarly, antibiotic-treated mice
resulted in muscle atrophy, reduced muscle mass, decreased
running endurance, and increased ex vivo muscle fatigue
[26, 59]. However, after inoculation with natural microbes
in antibiotic-treated mice, the mice had increased muscle
mass and a muscle mass/body weight ratio [59].

In vitro studies have also shown that gut microbial prod-
ucts can directly affect muscle mass [60]. The levels of two
intestinal microbial metabolites (indoxyl sulfate and p-cresol
sulfate) increase with age and play a vital part in muscle func-
tion [61]. Indoxyl sulfate, a biomarker of uremic sarcopenia,
accelerates muscle atrophy by increasing inflammation levels,
oxidative stress, and myasthenic gene expression and is nega-
tively correlated with muscle strength and physical exercise
[62]. Similarly, the gut microbiota that produces p-cresol sul-
fate, through insulin resistance and increasing muscle lipid
content, ultimately contributes to poor muscle status [63].
Conversely, SCFAs are the end product of colonic protein fer-
mentation and have many important physiological functions.

3. The Gut Microbiome Regulates Skeletal
Muscle through a Variety of Mechanisms

3.1. Inflammation, Immunity, and Autophagy. One of the
major mechanisms contributing to the loss of skeletal mus-
cle mass and function is systemic chronic inflammation.
As research has progressed, the importance of the gut micro-
biota in skeletal muscle metabolism and immunological
function has become recognized. The gut microbiota pro-
motes metabolic homeostasis and immune function by
strengthening the intestinal barrier [64]. Gut microbial dis-
orders and loss of variety, in contrast, compromise the integ-
rity of the intestinal barrier, allowing hazardous microbial
products such as lipopolysaccharide (LPS) to enter the
bloodstream, and these harmful substances trigger systemic
inflammation and lead to metabolic disorders and decreased
muscle function and mass [15]. Elevated LPS levels activate
Toll-like receptor (TLR) 4 signaling, which leads to meta-
bolic endotoxemia [65]. Activation of the TLR4 signaling
pathway causes a significant increase in nuclear factor-
(NF-) κB protein levels (p50 and p65) and c-Jun N-
terminal kinase phosphorylation, resulting in a decrease in
human immune function [65]. Specifically, the TLR4 signal-
ing pathway induces upregulation of proinflammatory cyto-
kines (interleukin-6 and tumor necrosis factor-α) through a
cascade response, thereby inducing a systemic inflammatory
response [66] (Figure 1).

In recent years, autophagy has received a lot of attention
as a fundamental element in skeletal muscle mass and func-
tion regulation. Autophagy ensures skeletal muscle quality
and function by removing dysfunctional organelles from
senescent cells [67]. The AMP-activated protein kinase
(AMPK) and peroxisome proliferator-activated receptor-
coactivator- (PGC-) 1 signaling pathways are known to
regulate cellular metabolism and play essential roles in
autophagy, inflammation, insulin resistance, and skeletal
muscle. In addition, AMPK and PGC-1α signaling pathways
are associated with the gut microbiota–muscle axis [68]. The
activation of AMPK and PGC-1 decreases with age [69], and
inhibition of AMPK and PGC-1α signaling pathways
decreases autophagic activity, leading to a decrease in skele-
tal muscle mass and function [70]. Decreased autophagic
activity exacerbates the inflammatory response, which in
turn inhibits activation of the AMPK signaling pathway
[71]. The reduced autophagic activity also clusters dysfunc-
tional organelles in senescent cells, thereby increasing the
production of reactive oxygen species (ROS). The level of
the inflammasomes, including Nod-like receptor 3 (NLRP3),
is stimulated by ROS [72]. The NF-κB signaling mentioned
above also stimulates the production of NLRP3 inflamma-
somes [73]. Thus, dysregulated autophagic activity and
inflammatory responses play a pivotal part in the loss of
skeletal muscle mass and function, and AMPK and PGC-
1α signaling pathways are closely associated with the gut
microbiota–muscle axis [68]. Further research into the rela-
tionships between the AMPK and PGC-1 signaling path-
ways, autophagy, inflammatory responses, and the gut
microbiome could aid in the treatment of disorders charac-
terized by skeletal muscle mass and function loss (Figure 1).
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Increased expression of atrophy marker genes, particu-
larly Murf-1 and Atrogin-1, which play a critical role in
muscle atrophy, is linked to the role of microbiota in the
reduction of muscle mass and function [74]. FOXO tran-
scription factors influence the production of Murf-1 and
Atrogin-1 [74]. By activating the FOXO3-mediated protein
breakdown pathway, AMPK modulates muscle fiber size
[75]. Decreased muscle mass and strength in GF mice are
associated with increased expression of FOXO, Murf-1,
and Atrogin-1. The MyoG and FOXO3 pathways and their
downstream target genes are regulated by the gut microbiota
and their derived metabolites during protein synthesis and
degradation [76]. The activation of AMPK signaling in GF
mouse muscle suggests that the AMPK/FOXO3/Atrogin-1/
Murf-1 signaling pathway may be implicated in the gut
microbiota–muscle axis [23] (Figure 1).

3.2. Endocrine System. The endocrine system has an impor-
tant role in muscle mass regulation, with insulin, insulin-like
growth factor- (IGF-) 1, and growth hormone influencing
muscle growth and development [77]. In general, insulin
acts on skeletal muscle to promote glucose uptake and
upregulates anabolic signaling, which influences the rate
of muscle protein synthesis [78]. Dysregulation of the gut
microbiota and disruption of epithelial regeneration can
be founded in intestinal epithelial IGF-1 gene-deficient mice
compared with normal mice [79]. Mechanistically, IGF-1
regulates muscle growth through the phosphatidylinositol
3-kinase (PI3K)/Akt signaling pathway and inhibits the
mRNA transcription and translation process of muscle pro-

tein synthesis (MPS) [80]. The PI3K/AKT signaling pathway
is a well-known insulin-resistance pathway [81], and it is dis-
rupted in diabetic patients. Insulin production and beta-cell
activity may be diminished once this route is blocked, wors-
ening insulin resistance even more [82]. Insulin resistance
causes muscle cells to be unable to utilize glucose and instead
rely on glycogen or fat, which can lead to a loss of muscle
mass and function [83] (Figure 2).

Glucocorticoids can induce skeletal muscle atrophy
under pathological conditions [84]. One of the target genes
for glucocorticoid receptor activation is Kruppel-like factor
(KLF) 15, which is implicated in metabolic activities in skel-
etal muscle such as overexpression of branched-chain ami-
notransferase2, which leads to degradation of branched-
chain amino acids (BCAAs) [85]. Loss of gut microbiota also
leads to the degradation of BCAAs in muscle. Increased
catabolism of BCAAs in GF mice is a key factor in muscle
atrophy, and increased expression of genes involved in
BCAA metabolism leads to reductions in muscle mass, hind-
limb grip strength, and spontaneous activity in mice [23].
Catabolism of BCAAs is linked to skeletal muscle proteolysis
and has the ability to modulate protein synthesis [86]
(Figure 3).

3.3. Protein Anabolism. A balance between protein synthesis
and breakdown keeps skeletal muscle mass in check. A state of
negative muscle protein balance occurs when the rate of mus-
cle protein breakdown (MPB) exceeds the rate of MPS over
time, resulting in a reduction in skeletal muscle function and
mass [87]. It is widely believed that the decrease in muscle

LPS

TLR4 TLR4
ROS

AMPK

FOXO3NLRP3NF-𝜅B
p50

NF-𝜅B
p65C-Jun

P

IL-6 TNF-𝛼
Murf-1

Atrogin-1

Autophagy

MAPK NF-𝜅B

Figure 1: TLR4 signaling and the production of ROS induce inflammatory responses. AMPK signaling regulates autophagic activity and
produces muscle atrophy factors.
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function and mass is caused by diminished ability to stimulate
MPS rather than by acceleration of MPB [88]; a metabolic
phenomenon known as muscle anabolic resistance.

Mammalian target of rapamycin (mTOR) is a down-
stream target of PI3K/Akt. mTOR stimulates protein syn-
thesis in two ways: phosphorylation and inactivation of
eukaryotic initiation factor 4E-binding protein1 and phos-
phorylation and activation of ribosomal S6 kinase1 [89].
Many studies have demonstrated that mTOR signaling
regulates MPS, and that inhibition of mTOR signaling
results in decreased muscle function and muscle loss
[90]. IGF-1 can activate mTOR activity by activating the
PI3K/Akt signaling pathway, thereby stimulating protein
synthesis [91]. Production of myasthenic markers (Murf-
1 and Atrogin-1) is downregulated by the PI3K/Akt path-
way [92]. However, phosphorylation and activation of
AMPK can inhibit mTOR activity [93]. Decreased insulin
sensitivity and inflammatory responses also reduce mTOR
signaling. Reduced insulin sensitivity inhibits mTOR activity
by reducing IGF-1 levels, and overproduction of inflamma-
tory factors as well as ROS can inhibit the mTOR pathway
by activating the AMPK pathway [9] (Figure 2).

An increasing number of studies have shown that the gut
microbiota can produce a large number of bacterial metabo-
lites to activate diverse receptors in host cells, thus maintain-
ing homeostasis in the host. Bile acids (BAs) are metabolites
produced by the microbiota [94]. BAs bind to cellular BA

receptors, one of which is the nuclear farnesoid X receptor
(FXR), to modulate host glucose and lipid metabolic signal-
ing [95]. FXR is activated in the ileum and produces fibro-
blast growth factor (FGF) 19, which is called FGF15 in
rodents. In previous research, BAs, BA receptors, and the
FXR-FGF15/19 signaling pathway have all been linked to
skeletal muscle mass and function [96]. The expression of
FGF15/19 activates the protein kinase (ERK) signaling path-
way and phosphorylation of ERK downstream targets p90
ribosomal S6 kinase and ribosomal protein S6 to catalyze
protein synthesis [97]. In short, gut microbiota disorders
inhibit the BA/FXR/FGF15/19/ERK signaling pathway,
resulting in restricted protein synthesis and thus skeletal
muscle atrophy [98] (Figure 4).

3.4. Peroxisome Proliferator-Activated Receptors. Peroxisome
proliferator-activated receptors (PPARs) are members of the
nuclear receptor family of transcription factors that are acti-
vated by fatty acids and their derivatives. After activation by
ligand binding, PPAR heterodimerizes with retinoid X
receptors, forming a heterodimer that binds to a PPAR
response element upstream of the target gene promoter, ulti-
mately regulating the transcription of the target gene [99].
There are three subtypes of PPAR: PPARα, β/δ, and γ.
PPARα is highly expressed not only in the liver, heart,
brown adipose tissue, and kidney but also in skeletal muscle
[100]. It plays an important role in fatty acid catabolism by

IGF-1

PI3KPI3K

AKT mTOR
AMPK

Autophagy

ROS

FOXO3

4E-BPS6K1

PP

Atrogin-1
Murf-1

Figure 2: IGF-1 activates mTOR through PI3K/AKT signaling to stimulate protein synthesis. The PI3K/AKT signaling pathway inhibits the
expression of myasthenic markers (Murf-1 and Atrogin-1). ROS inhibits mTOR activity by activating the AMPK signaling pathway.

Glucocorticoids KLF15 BCAT2 BCAAS
Protein

synthesis

Figure 3: Glucocorticoids inhibit protein synthesis by activating KLF15, which leads to the degradation of BCAAs.
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regulating peroxisomal and mitochondrial β-oxidation and
microsomal ω-oxidation of fatty acids; it is also involved in
glucose metabolism and is key in controlling energy expen-
diture and suppressing inflammatory responses [101]. The
expression of PPARβ/δ is more widespread in skeletal mus-
cle, and it plays an important role in glucose and lipid
metabolism, inflammatory response, energy expenditure,
and muscle fiber type switching [102]. PPARγ is highly
expressed in adipocytes and is associated with lipid deposi-
tion in muscle and other organs, affecting adipogenesis as
well as triglyceride storage [103].

It has been shown that mice lacking PPARβ/δ have a
reduced number of muscle satellite cells with decreased
regenerative capacity, ultimately leading to muscle atrophy
and decreased muscle mass and body weight, suggesting that
PPARβ/δ regulates postnatal myogenesis and regeneration
in mice [104]. Some mice with specific active PPARβ/δ have
shown greater resistance to fatigue [105]. Abnormal energy
metabolism and reduced muscle fibers have been observed
in mice with PPARβ/δ knockout in muscle and adipocyte
hypertrophy, and glucose intolerance with insulin resistance
has also been observed [106]. PGC-1α has been shown to be

ERK

FXR

BAs

Protein synthesis

Muscle mass

FGF19/15

Figure 4: BAs promote protein synthesis and strengthen muscle mass through the FXR/FGF15/19 signaling pathway.
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Figure 5: Mechanisms involved in the gut microbiota–skeletal muscle axis.
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Table 1: The effects of gut microbiota on skeletal muscle.

References Objects Methods Results Remarks

Chen et al.
[123]

Mice Supplementation of LP10
Forelimb grip strength and

endurance swimming time were
increased

LP10 reduces the inflammatory response,
improves glucose utilization, and increases
the number of type I muscle fibers in the

gastrocnemius muscle

Storelli
et al. [124]

Drosophila
Supplementation of

Lactobacillus plantarum
Increased protein synthesis and
enhanced muscle anabolism

Upregulation of mTOR pathway and
enhancement of MPS

Chen et al.
[125]

Mice Supplementation of NCE
Forelimb grip strength and

endurance swimming time were
increased

NCE alters gut microbiota composition and
increases tissue glycogen content

Okamoto
et al. [126]

LMC diet
mice

Inulin supplementation
combined with microbial

transplantation
Endurance was improved

Muscle mass improvement was not found,
and it may be difficult to promote muscle
growth with a single supplement of inulin

Katsuki
et al. [127]

Mice
Supplementation of
Lactobacillus curvatus

CP2998

The myotubular diameter was
restored

CP2998 prevents dexamethasone-induced
muscle atrophy by inhibiting glucocorticoid

receptor activation

Hsu et al.
[128]

Mice Supplementation of kefir

Significant improvement in
forelimb grip strength score,
endurance swim time, and

muscle mass

Altered gut microbiota composition and
increased tissue glycogen content

Ni et al.
[129]

Mice

Supplementation of
Lactobacillus casei LC122
or Bifidobacterium longum

BL986

Improved muscle strength and
function

Improved intestinal barrier function and
reduced inflammatory response

Chen et al.
[130]

Mice
Supplementation of

Lactobacillus paracasei
PS23

Reduced risk of sarcopenia
Improved mitochondrial function and
decreased secretion of proinflammatory

cytokines

Huang
et al. [131]

Mice
Colonization of

Eubacterium rectale or
Clostridium coccoides

Endurance swimming time was
increased

/

Scheiman
et al. [132]

Mice
Inoculation of Veillonella

atypica
Treadmill running exhaustion

time was increased
Veillonella atypica converts lactic acid

metabolism to propionic acid

Fielding
et al. [52]

Mice
Fecal samples from older

adults

The grip strength of mice in the
high-function group increased

significantly

Altered gut microbiome and strengthened
intestinal barrier in high-functioning mice

Munukka
et al. [133]

Mice
Supplementation of
Faecalibacterium

prausnitzii
Muscle mass was increased

Enhanced mitochondrial respiration,
reduced inflammatory response, altered gut
microbiota composition, and improved

intestinal integrity

Lee et al.
[134]

Mice Supplementation of SA-03
Significant improvement in

muscle strength and endurance
performance

Increased liver and muscle glycogen stores,
decreased levels of lactate, blood urea
nitrogen, ammonia, and creatine kinase

Lee et al.
[135]

Mice
Supplementation of OLP-

01
Increased grip strength and

endurance in mice
Increased SCFA, liver, and muscle glycogen

Hsu et al.
[54]

Mice
Supplementation of
Bacteroides fragilis

Increased muscle mass and
endurance swimming time

Serum superoxide dismutase activity was
lower than GF mice

Lahiri
et al. [23]

Germ-free
mice

Supplementation of SCFA
Increased muscle mass and
function and grip strength

SCFA reduces the expression of Atrogin-1
and Murf-1

Walsh
et al. [138]

Mice
Supplementation of

butyrate
Prevention of hind limb muscle

atrophy in mice

Increase in muscle fibers, prevention of
intramuscular fat accumulation,

improvement of mitochondrial function and
glucose metabolism

Buihues
et al. [139]

Elderly
people
(≥65
years)

Supplementation of
prebiotic:inulin plus
fructooligosaccharides

Improved muscle strength and
endurance, less fatigue

Prebiotics promote the growth of beneficial
bacteria and reduce proinflammatory

cytokines
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a downstream target gene of PPARβ/δ [107]. The expression
of PPARβ/δ also increases the level of PGC-1α, which affects
fatty acid oxidation and glucose metabolism [108]. These
results also show that PPAR agonists can improve the defi-
ciency of myotonic proteins, compensate for the loss of muscle
fibers, and improve myotonic dystrophy [109]. Experiments
using antibiotics to treat mice with changes in muscle periph-
eral biological clock mechanisms and metabolic regulators
(PPARγ) have suggested that disturbances in the gut microbi-
ota are associated with the expression of genes that regulate
muscle peripheral circadianmechanisms andmetabolism [26].

PPAR primarily interacts with the gut microbiota in
inflammation and metabolism [110]. PPARα protects the
intestine from an inflammation-induced increase in intesti-
nal permeability by preventing neutrophil infiltration, and
the microbiota activates PPARα through TLR4 signaling,
thereby acting to reduce inflammation [111]. Previously, it
was reported that treatment of mice with type I diabetes with
a PPARα agonist (bezafibrate) resulted in improved skeletal
muscle insulin sensitivity through activation of PI3K/AKT

signaling [112]. Similarly, PPARβ/δ and PPARγ play a role
in reducing inflammation in the intestines, thereby regulat-
ing the composition of the intestinal flora [113]. PPARβ/δ
suppresses the inflammatory response and enhances insulin
sensitivity by activating the AMPK signaling pathway and
inhibiting the extracellular regulated protein kinase ERK1/
2 [114]. PPARγ in muscle promotes glucose utilization by
muscle through activation of glucose transporter protein
(GLUT) 1 and GLUT4 [115].

3.5. Mitochondrial Function and Neuromuscular Connectivity.
Skeletal muscle mitochondrial dysfunction is also a cause of
decreased muscle mass and function [116]. Skeletal muscle
mitochondrial function and content decrease with age, and
electron microscopy shows abnormally expanded mitochon-
drial segments [117]. The production of IGF-1 by the gut
microbiota connects mitochondrial skeletal muscle to the gut
microbiota. It was discovered that IGF-1 levels in GF mice
were lower than in PF mice, and that the expression of genes
encoding mitochondrial oxidative phosphorylation complexes
was lower in GF mouse skeletal muscle, resulting in a loss in
mitochondrial function [23].

The central nervous system controls skeletal muscle
function via neurotransmission at the neuromuscular junc-
tion [118]. Acetylcholine, a key neurotransmitter for signal-
ing between muscles and nerves, was reduced in GF mice
when compared to PF mice, as was the expression of the ace-
tylcholine receptor subunit Rapsyn and low-density lipopro-
tein receptor-related protein 4; both of which are important
for neuromuscular junction assembly [23] (Figure 5).

4. Interventions

To date, there have been many preclinical and human studies
that have directly or indirectly demonstrated a link between
gut microbiota and muscle mass/function (Table 1). Various
interventions have been proposed for the gut microbiota,
and probiotics and/or prebiotics, SCFAs, dietary supplemen-
tation, and exercise have all been effective in enhancingmuscle
mass and host function (Figure 6). Dietary habits influence the
composition of the gut microbiota and can induce changes in

Table 1: Continued.

References Objects Methods Results Remarks

Huang
et al. [140]

Triathletes
Supplementation of

Lactobacillus plantarum
PS128

Significantly improves triathletes’
endurance

Regulate gut microbiota composition and
increase SCFA content

Huang
et al. [141]

Healthy
adults

Supplementation of LP10
Increased muscle mass and

fatigue resistance
LP10 improves aerobic endurance

performance

Barger
et al. [142]

Older men High dietary fiber diet
Higher grip strength and physical

performance indicators
High dietary fiber promotes butyrate

production

Morita
et al. [143]

Older
women

12 weeks of aerobic training Increased trunk muscle strength
Increased gut microbiota diversity and fecal

SCFA content

Shing
et al. [144]

Male
runners

Supplementation of
probiotic capsules

Prolonged fatigue exercise at high
temperatures

/

Salarkia
et al. [145]

Female
swimmers

Supplementation of
probiotic yogurt

Improved aerobic performance Improved maximum oxygen uptake

Eating
habits

Prebiotics/
probiotics

Gut microbiome

Muscle mass and function

SportsSCFA

Figure 6: Diet, exercise, prebiotics/probiotics, and SCFA
supplementation can alter the gut microbiota and improve muscle
mass and function.
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the microbiota that are important for the function of the
organism [119]. In the context of skeletal muscle aging, eat-
ing disorders cause reduced microbial diversity and increased
intestinal permeability, which inhibit cytokine-mediated pro-
tein anabolism [120]. Supplementation of prebiotics and/or
probiotics improves intestinal homeostasis and promotes
skeletal muscle metabolism and synthesis [121]. Exercise or
physical activity is also a factor in regulating the gut microbi-
ota [122].

In a mouse model, forelimb grip strength and endurance
swimming time were significantly increased after 6 weeks of
supplementation with Lactobacillus plantarum TWK10
(LP10), which increased glucose utilization and reduced
the inflammatory response by increasing the number of
types I muscle fibers in the gastrocnemius muscle, thereby
increasing endurance exercise time [123]. In a study of Dro-
sophila, Lactobacillus plantarum can increase protein syn-
thesis and upregulate mTOR, thereby promoting MPS and
enhancing muscle anabolism [124]. Curcumin as a prebiotic
can alter the composition of gut microbiota and improve
endurance, swimming time, and forelimb grip strength in
mice, possibly due to a significant increase in tissue glycogen
content in mice after supplementation with nanobubble cur-
cumin extract (NCE) [125]. Inulin combined with microbial
transplantation improves endurance in mice on a low
microbiome-accessible carbohydrate (LMC) diet, but no
improvement in muscle mass was found [126]. Myotube
diameter was significantly reduced after treatment of mouse
skeletal muscle C2C12 myotubes with dexamethasone,
whereas Lactobacillus curvatus CP2998 (CP2998) restored
mouse myotube diameter by inhibiting glucocorticoid recep-
tor activation and prevented muscle atrophy [127]. After
oral administration of kefir supplementation, the forelimb
grip strength scores, endurance swimming time, and muscle
mass of mice were significantly higher than in controls, and
the composition of the gut microbiota of mice was changed
(reduced Firmicutes/Bacteroidetes ratio) and tissue glycogen

content was also significantly increased after kefir supple-
mentation [128]. After oral administration of Lactobacillus
casei LC122 or Bifidobacterium longum BL986 for 12 weeks,
these two probiotics improved intestinal barrier function,
increased muscle strength, and reduced oxidative stress
and inflammation in peripheral tissues [129]. Lactobacillus
paracasei PS23 restores mitochondrial dysfunction due to
aging in mice, reduces inflammatory factor activity, and
has potential therapeutic implications for decreased skeletal
muscle function and quality [130]. Colonization of Eubacte-
rium rectale or Clostridium coccoides in mice increases
endurance swimming fatigue time [131]. Veillonella atypica
was isolated from fecal samples of marathon runners. Inoc-
ulation of this strain into mice significantly increases tread-
mill running exhaustion time, and Veillonella atypica
improves running time by converting exercise-induced
lactate metabolism to propionic acid [132]. Transferring
fecal samples from older adults (high-functioning/low-func-
tioning group) into GF mice found significantly increased
grip strength in high-functioning mice compared to low-
functioning mice [52]. Treatment with Faecalibacterium
prausnitzii increased muscle mass in high-fat-fed mice,
which may be associated with enhanced mitochondrial res-
piration, altered intestinal microbiota composition, reduced
inflammatory response, and improved intestinal integrity
[133]. Lactobacillus salivarius subspecies salicinius (SA-03)
was isolated from the gut microbiota of gold medal weight
lifters and then orally fed to mice for 4 weeks, resulting in
a significant improvement in muscle strength and endurance
performance and an increase in liver and muscle glycogen
stores [134]. Similarly, Bifidobacterium longum (OLP-01),
isolated from gold medal winners in weightlifting, was sup-
plemented into mice and found that OLP-01 supplementa-
tion improved grip strength and endurance in mice and
significantly increased liver and muscle glycogen levels
[135]. Compared with GF mice, mice in the Bacteroides fra-
gilis group showed increased endurance swimming time,

Exercise

Diet

Probiotics

Antibiotic

Age

Neuromuscular connection

Gut microbiota

Mitochondria

Glucose

Bile acid

Protein

Endocrine

Autophagy

Inflammation

BAs-FXR-FGF15/19

PI3K/Akt/mTORPI3K/Akt,K
LF15

AMPK, PGC-1𝛼
, N

LRP3

TLR4, N
F-𝜅B

Acetylcholine

PPAR𝛾, GLUT1/4

Figure 7: The gut–muscle axis under physiological and pathological conditions. Red arrows represent negative effects on muscles, and green
arrows represent positive effects on muscles.
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reduced physical fatigue, and lower serum superoxide dis-
mutase activity than GF mice [54].

Many studies have demonstrated that the gut microbiota
can produce SCFA by fermenting indigestible carbohydrates
[136]. SCFAs consist of three primary components: acetate,
propionate, and butyrate; all of which are absorbed in the
intestinal lumen and influence muscle and fat metabolism
[137]. After feeding SCFA to GF mice, it was found that
GF mice showed greater gastrocnemius muscle mass and
strength, and the grip strength of GF mice was increased,
which was consistent with the fact that SCFA increased
muscle density, muscle mass, and function in GF mice by
regulating the expression of Atrogin-1 and Murf-1 [23].
Butyrate prevents the loss of skeletal muscle mass and func-
tion during aging. After butyrate treatment, aged mice were
found to have increased muscle fibers, prevented intramus-
cular fat accumulation, decreased fat mass in mice, and
improved glucose metabolism and mitochondrial function
in skeletal muscle [138].

After 13 weeks of oral administration of prebiotics con-
sisting of a mixture of inulin plus fructooligosaccharides to
elderly people aged 65 and over with frailty syndrome, these
participants were found to have improved muscle strength
and reduced fatigue, possibly because the prebiotics affected
the body’s immune function by promoting the growth of
beneficial bacteria, inhibiting the growth of pathogens, and
reducing other proinflammatory cytokines [139]. In triath-
letes, Lactobacillus plantarum PS128 increased endurance
running performance, which was linked to changes in
microbiota composition and greater levels of SCFAs [140].
Lactobacillus plantarum TWK10 has been shown in previ-
ous studies to improve exercise performance in mouse
models, and LP10 has also been shown to do the same in
human experiments. In healthy adults taking LP10 daily, it
was found that LP10 significantly increased human exercise
capacity in a dose-dependent manner, as well as improved
fatigue-related performance and significantly increased mus-
cle mass [141]. An observational study of older men found
that a diet high in dietary fiber had higher physical perfor-
mance indicators, higher scores on the short physical perfor-
mance battery (SPPB), and higher grip strength, and that a
diet high in dietary fiber may have a positive effect on the
body’s production of butyrate [142]. In a test of 32 sedentary
older women over the age of 65, 12 weeks of aerobic training
altered the participants’ gut microbiota diversity and
increased trunk muscle strength, and fecal SCFA level con-
tent has also been increased [143]. After supplementing 10
male runners with probiotic capsules daily for 4 weeks, it
was found that probiotic supplements significantly increased
runners’ fatigued exercise time in the heat [144]. In a test of
young adult female swimmers, it was found that after 8
weeks of supplementation with probiotic yogurt, the ath-
letes’ aerobic performance improved [145].

5. Conclusion and Future Perspectives

The role of the gut microbiota–muscle axis plays a crucial
role in both humans and animals. The gut microbiota inter-
acts with skeletal muscle through inflammatory immunity,

autophagy, protein anabolism, energy, lipids, neuromuscular
connectivity, oxidative stress, mitochondrial function, and
endocrine and insulin resistance, thus affecting the physio-
logical functions of the body (Figure 7). Specifically, the
host’s diet provides nutritional resupply to the gut microbi-
ota, which maintains the structural integrity and the health
of the gut, and participates in and mediates nutrient absorp-
tion and metabolism in the gut, which provides the material
basis for muscle growth and development. Substances such
as neurotransmitters, SCFAs, and bile acids produced by
the metabolism of the gut microbiota regulate energy con-
sumption and storage through the nervous and circulatory
systems, providing energy for muscle development. The
gut microbiota also influences the secretion of insulin, gluco-
corticoids, and leptin through the endocrine system, hor-
mones that are important regulators of muscle growth and
development. In addition, disturbance of the gut microbiota
and invasion of exogenous harmful substances can lead to
the impaired intestinal barrier and increased secretion of
proinflammatory cytokines, which can negatively affect
muscle growth and development.

Dietary supplementation, probiotics and/or prebiotics,
SCFAs, and exercise can influence the composition of the
gut microbiota, improving skeletal muscle mass and func-
tion. Although there is now a large body of research demon-
strating a strong link and communication between gut
microbiota and muscle tissue, there are no clear experiments
showing which type or types of probiotics and/or prebiotics,
SCFA, promote muscle growth and development, and there
is also a lack of research on the quantitative nature of
supplements.

To validate the above influencing factors and the mech-
anisms involved, a large number of high-quality interven-
tional experimental studies are needed to demonstrate
how dietary supplementation, probiotics and/or prebiotics,
SCFAs, and exercise affect the gut microbiota. It is believed
that as research methods continue to advance, the under-
standing of the gut microbiota–muscle axis will become
more advanced. By regulating the gut microbiota, people
can improve several diseases caused by reduced skeletal
muscle mass and function.
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