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Subarachnoid hemorrhage (SAH) as a devastating neurological disorder is closely related to heightened oxidative insults and
neuroinflammatory injury. Pinocembrin, a bioflavonoid, exhibits different biological functions, such as immunomodulatory,
anti-inflammatory, antioxidative, and cerebroprotective activities. Herein, we examined the protective effects and molecular
mechanisms of pinocembrin in a murine model of SAH. Using an endovascular perforation model in rats, pinocembrin
significantly mitigated SAH-induced neuronal tissue damage, including inflammatory injury and free-radical insults.
Meanwhile, pinocembrin improved behavior function and reduced neuronal apoptosis. We also revealed that sirtuin-1 (SIRT1)
activation was significantly enhanced by pinocembrin. In addition, pinocembrin treatment evidently enhanced peroxisome
proliferator-activated receptor-γ coactivator expression and suppressed ac-nuclear factor-kappa B levels. In contrast, EX-527, a
selective SIRT1 inhibitor, blunted the protective effects of pinocembrin against SAH by suppressing SIRT1-mediated signaling.
These results suggested that the cerebroprotective actions of pinocembrin after SAH were through SIRT1-dependent pathway,
suggesting the potential application of pinocembrin for the treatment of SAH.

1. Introduction

The outcome of aneurysmal subarachnoid hemorrhage
(SAH) in clinical practice is still very poor [1–3]. SAH
occurs when a cerebral aneurysm ruptures and involves a
variety of pathogenic mechanisms. A great deal of preclinical
and clinical researches has observed that a deteriorated
inflammatory injury and heightened free-radical damage
exacerbated cerebrovascular injury and might explain the
poor outcome after SAH [4–6]. In addition, cerebral vaso-
spasm and the delayed cerebral ischemia contribute to the
long-term neurological deficits. Diminishing neuroinflam-
mation and oxidative stress could also ameliorate cerebral

vasospasm as well as the delayed cerebral ischemia after
SAH [7, 8]. Thus, targeting cerebral inflammatory injury
and free-radical insults would improve brain recovery after
SAH, but effective therapies are lacking.

Increasing evidence has indicated that medicinal plants
and their active ingredients may help to find new promising
therapeutic drugs for central nervous system (CNS) diseases.
Pinocembrin, a natural compound distributed in propolis,
shows immunomodulatory, anti-inflammatory, antifree rad-
ical, and anticytotoxicity properties [9]. A great deal of
research has demonstrated the promising effects of pino-
cembrin against various CNS diseases including ischemic
brain injury, hemorrhagic brain injury, traumatic brain
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injury, psychiatric disorders, and neurodegenerative disor-
ders [9–12]. In a model of intracerebral hemorrhage, pino-
cembrin significantly mitigated hemorrhagic brain injury
by suppressing toll-like receptor 4 and reducing M1 microg-
lia [9]. In another study, pinocembrin reduced neuronal

damage in hippocampus and improved cognitive function
by inhibiting autophagy in a cerebral ischemia/reperfu-
sion model [13]. Meanwhile, numerous studies have indi-
cated that pinocembrin could pass the blood-brain barrier
[9, 14]. Due to its different pharmacological functions
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Figure 1: Pinocembrin improved neurological function and reduced brain edema after SAH. (a) The chemical structure of pinocembrin.
The mNSS score (b) and rotarod tests (c) were analyzed at 24 and 72 h post-SAH. (d) The brain water content in all experimental
groups was analyzed at 24 h post-SAH. (e) Representative photomicrographs of HE-stained images. Scale bar = 50μm. Values were
presented as mean ± SD, n = 6-10 per group. ∗P < 0:05.
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and no associated toxicities, pinocembrin has great poten-
tial for treating neurovascular diseases. However, much
less is known about the efficacy of pinocembrin in SAH
and its implicated mechanisms.

Sirtuin-1 (SIRT1) is a histone deacetylase that is widely
distributed in cerebral cortex. Accumulating preclinical evi-
dence has indicated that SIRT1 is a promising molecular
candidate for SAH [15–17]. By deacetylating a variety of
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Figure 2: Pinocembrin upregulated SIRT1 activation and improved histological outcomes after SAH. (a) Western blotting was used to
analyze SIRT1 expression. (b) Pinocembrin increased SIRT1 expression after SAH. (c) Representative photomicrographs of SIRT1
staining in brain tissue at 24 h post-SAH. (d) Pinocembrin resulted in enhanced SIRT1 staining at 24 h post-SAH. (e) Representative
photomicrographs of cresyl violet-stained images. (f) Pinocembrin improved neuronal survival at 72 h post-SAH. Scale bar = 50 μm.
Values were presented as mean ± SD, n = 6 per group. ∗P < 0:05.
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intracellular targets such as peroxisome proliferator-
activated receptor-γ coactivator (Pgc-1α) and ac-nuclear
factor-kappa B (ac-NF-κB), SIRT1 provides protection in
reduction of inflammatory injury, free radical damage, and
cell death [18, 19]. Intriguingly, pinocembrin is able to mod-
ulate SIRT1 signaling in many diseases [20, 21]. However, it
remains unknown the effects of pinocembrin on brain tissue
damage caused by SAH and whether pinocembrin can acti-

vate SIRT1 and its downstream targets. Therefore, we exam-
ined whether pinocembrin protects against SAH insults and
focused on SIRT1-depdent pathway.

2. Materials and Methods

2.1. Animals and In Vivo Model. All experimental studies
were conformed to the ARRIVE guidelines [22]. Adult
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Figure 3: Pinocembrin activated SIRT1-mediated signaling following SAH. (a) Protein bands of SIRT1, Pgc-1a, and ac-NF-κB after
pinocembrin treatment. Pinocembrin upregulated SIRT1 (b) and Pgc-1a (c) levels and suppressed ac-NF-κB (d) expression after SAH.
(e) Representative photomicrographs of SIRT1 staining in brain tissue at 24 h post-SAH. (f) Pinocembrin resulted in enhanced SIRT1
staining at 24 h post-SAH. Scale bar = 50μm. Values were presented as mean ± SD, n = 6 per group. ∗P < 0:05.
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Figure 4: Continued.
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male-SD rats (weighing 250-300 g) were acquired from the
Animal Center of Fujian University. Rat model of endovas-
cular perforation SAH was built in accordance with previous
protocols [16, 23]. Before SAH, 1% sodium pentobarbital
was administered by intraperitoneal injection. A marked 4-
0 filament was employed to puncture the origin of the left
middle cerebral artery from the left internal carotid artery.
Sham-treated animals received a similar procedure without
vessel perforation. Following surgery, all rats were adminis-
tered with buprenorphine (0.1mg/kg) to relieve the pain. A
total of 253 rats (33 rats died and 6 rats were excluded) were
used. Animal groups and mortality rates can be seen in Sup-
plementary table 1.

2.2. Drug Administration. Pinocembrin (Sigma-Aldrich)
was resolved in 20% hydroxypropyl-b-cyclodextrin before
use. Pinocembrin (10, 20, and 40mg/kg) or vehicle was
administered by oral gavage at 2 h after surgery and then
once a day [24]. Resveratrol (RSV, Sigma-Aldrich), a pos-
itive SIRT1 activator, was used as a positive control drug.
RSV (60mg/kg) was resolved in 1% DMSO and adminis-
tered intraperitoneally at 2 h after surgery and then once
a day. The dose of RSV and injection route were based
on previous studies [25]. Ex-527 (10mg/kg) (Sigma-
Aldrich) or vehicle (1% DMSO) was administered intra-
peritoneally for 3 days before surgery [26]. Experiment
design can be seen in Supplementary Figure 1.

2.3. Determination of Oxidative Stress-Related Markers.
The lipid peroxidation in the brain tissue was evaluated
by estimation malondialdehyde (MDA). The absorbance
at 532nm was used to determine MDA content. The
endogenous antioxidants including glutathione (GSH),
superoxide dismutase (SOD), and catalase (CAT) were

determined in line with the manufacturers’ instructions
(Jiancheng Bioengineering Institute).

2.4. ELISA Assay. Supernatants from rat brains were assayed
for rat IL-1β, rat IL-6, and rat ICAM-1 by specific ELISA
kits. The exact protocols were conducted in line with the
manufacturer’s instructions. The total protein levels in each
sample were assessed with BCA method.

2.5. Immunoblotting Analysis. The same mass of supernatants
were loaded onto SDS-PAGE and transferred to PVDF mem-
branes. The membranes were blocking and then hatched with
specific Abs overnight at 4°C. After that, the secondary Abs
were hatched with these membranes. ECL kits were used to
reveal the protein bands. Abs used can be seen in Supplemen-
tary material.

2.6. Immunofluorescence Staining. Brain sections were
treated following the standard procedures [5, 27]. Briefly,
brain sections were fixed with 4% PFA and subsequently
with 5% BSA. After that, slides were stained with primary
Abs and appropriate secondary Abs. The nuclei were
shown by 4,6-diamidino-2-phenylindole staining. Abs used
for this experiment can be seen in Supplementary table 2.

2.7. TUNEL Assay. TUNEL assay (Beyotime Biotechnology)
was used to determine neuronal apoptosis. Frozen brain sec-
tions were treated following the standard procedures by the
manufacturer. The nuclei were revealed by staining with
DAPI. The apoptotic cells were captured using a fluores-
cence microscope.

2.8. Nissl Staining and H&E Staining. Nissl staining and
H&E staining were used to determine post-SAH brain tis-
sue pathological changes. In accordance with the standard
protocols [28], brain sections were stained with cresol
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Figure 4: Pinocembrin alleviated free radical injury after SAH. Measurement of intracellular MDA (a), SOD (b), GSH (c), and CAT (d) after
pinocembrin treatment. (e) Protein bands of 3-nitrotyrosine after pinocembrin treatment. (f) Pinocembrin suppressed 3-nitrotyrosine
expression after SAH. (g) Representative images of 8-OhdG staining in brain tissue. (h) Pinocembrin resulted in decreased 8-OhdG
staining at 24 h post-SAH. In contrast, Ex-527 abrogated the antifree radical effects of pinocembrin. Scale bar = 50μm. Values were
presented as mean ± SD, n = 6 per group. ∗P < 0:05.
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violet or hematoxylin and then cover-slipped in Permount.
The surviving neurons were observed with a light
microscope.

2.9. Behavior Function. The neurologic deficits of SAH rats
were determined by using the mNSS method [29]. The
rotarod test was conducted to evaluate post-SAH motor
deficits [30]. Before surgery, animals needed training for

3 days. The average time to fall off was recorded. Beam
walking test was conducted blindly according to a previous
study by Zhang et al. [28]. Before the normal beam walk-
ing test, rats were pretrained for 3 days.

2.10. Brain Water Content Analysis. As previous studies
reported [31], the intact brains were quickly divided into two
parts including contralateral and ipsilateral hemispheres. Each
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Figure 5: Pinocembrin mitigated post-SAH inflammatory injury. ELISA was used to detect proinflammatory cytokine release. Pinocembrin
decreased the levels of IL-1β (a), IL-6 (b), and ICAM-1 (c) after SAH damage. (d) Representative photomicrographs of Iba1 staining in brain
tissue at 24 h post-SAH. (e) Pinocembrin resulted in decreased microglia activation at 24 h post-SAH. In contrast, Ex-527 abrogated the anti-
inflammatory effects of pinocembrin. Scale bar = 50 μm. Values were presented as mean ± SD, n = 6 per group. ∗P < 0:05.
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part was weighed immediately (WW) and then dried in an
oven. After that, each part was weighted again (DW). Brain
edema ratio = ðWW −DWÞ/WW× 100%.

2.11. Statistics. Data was expressed as mean ± s:d. Student’s t
-test was used when comparing two groups. For beam walk-
ing test, two-way analysis of variance with Tukey post hoc

SAH + Pino + Ex-527SAH + PinoSAH + VehicleSham

TUNEL

TUNEL + NeuN

Merge

(a)

SA
H

 +
 P

in
o 

+ 
Ex

-5
27

SA
H

 +
 P

in
o

SA
H

 +
 V

eh
ic

le

Sh
am

0

20

40

60

80

TU
N

EL
 p

os
iti

ve
 n

eu
ro

ns
(p

er
 fi

el
d)

⁎ ⁎
⁎

(b)

SA
H

 +
 P

in
o 

+ 
Ex

-5
27

SA
H

 +
 P

in
o

SA
H

 +
 V

eh
ic

le

Sh
am

0

5

10

15

20

m
N

SS
 sc

or
e

⁎

⁎ ⁎

(c)
SA

H
 +

 P
in

o 
+ 

Ex
-5

27

SA
H

 +
 P

in
o

SA
H

 +
 V

eh
ic

le

Sh
am

0

50

100

150

Th
e l

at
en

cy
 to

 fa
ll 

(s
)

⁎

⁎ ⁎

(d)

SAH + Pino + Ex-527SAH + Pino

SAH + VehicleSham

(e)

SA
H

 +
 P

in
o 

+ 
Ex

-5
27

SA
H

 +
 P

in
o

SA
H

 +
 V

eh
ic

le

Sh
am

0

50

100

150

200

Su
rv

iv
in

g 
ne

ur
on

s (
pe

r fi
el

d)

⁎

⁎ ⁎

(f)

Figure 6: Pinocembrin reduced neuronal apoptosis and improved neurological outcomes after SAH. (a) Representative photomicrographs
of TUNEL staining in brain tissue at 24 h post-SAH. (b) Pinocembrin decreased neuronal apoptosis at 24 h post-SAH. Pinocembrin
improved mNSS score (c) and motor behavior (d) after SAH. Ex-527 abated the cerebroprotective effects of pinocembrin after SAH. (e)
Representative photomicrographs of cresyl violet-stained images. (f) Pinocembrin improved neuronal survival at 72 h post-SAH, which
could be reversed by Ex-527 pretreatment. Scale bar = 50 μm. Values were presented as mean ± SD, n = 6-10 per group. ∗P < 0:05.
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test was conducted. One-way analysis of variance with
Tukey post hoc test was conducted for other data. The
GraphPad Prism was employed for statistics. Probability
value < 0:05 was considered significantly different.

3. Results

3.1. Pinocembrin Mitigated Brain Edema and Neurological
Impairment and Enhanced SIRT1 Expression following
SAH. Accumulating evidence has indicated that RSV could
significantly reduce EBI and improve neurological outcome
after SAH; RSV was employed as a positive control drug.
Figure 1(a) shows the chemical structure of pinocembrin.

It indicated that RSV and pinocembrin at doses of 20 and
40mg/kg evidently decreased post-SAH neurological defi-
cient scores and motor impairment (P < 0:05) (Figures 1(b)
and 1(c)). But 10mg/kg pinocembrin failed to improve
post-SAH neurological outcome. Additionally, RSV and
pinocembrin administration at 20 and 40mg/kg markedly
mitigated post-SAH brain edema as well as histopathological
impairment (P < 0:05) (Figures 1(d) and 1(e)). Our data
indicated that 20mg/kg was the optimal dose after SAH.
We then evaluated the effects of pinocembrin on SIRT1
expression after SAH. Western blotting data and immuno-
fluorescence staining results showed that both RSV and
pinocembrin significantly enhanced SIRT1 levels in the
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brain tissue following SAH (P < 0:05) (Figures 2(a)–2(d)).
Meanwhile, Nissl staining indicated that both RSV and
pinocembrin improved post-SAH neuronal survival
(P < 0:05) (Figures 2(e) and 2(f)).

3.2. Pinocembrin Activated SIRT1-Mediated Signaling after
SAH. Pgc-1α, the downstream target of SIRT1, plays a cru-
cial in regulating oxidative metabolism and cell survival. In
addition, SIRT1 can deacetylate RelA/p65 subunit of NF-
κB to suppress inflammatory injury. As shown, our data
revealed that pinocembrin evidently enhanced the expres-
sions of SIRT1 and Pgc1-α and decreased the protein levels
of ac-NF-κB after SAH (P < 0:05) (Figures 3(a)–3(d)). Ex-
527 treatment validated the interaction between pinocem-
brin and SIRT1 signaling. It showed that Ex-527 suppressed
the enhanced SIRT1 and Pgc1-α by pinocembrin and further
aggravated post-SAH ac-NF-κB expression (P < 0:05)
(Figures 3(a)–3(d)). Similarly, immunofluorescence staining
results indicated that pinocembrin enhanced post-SAH
SIRT1 activation, which could be reversed by Ex-527
(P < 0:05) (Figures 3(e) and 3(f)).

3.3. Pinocembrin Inhibited Free Radical Damage after SAH.
Free radical insults contribute greatly to SAH-induced brain
injury. As shown, SAH insults aggravated lipid peroxidation
and decreased the endogenous antioxidant enzyme activities.
On the contrary, pinocembrin exhibited decreased levels of
MDA and high intracellular endogenous antioxidant
enzyme activities (P < 0:05) (Figures 4(a)–4(d)). Western
blot and immunofluorescence staining results further
showed that SAH significantly increased the formation of
nitrotyrosine and 8-OhdG immunity, which could be abated
by pinocembrin (P < 0:05) (Figures 4(e)–4(h)). In contrast,
the specific inhibitor of SIRT1, Ex-527, significantly abro-
gated the antifree radical insults of pinocembrin after SAH
(P < 0:05) (Figures 4(a)–4(h)).

3.4. Pinocembrin Inhibited Post-SAH Inflammatory Injury.
Neuroinflammation is also essential to how SAH develops.
As shown, SAH markedly triggered microglia activation in
the brain as well as the inflammatory cytokine secretion. In
contrast, pinocembrin evidently suppressed the acute
inflammatory injury after SAH (P < 0:05) (Figures 5(a)–
5(e)). Ex-527 was administered before SAH induction. As
expected, animals pretreated with Ex-527 blunted the anti-
inflammatory effects of pinocembrin on SAH (P < 0:05)
(Figures 5(a)–5(e)).

3.5. Pinocembrin Ameliorated Neuronal Death and Behavior
Impairment after SAH. Neuronal death is closely associated
with poor outcome after SAH. Both free radical insults and
inflammatory injury could aggravate post-SAH neuronal apo-
ptosis. We suspected that pinocembrin could also reduce neu-
ronal apoptosis and improve neurological function by
inhibiting oxidative and inflammatory-related damage.
TUNEL staining showed that SAH dramatically aggravated
neuronal apoptosis in the brain cortex, which could be statis-
tically suppressed by pinocembrin (P < 0:05) (Figures 6(a)
and 6(b)). Meanwhile, the aggravated neurological deficits
and motor impairment by SAH could be blunted by pinocem-

brin (P < 0:05) (Figures 6(c) and 6(d)). However, all these
changes were counteracted by Ex-527 pretreatment (P < 0:05
). Nissl staining further indicated that pinocembrin improved
neuronal survival subjected to SAH insults, which could be
abrogated by Ex-527 (P < 0:05) (Figures 6(e) and 6(f)).

3.6. Pinocembrin Provided Long-Term Beneficial Effects after
SAH.We further evaluated the long-term beneficial effects of
pinocembrin after SAH. It showed that SAH insults induced
significant neurological impairments at day 7 after SAH.
Pinocembrin treatment significantly improved long-term
neurobehavior function accessed by rotarod test and beam
walking test (P < 0:05) (Figures 7(a) and 7(b)). In contrast,
Ex-527 abated the long-term beneficial effects of pinocem-
brin against SAH (P < 0:05) (Figures 7(a) and 7(b)). H&E
staining further indicated that pinocembrin reduced neuro-
nal degeneration subjected to SAH insults, which could be
abrogated by Ex-527 (P < 0:05) (Figure 7(c)).

4. Discussion

This study unraveled the efficacy of pinocembrin in a rat
model of SAH. Our data showed that pinocembrin signifi-
cantly mitigated behavior deterioration and brain tissue
impairment after SAH as indicated by the decreased free
radical insults, reduced inflammatory injury, and improved
neuronal survival. Pinocembrin treatment also dramatically
upregulated the concentrations of SIRT1 and Pgc-1α levels
and suppressed ac-NF-κB expression. Conversely, inhibition
of SIRT1 by Ex-527 abolished the neuroprotective effects of
pinocembrin and the positive effects on SIRT1-dependent
pathway (Supplementary figure 2). These novel findings
suggest that pinocembrin alleviated early brain damage
following SAH by modulation of SIRT1-dependent pathway.

The heightened free radical insults and cerebral inflam-
matory response play key roles in the pathological cascade
of brain damage after SAH [32–35]. The CNS is particularly
vulnerability to free radical insults. One reason is that the
brain tissue is rich in polyunsaturated fatty acids. Further,
free radicals are verified as the elemental triggers of neuro-
toxicity. After SAH, the microglia are also rapidly activated
to amplify the inflammatory insults. The stimulated microg-
lia and free radicals further deteriorate neuronal damage
after SAH [36]. Therefore, targeting the free radical damage
and inflammatory insults might counteract early brain dam-
age after SAH.

Pinocembrin has numerous therapeutic properties such
as immunomodulatory, anti-inflammatory, antifree radical,
and anticytotoxicity functions [37]. Evidence from preclin-
ical studies has verified the cerebroprotective action of
pinocembrin on different CNS diseases. For example, Lan
et al. reported that pinocembrin effectively inhibited post-
intracerebral hemorrhage neuroinflammation via reduction
of M1 microglia and inhibition of NF-κB translocation [9].
Tao et al. have demonstrated that pinocembrin decreased
ischemic insult-induced neuronal damage in cerebral
ischemia by activation of autophagy [13]. However, little
is known about the efficacy of pinocembrin in SAH model.
In line with previous researches, rats treated with
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pinocembrin alleviated post-SAH inflammatory injury and
free radical insults. Further, pinocembrin mitigated histo-
logical damages and behavior deterioration after SAH.
However, the cellular and molecular mechanisms underly-
ing pinocembrin’s actions remain unknown.

Many researches have indicated that SIRT1 is a key
target for treating SAH. SIRT1 plays an essential role in
inflammatory and redox homeostasis [38–40]. Enhanced
expression of SIRT1 could inhibit brain damage and pre-
vent delayed cerebral ischemia in experimental SAH [41,
42]. By suppression of free radical damage, inflammatory
insults, and microthrombi, SIRT1 prevents cerebral vaso-
spasm and ameliorates neurological deficits after SAH.
For example, RSV, a powerful SIRT1 activator, has been
shown to prevent EBI, cerebral vasospasm, and delayed
cerebral ischemia after SAH [41, 43]. In addition, a new
study by Yuan et al. has demonstrated that RSV could
ameliorate SAH-induced ferroptosis by activation of SIRT1
[44]. In view of these backgrounds, we used RSV as a pos-
itive control drug. Similarly, our data indicated that RSV
significantly enhanced SIRT1 expression and provided
protection against EBI after SAH. Intriguingly, pinocem-
brin is also able to modulate SIRT1-mediated signaling
in other diseases. Cao et al. reported that pinocembrin
ameliorated hepatocyte dysfunction-induced inflammatory
response and oxidative damage through SIRT1/PPARα
[20]. Another observation study by Guo et al. revealed that
pinocembrin protected against hepatic steatosis through
SIRT1/AMPK signaling [21]. Interestingly, our experi-
ments also revealed that pinocembrin significantly
enhanced SIRT1 after SAH.

Pgc-1α, a downstream target of SIRT1, plays a crucial
in regulating oxidative metabolism [45, 46]. Pgc-1α could
scavenge free radical overproduction by inducing the
endogenous antioxidant enzymes [47]. Additionally, Pgc-
1α could reduce neuronal apoptosis, improve neuronal
survival, and maintain the integrity of blood-brain barrier
[48, 49]. However, Pgc1-α requires SIRT1 deacetylation
to be fully activated [17].NF-κB is a master regulator of
neuroinflammatory injury in cerebrovascular diseases. In
addition to phosphorylation, acetylation of NF-κB is also
involved in the inflammatory response. It reported that
SIRT1 can deacetylate RelA/p65 subunit of NF-κB to
suppress inflammatory injury [19]. Zhao et al. also indi-
cated that SIRT1 activation with melatonin ameliorated
EBI after SAH by decreasing the acetylation of NF-κB
[50]. We then assessed the levels of Pgc1-α and ac-NF-κB
after pinocembrin administration. Our data indicated that
pinocembrin dramatically induced Pgc1-α expression and
inhibited ac-NF-κB levels. More direct evidence validated
the interaction between SIRT1 and pinocembrin. The spe-
cific inhibitor of SIRT1, Ex-527, successfully suppressed the
enhanced expression of SIRT1 and Pgc1-α levels and
decreased expression of ac-NF-κB by pinocembrin. Mean-
while, the evident cerebroprotective effects of pinocembrin
were also abrogated when treated with Ex-527. Together
with our data, these observations indicated that by interact-
ing with SIRT1, pinocembrin protected post-SAH inflam-
matory injury, free radical insults, and neuronal damage.

Our study has several limitations. Firstly, recent stud-
ies have indicated that SIRT1 could modulate microglia
polarization, including inhibiting M1 microglia and pro-
moting M2 microglia. In our study, pinocembrin inhib-
ited microglia activation. However, the exact role of
pinocembrin on different microglia phenotypes remains
unknown. Secondly, a sterile neurogenic inflammation
was also involved in the pathophysiology of SAH [51,
52]. It can induce mast cell activation and promote neu-
rogenic inflammation [53]. Whether pinocembrin affect
this sterile neurogenic inflammation remains unknown.
Thirdly, in the present study, we mainly investigated
the role of pinocembrin on SIRT1-mediated signaling
pathway. In addition to SIRT1, other signaling targets
might be involved in the protective effects of pinocem-
brin. Thus, additional preclinical experiments are still
needed to clarify these issues.

5. Conclusion

In summary, we postulated that pinocembrin effectively
mitigated early brain damage after SAH. By interacting
with SIRT1, pinocembrin suppressed post-SAH inflamma-
tory injury, free radical insults, and neuronal damage.
Pinocembrin might be a promising therapeutic drug for
human SAH.
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