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Lung adenocarcinoma (LUAD) is among the most prevalent malignant lung cancers with a poor prognosis due to high
invasiveness and lethality despite multiple treatments. Since the lung is an important organ associated with oxidative stress,
and it has been confirmed that oxidative stress represents a potential cancer-specific depletion, it is of important significance to
investigate and evaluate the clinical value of oxidative stress mechanisms regulating tumor cell apoptosis. Furthermore, there
are few studies on the impact of the microenvironment on reaction to immune-checkpoint inhibitors (ICIs) in patients with
LUAD. Based on the TCGA-LUAD dataset, which is stratified into a training set as well as a validation set in a ratio of 2 : 1,
this investigation constructs and validates a prognostic predictive power of a gene signature model of oxidative stress-related
prognostic signatures. To ascertain the differences between the high-risk score group and the low-risk score group in tumor-
infiltrating lymphocytes and patients’ response to ICI therapy. This oxidative stress-related prognostic gene signature is
composed of MAP3K19 and NTSR1 and is an independent prognosis-related factor in the LUAD group. The outcome of
patients having a low risk score is better, and the difference was statistically significant, and individuals with a low risk score
had a larger number of infiltrating immune cell distribution in the tumor microenvironment, which was closely related to
clinical outcome. Our study suggests that the synergistic effect of oxidative stress-related prognostic gene markers-MAP3K19
and NTSR1 has clinical significance in the prognosis identification and immunotherapy of LUAD patients. Thus, the results
may help to better intersect the oxidative stress-related mechanisms in clinical value in LUAD but requires prospective validation.
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1. Introduction

Lung cancer is the major important cause of tumor-related
mortalities worldwide [1, 2]. LUAD is the most significant
subtype. Although many clinical studies have confirmed that
multitargeted drugs and immunotherapy can prolong the
overall survival (OS) and improve the objective response rate
(ORR) of LUAD patients [3–5], the rapid progression of the
disease due to multi-drug resistance is currently very diffi-
cult. Few targeted treatment options [6–9]. With the in-
depth research in many aspects [10, 11], it is beneficial to
discover small molecule inhibitors. Furthermore, significant
literature confirmed the hypothesis that the tumor microen-
vironment (TME) enhances tumor growth through para-
crine signaling [12]. So, more investigation should be taken
to improve the outcome among LUAD patients.

Redox homeostasis is crucial in not only the survival of
normal cells but also cancerous cells. Oxidative stress (OS)
is predominantly triggered by an imbalance between cellular
antioxidant mechanisms and metabolically generated oxida-
tive free radical species [13, 14]. This imbalance eventually
causes the excessive buildup of reactive oxygen species
(ROS) within body cells, leading to irreversible or reversible
injury to the body [15]. Nevertheless, numerous tumors have
increased levels of ROS and exhibited signs of chronic oxida-
tive stress as a result of oncogenic injury, hypoxia, metabolic
malfunctions, and proteotoxic stress [13]. Increased ROS is
hypothesized to enhance the progression of tumors at suble-
thal levels by inducing the mutations and changing cell sig-
naling [16]. Nonetheless, to block excessive oxidative
injury, tumors generally upregulate the antioxidant path-
ways [17]. Consequently, numerous cancerous cells are
hypersensitive to perturbation of ROS levels. Excessive oxi-
dative stress is known to aggravate the cytotoxic impacts of
chemotherapy, and efforts are being made to enhance ROS
generation in these environments [18, 19].

In this study, we attempted to obtain oxidative stress-
related expression profiling data for LUAD from The Cancer
Genome Atlas (TCGA) database and aggregated clinical
information and transcriptomes from 445 patients in
TCGA-LUAD with complete clinical informatics data and
express the data, dividing it into a training set (2/3 of the
total, n = 296) as well as a test set (1/3 of the total, n = 149
). We then performed univariate Cox proportional hazards
regression in both the training and the validation sets,
respectively, to identify genes with prognostic values utiliz-
ing the expression data of 147 oxidative stress-related genes.
Cox p values < 0.05 indicated a coexpression network of 35
oxidative stress DEGs associated with LUAD overall sur-
vival, with clinical information and transcriptomic expres-
sion data. Based on the LASSO algorithm, the prognosis-
related gene signatures composed of 3 and 8 oxidative
stress-related genes were screened in the training set and
the test set, respectively. Therefore, we obtained a LUAD
prognostic risk model composed of MAP3K19 and NTSR1
by intersection difference analysis. We further validated the
subgroup prognostic risk model by Kaplan-Meier (KM)
analysis as well as receiver-operating characteristic curve
(ROC) analysis. Additionally, the link between the risk

model and the TME was ascertained by both the ESTIMATE
R software package and the CIBERSORT tool. Lastly, differ-
entially infiltrating immune cells were discovered in the two
risk groups, and MAP3K19 and NTSR1 were found to be
statistically significant with immune-related genes. In con-
clusion, our study suggests that oxidative stress-related risk
models may provide a viable prognostic tool and important
function in the modulation of immune cell distribution in
the LUAD tumor microenvironment. Our hypothesis is that
this oxidative stress-related prognostic model gene signature
has the capacity to anticipate the targeting and prognosis of
LUAD. The aim of our investigation was to create and vali-
date an oxidative stress-related LUAD prognostic model and
to explore its predictive effect on poor prognosis in LUAD.
Assess and validate prognostic power and its independent
prognostic value. Our goal was to guide the clinical applica-
tion of this oxidative stress-related prognostic model gene
signature in LUAD.

2. Materials and Methods

Figure 1 presents the flow chart for the bioinformatics anal-
ysis. R language software (Version 4.0.3) [20] accomplished
all the statistical analyses, and p < 0:05 denoted a statistically
significant difference without a designated setting.

2.1. Data Acquiring and Cleaning. Transcriptomic data
(reads), as well as relevant clinical data encompassing sur-
vival status, age, sex, grade, and stage of LUAD patients,
were retrieved from TCGA (https://portal.gdc.cancer.gov/)
database. In total, 551 samples were incorporated in this
investigation (54 normal lung samples and 497 LUAD
samples). The initial expression data were normalized with
the aid of the trim mean of M values (TMM) algorithm in
the “limma” package [21], and genes with an average
expression not exceeding 1 were excluded. The “limma”
package was additionally utilized for MTG differential
expression analysis. The criteria for identifying differen-
tially expressed genes in our study were jlogFCj > 1 and
adj:p < 0:05. The read counts were transformed to TPM
values, and a log2ðx + 1Þ conversion was conducted for
further analyses since the TPM values were identical to
the microarray values.

We use the k-fold cross-validation method to divide the
sample set into k mutually exclusive subsets of similar size,
each of which keeps the data distribution as consistent as
possible. Then, each time the union of k − 1 subsets is used
as the training set, and the remaining subset is used as the
test set, so that k sets of training/testing sets can be obtained.
Perform k training and testing times, and return the average
of the k test results.

2.2. Identification of Differentially Expressed Oxidative
Stress-Related Genes with Prognostic Value in LUAD Tissue
and Normal Lung Tissue. As per the search term “oxidative
stress,” from the OMIM database, NCBI gene function mod-
ule, and the GeneCard database, a total of 9469 human genes
which are linked to oxidative stress were collected. Based on
this, we intersected these oxidative stress-related genes with
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the differentially expressed genes in the TCGA-LUAD data-
base to set and screen 147 oxidative stress-related genes with
significant expression differences for subsequent analysis.
We used a string-generated protein interaction (PPI) net-
work database (version 11.0) of 147 oxidative stress-related
genes differentially expressed in the TCGA-LUAD dataset
to construct a molecular interaction network for analyzing
closely interacting differential genes. Then, the PPI was
exported, and the Cytoscape [22] software was used for fur-
ther analysis, the network properties of each node were cal-
culated, and the MCODE [23] and Cytohubba [24] were
used to mine the hub nodes based on the degree of the
nodes. The high level of linkage may have an extremely
important function in the modulation of the whole biologi-
cal process, which deserves further study.

2.3. Creation and Validation of a Prognostic Oxidative Stress-
Related Signature for LUAD. We randomly divided 445
patients with complete clinical informatics data in TCGA-
LUAD into a training set (2/3 of the total, n = 296) and a test
set (1/3 of the total, n = 149). We then performed univariate
Cox proportional hazards regression in the training set and
validation set, respectively, to discover genes with prognostic
value, utilizing the expression data of 147 DE-oxidative
stress-related genes. A Cox p value < 0.05 connoted a sub-
stantial correlation with overall survival (OS). The degree
of correlation and prognostic value were selected using the
“Venn” R package for cross-analysis and genes affecting
prognostic value. To avert overfitting, all genes with p values
< 0.05 were subjected to a least absolute shrinkage and selec-
tion operator (LASSO) analysis using the package glmnet.
LASSO regression is usually a regularization method for

high-dimensional predictor selection. The hazard system
used LASSO Cox proportional hazards to build a score-
identifying gene signature to anticipate OS models for
LUAD patients. Prediction scores are weighted sums using
developed genes, with coefficient regularization by LASSO.
After being filtered by the LASSO model, the selected genes
are constructed by the multivariate Cox proportional haz-
ards model to construct an immune-related risk model:
risk score = level of gene a∗ coefficient a + level of gene b∗
coefficient b + level of gene c∗ coefficient c +⋯+level of gene
n∗ coefficient n. The risk score in the model represents the
prognosis of LUAD patients; the smaller the risk score, the
better the prognosis. Patients were categorized into two risk
groups utilizing the median risk score that served as a cutoff
value. The “pheatmap” R package used scatter diagrams to
show how the risk scores and survival durations of all
patients were distributed. The “stats” R package used princi-
pal component analysis (PCA) to measure the gene expres-
sion of an established signature. Kaplan-Meier (K-M)
survival analysis and time-dependent ROC analysis based
on OS were carried out utilizing the “survival” package, the
“survminer” package [25], and the “timeROC” package
[26] in R to measure the prognostic accuracy of the gene sig-
nature in the derivation set and validate it in the validation
set. Kaplan-Meier survival curves were used to derive the
predictive power, whereas a log-rank p value < 0.05 denoted
a statistical significance (utilizing package survival and surv-
miner). To ascertain predictive power of the immune signa-
ture’s, time-dependent ROC curves (package survivalROC)
were employed. Subsequently, logistic regression was used
for correlation analysis of dichotomous clinical subgroup
variables.

GSE135917 GSE38792

Normalize

Differential expression of
mitochondrial dysfunction genes

LASSO logistic
regression model PPI networks

Unsupervised
consensus clustering

GO/KEGG GSEA CIBERSORT

Correlation

ssGSEA evaluate
immune groups

Figure 1: Flowchart for constructing and validating a prognostic model for TCGA-LUAD overall survival.
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2.4. Pathway and Function Enrichment Analysis. To investi-
gate the biological value of these differentially expressed
IRGs, we utilized DAVID Bioinformatics Resources 6.8 to
conduct a pathway and function enrichment analysis. The
visualization procedure was carried out via the package
“ggplot2” [25].

2.5. Gene Set Enrichment Analysis (GSEA) of Oxidative Stress
Prognostic Model in LUAD. GSEA is a computational
approach utilized to ascertain if a predefined set of genes
exhibits statistical differences between two biological states,
which is typically employed to obtain the expression in a
dataset sample. Changes in the pathway as well as activity
of biological processes were analyzed [23]. To investigate
the variations in biological processes between the two groups
of samples, utilizing the gene expression profile dataset, we
retrieved the reference gene set “c2.cp.kegg.v7.4.entrez.gmt”
from the MSigDB database, using the R package “clusterPro-
filer” The GSEA method is included in “enrichment analysis
and visualization of datasets. p value < 0.05 was considered
statistically significant.

Gene set variation analysis (GSVA) [27] is a nonpara-
metric unsupervised analysis method, which is mainly used
to evaluate the microarray by transforming the expression

matrix of genes between various samples into the expression
matrix of gene sets between samples. Transcriptome gene set
enrichment findings assess if various metabolic pathways are
enriched across various samples. To investigate the biologi-
cal process variation occurring in the two groups of samples,
we utilized the R package GSVA to carry out the GSVA pro-
cedure based on the gene expression profile dataset and
downloaded the reference “c2.cp.kegg.v7.4. entrez” gene set
from the MSigDB database to compute the enrichment score
of every sample in each pathway in the dataset, combined
with the R package limma to screen significantly different
pathways, the GSVA enrichment results were visualized
based on the heatmap utilizing the R package pheatmap,
and p value < 0.05 denoted a statistically significant
significance.

2.6. Establishment and Verification of Nomogram. Nomo-
gram has been extensively utilized for anticipating cancer-
related prognosis. This approach allows individualized
approximates of the likelihood of recurrence, mortality, or
drug adherence. Using the prognostic model, this investiga-
tion developed the nomogram in the TCGA-LUAD cohort
by incorporating the above-stated clinical parameters to
anticipate the OS probably over 1, 3, and 5 years.

Table 1: Clinical characteristics of patients in TCGA-LUAD internal training set and validation set.

Characteristics Train (N = 296) Test (N = 149) Total (N = 445) p value FDR

Age

Mean ± SD 64:86 ± 10:00 65:05 ± 10:21 64:93 ± 10:06
Median [min-max] 66.00 [33.00, 88.00] 66.00 [41.00, 86.00] 66.00 [33.00, 88.00]

Gender 1 1

Female 162 (36.40%) 81 (18.20%) 243 (54.61%)

Male 134 (30.11%) 68 (15.28%) 202 (45.39%)

Stage 0.43 1

Stage I 157 (35.28%) 87 (19.55%) 244 (54.83%)

Stage II 68 (15.28%) 36 (8.09%) 104 (23.37%)

Stage III 54 (12.13%) 21 (4.72%) 75 (16.85%)

Stage IV 17 (3.82%) 5 (1.12%) 22 (4.94%)

T 0.88 1

T1 108 (24.27%) 49 (11.01%) 157 (35.28%)

T2 152 (34.16%) 80 (17.98%) 232 (52.13%)

T3 24 (5.39%) 14 (3.15%) 38 (8.54%)

T4 12 (2.70%) 6 (1.35%) 18 (4.04%)

M 0.52 1

M0 198 (44.49%) 100 (22.47%) 298 (66.97%)

M1 17 (3.82%) 5 (1.12%) 22 (4.94%)

MX 81 (18.20%) 44 (9.89%) 125 (28.09%)

N 0.19 0.93

N0 186 (41.80%) 105 (23.60%) 291 (65.39%)

N1 54 (12.13%) 27 (6.07%) 81 (18.20%)

N2 49 (11.01%) 17 (3.82%) 66 (14.83%)

N3 2 (0.45%) 0 (0.0e+0%) 2 (0.45%)

NX 5 (1.12%) 0 (0.0e+0%) 5 (1.12%)
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Features p-value Hazard ratio (95%CI)
HAO1 1.1e-289 21.69 (18.37-25.60)
HTR1B 1.2e-273 0.01 (0.01-0.02)
APOB 1.2e-268 13.46 (11.64-15.57)
SLC6A5 4.6e-211 11.41 (9.78-13.30)
SCARNA22 1.3e-209 2.06 (1.97-2.16)
MUC2 5.3e-194 7.34 (6.43-8.37)
PRODH2 9.4e-166 2.0e-13 (2.4e-14-1.6e-12)
KCNA4 2.7e-164 4.2e-4 (2.4e-4-7.4e-4)
FOXL2 1.4e-121 138.42 (91.67-209.01)
NPSR1 1.6e-94 92.01 (59.87-141.41)
MRGPRX3 4.4e-69 56298651.63 (7687524.49-412296335.40)
TNR 3.8e-34 0.07 (0.04-0.10)
FGF5 1.2e-33 0.37 (0.32-0.44)
MAP3K19 8.1e-29 0.11 (0.07-0.16)
NR1H4 4.0e-28 3.07 (2.51-3.75)
GABRR3 1.9e-24 6.5e-64 (4.8e-76-8.9e-52)
DNAH8 3.5e-24 216326752036.15 (1397552079.89-33485166184404.80)

CA6 3.5e-23 22.50 (12.16-41.62)
F11 3.6e-22 2.33 (1.96-2.76)
CHRM1 1.1e-20 3.70 (2.81-4.88)
DDX25 7.8e-19 8.66 (5.37-13.96)
NOS2P2 2.0e-17 1.8e-14 (1.2e-17-2.6e-11)
TTC29 2.0e-16 3.45 (2.57-4.63)
HYDIN 7.9e-15 51.34 (19.01-138.64)
GABRA5 1.8e-14 18.52 (8.78-39.05)
GIP 1.0e-13 0.46 (0.38-0.57)
C10orf90 3.9e-13 0.04 (0.02-0.10)
TNFRSF13B 5.7e-12 0.41 (0.32-0.53)
ANGPTL3 3.7e-11 5.47 (3.31-9.06)
CPN1 3.8e-11 0.06 (0.03-0.14)
KCNK9 4.5e-9 0.43 (0.32-0.57)
NEUROD1 3.5e-8 0.20 (0.11-0.35)
UGT3A1 4.5e-8 0.32 (0.21-0.48)
TRIML2 4.8e-8 0.27 (0.17-0.43)
PTPRQ 7.1e-5 0.34 (0.20-0.57)
UPB1 8.7e-5 0.10 (0.03-0.32)
CLCA1 9.9e-4 4.53 (1.84-11.13)
SLC7A3 3.1e-3 0.28 (0.12-0.65)

−240−220−200−180−160−140−120−100 −80 −60 −40 −20 0 20 40

TCGA-LUAD Train data set

(a)

Figure 2: Continued.
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Features p-value Hazard ratio (95%CI)
SLC6A5 2.0e-321 1.3e-123(6.6e-130-2.4e-117)

MIR34B 1.7e-303 1288.18(883.66-1877.87)

NRXN1 4.8e-298 9.6e-23(6.5e-24-1.4e-21)

FGF21 2.0e-277
2065618860419690752.00(202498758020797504.0

0-21070654053509427200.00)
CALML3 3.2e-276 0.13(0.11-0.14)
NTSR1 1.8e-241 203.78(148.86-278.96)
SERPINA4 6.7e-213 0.26(0.24-0.29)
GABRA5 1.5e-195 9.3e-7(3.7e-7-2.3e-6)
UPB1 1.5e-182 491283.81(201451.57-1198103.27)

CLCA1 6.2e-176 2.3e-12(3.6e-13-1.5e-11)

SLC6A15 3.2e-168 8.8e-4(5.3e-4-1.4e-3)

PIK3C2G 1.3e-161
151.21(105.17-217.42)

SNORA71D 1.2e-156
412.42(264.92-642.07)

MMP8 1.3e-133
1.7e-3(1.0e-3-2.9e-3)

GABRR3 1.0e-129
2.6e-110(3.5e-119-1.9e-101)

HSD3B1 9.2e-116
0.03(0.02-0.04)

PRAP1 7.3e-109
0.15(0.13-0.18)

CGB5 8.6e-92

0.16(0.14-0.20)

APOB 5.1e-90

1.87080830863734e+22(126547511632631005184.
00-2.76569936659587e+24)

IGF2BP3 2.4e-85
0.39(0.36-0.43)

KRT6B 2.7e-81
2.55(2.31-2.81)

SPAG11B 2.1e-77
6.2e-37(9.5e-41-4.0e-33)

RBP3 7.7e-61
2.43729635406729e+139(6.09257164223687e+122

-9.75025632258088e+155)
KCNK9 8.1e-52 4.5e-7(6.8e-8-3.0e-6)
KRT13 1.1e-47 0.13(0.10-0.17)

TTC29 1.6e-46 4.72(3.82-5.84)

TRIM48 8.8e-42 0.30(0.25-0.36)

GHRHR 2.0e-41
8.4e-18(2.8e-20-2.5e-15)

FOXL2 1.2e-34
9896.65(2279.12-42974.32)

NOS2P2 2.0e-28
8923777171580.22(45201729437.39-17617423049

77914.00)
CALB1 1.7e-24 1908.44(447.92-8131.15)
DNAH8 5.3e-21 5.06729383622552e+43(3.93888527165643e+34-6

.51896794441308e+52)GIP 1.9e-20
0.01(6.0e-3-0.04)KCNJ18 1.8e-15

0.12(0.07-0.20)NKX2-3 3.4e-12 0.35(0.26-0.47)
MAP3K19 1.9e-9 0.42(0.32-0.56)
UGT2B7 3.3e-7 0.34(0.22-0.51)
RMRP 2.0e-5 2477506.87(2850.79-2153101720.01)
KCNK10 0.01 36.36(2.33-567.46)
P2RX2 0.01 2.70(1.25-5.81)
KLK3 0.05 50.83(1.05-2462.78)

−400 −300 −200 −100 0 100 200 300 400 500

Log2 (Hazard ratio (95%CI))

TCGA-LUAD Test data set

(b)

65 213565 2135

Train Test

(c)

Figure 2: Univariate Cox analysis based on TCGA-LUAD internal training set and validation set and screening of differentially oxidative
stress genes associated with LUAD prognosis. (a) Forest plot displays the findings of univariate Cox analysis of differential oxidative
stress genes associated with LUAD prognosis in the training set; (b) forest plot demonstrates the findings of univariate Cox analysis of
differential oxidative stress genes associated with LUAD prognosis in the training set; (c) Venn shows 35 prognosis-related differential
oxidative stress genes at the intersection of the two sets.
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Figure 3: Continued.
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Furthermore, calibration curves evaluated the fitness
between actual survival statuses with visualized survival sta-
tus of the developed nomogram via bootstrap methods
(1,000 replicates). The values of prognosis evaluation
between risk signature, stage, and the nomogram were com-
pared via ROC curves at 1 year, 3 years, and 5 years,
correspondingly.

2.7. Computation of Immune Infiltration Score Was Premised
on the Gene Groups Previously Determined. We downloaded
the unified as well as the standardized pan-cancer dataset
from the UCSC (https://xenabrowser.net/) database: TCGA
TARGET GTEx (PANCAN, N = 19131, G = 60499). Addi-
tionally, we extracted gene expression data in every sample
and further screened the sample sources: Primary Blood-
Derived Cancer-Peripheral Blood (TCGA-LAML), Primary
Tumor, Metastatic TCGA-SKCM, Primary Blood-Derived
Cancer-Bone Marrow, Primary Solid Tumor, and Recurrent
Blood-Derived Cancer-Bone Marrow samples, further log2
ðx + 0:001Þ transformation was carried out on every expres-
sion value; in addition, we also extracted the gene expression
profile of every tumor, respectively, and mapped the expres-
sion profile. On the GeneSymbol, the R software package
ESTIMATE (version 1.0.13, https://bioinformatics
.mdanderson.org/public-software/estimate/, doi:10.1038/
ncomms3612) [28] was further used to calculate the gene

expression in each tumor, stromal, immune, and ESTI-
MATE scores for each patient.

2.8. GO, KEGG, and Immune Infiltration Enrichment
Analyses for Risk-Related DEGs. In accordance with the risk
grouping, normalized gene expression matrixes of the deri-
vation set as well as the validation set generated above were
employed with the “limma” R package to detect risk-related
DEGs with the cut-off criteria of jlogFCj ≥ 1 and adj:p < 0:05
, correspondingly. Risk-related DEGs were analyzed with
both GO and KEGG utilizing the “clusterProfiler” R pack-
age. Next, single-sample GSEA (ssGSEA) for immune infil-
tration was adopted with the “GSVA” R package to
ascertain the infiltration score of immune cells and the
immune-related roles.

2.9. Calculation of Immune Infiltration Score. CIBERSORT
played a crucial function in calculating an absolute immune
infiltrate score for the primary tumor samples. The default
CIBERSORT parameters were instrumental in generating
the curated CIBERSORT signature matrix. It roughly yielded
the expected relative abundances. We performed a pan-
cancer analysis of the CIBERSORT score, including the cor-
relation of immune score in pan-cancer, analyzed the corre-
lation of MAP3K19 and NTSR1 with the distribution of
various immune cells for LUAD patients, and visualized
them with heatmaps and scatter plots. The tumor purity,
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Figure 3: PPI network construction of differentially expressed genes related to oxidative stress and enrichment analysis of hub genes. (a)
1607 differentially expressed genes (jLogFCj > 2, adj. p value < 0.05) between normal samples and LUAD samples in the TCGA-LUAD
dataset, and 9469 oxidative stress genes were intersected, and 147 differentially expressed genes were obtained oxidative stress genes; (b)
the Network Analyzer tool of Cytoscape (v3.7.2) visualizes the PPIs of 147 differentially expressed oxidative stress genes with the largest
confidence interaction score of 0.4. As the degree of interaction increases, the color gradually changes from yellow to blue, and the font
changes from small to large; (c) the MCODE plug-in screened and visualized the closely related genes of the PPI network module; (d)
the CytoHubba plug-in was used to screen the top 20 closely related genes; (e) the intersection of the two methods is shown by Venn
diagram to obtain 18 closely related differentially oxidative stress-related genes; (f, g) based on 18 Hub Gene Ontology (GO) enrichment
analysis of genes as well as KEGG pathway enrichment bubble plots and histograms.
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as well as stromal scores, were determined utilizing the Esti-
mation of Stromal and Immune Scores ESTIMATE based on
RNA-seq data and global proteomic data.

2.10. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR). Total RNA extracted from lung adeno-
carcinoma tissue and para-cancerous tissue with Trizol
Reagent (Invitrogen, USA) were reverse transcribed with
HiScript III 1st Strand cDNA Synthesis Kit (Vzayme,
China). Next, HiScript II One Step RT-PCR Kit (Vzayme,
China) and qRT-PCR analysis were used for detecting
cDNA expression levels, and GAPDH was used as internal
reference. Primers were shown as follows: GAPDH, forward
(F): 5′-AATGGGCAGCCGTTAGGAAA-3′, reverse(R): 5′-
GCCCAATACGACCAAATCAGAG-3′; NTR1, forward
(F): 5′-TCATCGCCTTTGTGGTCTGCT-3′, reverse (R): 5′
-TGGTTGCTGGACACGCTGTCG-3′; MAP3K19, forward
(F): 5′-AGGAGTTCGACCAAGATGGTG-3′, reverse (R):
5′-GGTCGAAAACTCTTCTGTCCTG-3′.

2.11. Immunohistochemistry (IHC) Staining. After deparaffi-
nization and dehydrating the tissue sections, they were sub-
jected to epitope retrieval, treated with H2O2, and blocked
against nonspecific bindings. The tissues were then incu-
bated overnight with anti-NTSR1 antibodies (1 : 100,
Abcam, ab217134) and anti-MAP3K19 antibodies (1 : 100,
Invitrogen, PA5-29285) at 4°C. Subsequently, the tissue sec-
tions were incubated with secondary antibodies (1 : 1000,
Proteintech, SA00001-2) for two hours at ambient tempera-

ture. The signal was detected with an enhanced DAB stain-
ing kit (Proteintech, China).

2.12. Statistical Analysis. The Spearman correlation test was
performed to investigate the link between two variables that
were nonlinearly linked. The Student’s t-test, on the other
hand, was utilized in comparing the normally distributed
data, whereas the chi-square test was carried out to contrast
pairwise and categorical features in various subgroup. Uni-
variate as well as multivariate Cox regression analyses
assessed the influences of the immune signature and numer-
ous clinic-pathological parameters on the survival of
patients. The package pheatmap was vital in plotting heat-
maps. A two-sided p < 0:05 was statistically significant.
Kruskal-Wallis test was employed for one independent var-
iable with two or more levels and an ordinal dependent var-
iable. K-M analysis measured the proportion of individuals
living for a particular period, whereas the log-rank test eval-
uated the significance of differences. In these investigations,
statistical analysis was performed by R software (4.0.0). A
two-tailed p value of <0.05 was statistically significant unless
otherwise stated.

3. Result

3.1. The Characteristics of Patients. RNA-sequencing profiles
of a total of 445 LUAD sample as well as clinic-pathological
data were obtained from the UCSC Xena TCGA-LUAD
dataset. Then, randomization was conducted to divide them

Table 2: List of GO and KEGG enrichment analysis results of differential oxidative stress hub genes with close interaction.

Ontology ID Description p value p.adjust Q value

BP

GO:0008217 Regulation of blood pressure 4.92e-05 0.008 0.004

GO:0090276 Regulation of peptide hormone secretion 7.32e-05 0.008 0.004

GO:0030072 Peptide hormone secretion 1.26e-04 0.008 0.004

GO:0007187
G protein-coupled receptor signaling pathway, coupled

to cyclic nucleotide second messenger
1.36e-04 0.008 0.004

GO:0046883 Regulation of hormone secretion 1.52e-04 0.008 0.004

CC

GO:0030658 Transport vesicle membrane 0.003 0.039 0.024

GO:0005788 Endoplasmic reticulum lumen 0.006 0.039 0.024

GO:0031045 Dense core granule 0.008 0.039 0.024

GO:0042629 Mast cell granule 0.009 0.039 0.024

GO:0030133 Transport vesicle 0.010 0.039 0.024

MF

GO:0048018 Receptor ligand activity 6.48e-04 0.014 0.008

GO:0005179 Hormone activity 9.68e-04 0.014 0.008

GO:0005184 Neuropeptide hormone activity 0.011 0.067 0.036

GO:0071855 Neuropeptide receptor binding 0.013 0.067 0.036

GO:0042056 Chemoattractant activity 0.015 0.067 0.036

KEGG

hsa04923 Regulation of lipolysis in adipocytes 4.83e-04 0.005 0.001

hsa04080 Neuroactive ligand-receptor interaction 7.00e-04 0.005 0.001

hsa04024 cAMP signaling pathway 0.007 0.032 0.009

hsa04950 Maturity onset diabetes of the young 0.016 0.056 0.017

hsa04913 Ovarian steroidogenesis 0.031 0.064 0.019
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Figure 4: Continued.
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into two groups, namely, the training set (331 patients) and
the test set (166 patients) (Table 1).

3.2. Prognosis-Related Differential Oxidative Stress Gene
Signatures Are Independent Prognostic Factors for LUAD
Patients. To determine the prognostic value of differentially
oxidative stress genes, we did a univariate Cox regression
analysis. There were 100 and 56 xenooxidative stress genes
significantly linked to the overall survival (OS) in the train-
ing and validation sets, respectively (Figures 2(a) and 2(b)).
A total of 35 differentially oxidative stress genes associated
with prognosis were obtained by intersecting them
(Figure 2(c)).

3.3. Construction of PPI Network of DEGs Related to
Oxidative Stress. We first performed a differential analysis
between 59 normal samples and 535 LUAD samples in the
TCGA-LUAD dataset using the limma algorithm and
obtained a total of 1607 differentially expressed genes
(jlogFCj > 2, adj. p value < 0.05). Based on this differential
result, 9469 previously identified oxidative stress genes were
intersected, and 147 differentially expressed oxidative stress
genes were obtained (Figure 3(a)). The STRING database
constructed a protein-protein interaction network (PPI) to
reflect the intermolecular interactions, and the largest confi-
dence interaction score was established at 0.4, which was
analyzed and visualized by the Network Analyzer tool of

Cytoscape (v3.7.2) (Figure 3(b)). PPI network modules were
screened for closely linked genes using the MCODE plugin
and visualized (Figure 3(c)). At the same time, the Cyto-
Hubba plugin was used to screen the Top20 closely linked
genes (Figure 3(d)). The intersection of the two approaches
was shown by the Venn diagram, obtaining 18 closely
related differentially oxidative stress-related genes
(Figure 3(e)), including HIST2H2AB, HIST1H2BC, SCG3,
HIST1H2AJ, CHGA, HIST1H3J, HIST1H1B, HIST1H2BM,
HIST1H1A, SCG2, HIST1H4F, HIST1H2AE, GHRHR,
KLK3, NEUROD1, NPY, HIST1H2BB, HIST1H2BH, and
CGA.

3.4. Functional Enrichment Analysis. We analyzed these 18
closely related differentially oxidative stress-related genes.
Gene Ontology (GO) enrichment analysis employing the
above genes suggests that these hub genes exist in the mem-
brane of transport vesicles, endoplasmic reticulum lumen,
mast cell granules, and transport vesicles, which can affect
blood pressure, hormone secretion, and G protein. Coupling
cyclic, coupling receptor signaling pathway, nucleotide sec-
ond messenger, and other functions play a regulatory role
and have certain applications for receptor-ligand activity,
neuropeptide hormone activity, neuropeptide receptor bind-
ing, and chemotactic activity value. The enrichment of BP
set was mostly concentrated in oxidative phosphorylation,
mitochondrial translation elongation, mitochondrial
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Figure 4: LASSO analysis of 147 differentially oxidative stress genes revealed the distribution and prognostic analysis of 8 gene markers. (a)
Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient spectrum of 8 prognostic differentially oxidative
stress-related genes; (c) OS-based K-M survival of patients in the two risk groups in the TCGA-LUAD training set curves; (d) risk analysis
graph of 8 prognostic differential oxidative stress gene signatures; the upper panel shows the distribution as well as the median of risk scores
in the TCGA-LUAD training set; the middle panel shows the distribution of patients in various risk groups; the lower panel heatmap for the
differential expression of 8 genes in the two risk groups; (e) the prognostic performance of risk scores in the TCGA-LUAD training set at 1,
3, and 5 years is validated utilizing AUC of time-dependent ROC curves.
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Figure 5: Continued.
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translation termination, translation termination, and purine
ribonucleoside triphosphate metabolism. CC enrichment
was mostly concentrated in the inner mitochondrial mem-
brane, mitochondrial protein complexes, mitochondrial
matrix, organelle ribosomes, and mitochondrial ribosomes.
The enrichment of MF was mostly concentrated in the struc-
tural components of ribosomes, proton transmembrane,
transporter activity, electron transfer activity, cytochrome-c
oxidase activity, and heme-copper terminal oxidase activity.
This suggests that the Hub gene may be related to the trans-
membrane transport of cells in terms of molecular structure.
Combined with all the above enrichment results, we specu-
late that key genes related to oxidative stress may play a role
in the interaction process and related mechanisms between
cells. The KEGG pathway enrichment results indicated that
differential oxidative stress hub genes were enriched in mod-
ulation of lipolysis in adipocytes, neuroactive ligand-
receptor interaction, cAMP signaling pathway, maturity
onset diabetes of the young, ovarian steroidogenesis, and
other pathways. This result suggests that the differentially
expressed oxidative stress-related genes can affect the occur-
rence and progression of LUAD via the above potential bio-
logical functions and molecular pathways (Figures 3(f) and
3(g) and Table 2).

3.5. Establishment and Validation of Prognostic Gene
Signature Associated with Oxidative Stress in TCGA-LUAD.
To avert overfitting, we additionally performed a LASSO-

Cox analysis. In order to avoid the influence of confounding
factors, we first performed LASSO-Cox analysis on 147 dif-
ferentially oxidative stress genes in the training set and
established 8 gene signatures, including C10orf90, CIDEC,
MUC2, FGF5, KRT6A, DLEC1, MAP3K19, and NOS2P2.
Patients were categorized into high- and low-risk groups as
per the median risk score with each group containing 167
participants. To tune parameter selection through the
LASSO model, we utilized cross-validation (Figure 4(a)).
The coefficient profiles of LASSO for the eight prognostic
differentially oxidative stress-related genes were shown
(Figure 4(b)). At the same time, we show eight prognostic
differential oxidative stress gene signature risk analysis
graphs (Figure 4(d)). The upper graph shows the distribu-
tion as well as the median of risk scores in the training set
of TCGA-LUAD, and the middle graph shows the distribu-
tion of individuals in various risk groups. The figure below is
a heatmap of the differential expression of 8 genes in the two
risk groups. Further assessment of the gene signatures’ prog-
nostic value as well as the predictive performance utilizing
both K-M survival and time-dependent ROC analyses was
done, both of which yielded remarkable results. To account
for survival outcomes, we observed a statistically signifi-
cantly higher number of dead participants in the high-risk
group in contrast with the low-risk group (p = 1:2e − 6, HR
= 2:67 ð1:77, 4:02Þ) (Figure 4(c)). The AUC reached 0.59
(0.70-0.49) at 1 year, 0.69 (0.77-0.60) at 3 years, and 0.74
(0.84-0.64) at 5 years (Figure 4(e)).
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Figure 5: LASSO analysis of 35 differentially oxidative stress genes in the TCGA-LUAD training set showing the distribution and prognostic
analysis of 3 gene signatures. (a) Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient spectrum of 3
prognostic differentially oxidative stress-related genes; (c) OS-based K-M survival of patients in the two risk groups in the TCGA-LUAD
training set curves; (d) 3 prognostic differential oxidative stress gene signature risk analysis graphs; the upper graph shows the
distribution as well as the median of risk scores in the TCGA-LUAD training set; the middle graph shows the distribution of individuals
in various risk groups, and the lower graph shows heatmap of differential expression of 3 genes in the two risk groups; (e) the prognostic
performance of risk scores in the TCGA-LUAD training set over 1, 3, and 5 years is validated utilizing AUC of time-dependent ROC
curves; (f) based on the training set, multivariate Cox proportional hazards regression forest plot for a 3-gene prognostic model.
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Furthermore, LASSO-Cox analysis was conducted on the
above 35 prognosis-related differential oxidative stress genes
in the training set and validation set, correspondingly. A 3-
gene prognostic model was predicted among the genes in
the training set, including NTSR1, MAP3K19, and NOS2P2
as predictors of patient prognosis (Figures 5(a) and 5(b)).
Not only K-M survival but also time-dependent ROC analy-
sis findings were significant. The high-risk group had a
greater mortality risk in contrast with the low-risk group
(p = 0:02, HR = 1:60 ð1:09, 2:35Þ) (Figure 5(c)). We show 3
prognostic differential oxidative stress gene signature risk
analysis graphs, the upper graph shows the distribution
and median of risk scores in the TCGA-LUAD training
set, and the heatmap reflects the expression differences of
model genes (Figure 5(d)). The AUC reached 0.56 (0.66-
0.46) at 1 year, 0.58 (0.68-0.48) at 3 years, and 0.65 (0.80-
0.49) at 5 years (Figure 5(e)). In the multivariate Cox regres-
sion analysis, NTSR1, MAP3K19, and NOS2P2 were incor-
porated. Multivariate Cox proportional hazards regression
based on the training set suggested that only NTSR1 and
MAP3K19 were jointly used as predictors of poor prognosis
at high risk of LUAD, with significant statistical significance
(Figure 5(f)).

An 8-gene prognostic model was predicted among the
genes in the validation set, including SLC6A5, SNORA71D,
PIK3C2G, KRT6B, IGF2BP3, NTSR1, KLK6, and MAP3K19
as predictors of patient prognosis (Figures 6(a) and 6(b)).
Both K-M survival and time-dependent ROC analysis find-

ings were significant. The high-risk group had a greater mor-
tality risk in comparison with the low-risk group
(p = 1:2e − 6, HR = 4:12 ð2:22, 7:63Þ) (Figure 6(c)). We show
risk analysis plots for eight prognostic differential oxidative
stress gene signatures, the upper panel shows the distribu-
tion and median of risk scores in the TCGA-LUAD training
set, the middle panel shows the distribution of individuals in
each risk group, and the lower panel shows heatmap of dif-
ferential expression of 8 genes in the two risk groups
(Figure 6(d)). The AUC reached 0.87 (0.98-0.76) at 1 year,
0.78 (0.90-0.66) at 3 years, and 0.77 (0.90-0.64) at 5 years
(Figure 6(e)).

In the prediction model constructed based on LASSO-
Cox analysis of 147 differentially oxidative stress-related
genes and 35 prognostic differentially oxidative stress-
related genes in the validation set, both MAP3K19 and
NOS2P2 were found to be prognostic predictors, although
NOS2P2 in the further multivariate Cox regression analysis
results were suggested to have no statistically significant
effect on prognosis. More interestingly, LASSO-Cox analysis
based on 35 prognostic differentially oxidative stress-related
genes found that MAP3K19 and NTSR1 could serve as prog-
nostic predictors in both training and validation sets. Based
on the above analysis, we believe that MAP3K19 and NTSR1
may have potential application value in predicting the prog-
nosis of LUAD, and more abundant analysis is urgently
needed to evaluate its application value and important clin-
ical significance in LUAD.
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Figure 6: LASSO analysis of 35 differentially oxidative stress genes in the TCGA-LUAD validation set showed the distribution and
prognostic analysis of 8 gene markers. (a) Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient
spectrum of 8 prognostic differentially oxidative stress-related genes; (c) OS-based KM survival of patients in the two groups in the
TCGA-LUAD training set Curves; (d) 8 prognostic differential oxidative stress gene signature risk analysis graphs; the upper graph
shows the distribution as well as the median of risk scores in the TCGA-LUAD training set; the middle graph shows the distribution of
individuals in various risk groups, and the lower graph shows heatmap of differential expression of 8 genes in both risk groups; (e) AUC
of time-dependent ROC curves validates the prognostic performance of risk scores in the TCGA-LUAD training set at 1, 3, and 5 years.
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3.6. MAP3K19 and NTSR1 Prognostic Independence of
Clinical Characteristics. To further ascertain the prognostic
value and predictive performance of the MAP3K19 and
NTSR1 gene signatures, we first conducted a Cox regression
analysis based on 445 patient samples with complete clinical
information in TCGA-LUAD. We included clinical factors
including age at diagnosis, gender, tumor pathological grade,
lymph node status, distant metastasis, TNM stage, and
gene signatures MAP3K19 and NTSR1 expression (high-
and low-expression groups divided by median value).
Grouped by the median RiskScore, K-M survival analysis
revealed that the high-risk group had a higher mortality
risk in contrast with the low-risk group (p = 1:1e − 11,
HR = 3:53 ð2:40, 5:19Þ) (Figure 7(a)). The AUC of the
time-dependent ROC analysis reached 0.75 (0.84-0.66) at
1 year, 0.73 (0.81-0.65) at 3 years, and 0.76 (0.86-0.66)
at 5 years (Figure 7(b)). Subsequently, we constructed
nomograms to predict the prognostic status of LUAD at
1, 3, and 5 years utilizing the validation set and TCGA-
LUAD overall patient samples (Figures 7(e) and 7(f)),
respectively, and showed the predicted and actual nomo-
grams with calibration plots. The nomogram effectively
integrated the above prognostic variables and improved

the ability to predict overall survival in LUAD. Based on
the results of the validation set (Figures 7(c) and 7(d)), it
was suggested that among the above prognostic factors,
N (p < 0:01), NTSR1 (p = 0:04), and MAP3K19 (p < 0:001
) were statistically significant. The above prognostic factors
were validated in the TCGA-LUAD overall survival with
consistent results by nomogram and calibration plot
(Figures 7(e) and 7(f)).

The above results suggest that two gene marker prognos-
tic factors-MAP3K19 and NTSR1 have important clinical
significance for the prognosis of LUAD. Thus, we performed
independent analyses for MAP3K19 and NTSR1 in TCGA-
LUAD. Unpaired differential analysis between normal sam-
ples and LUAD samples indicated that NTSR1 was signifi-
cantly overexpressed in LUAD (Figure 8(a)), while
MAP3K19 was significantly underexpressed in LUAD
(Figure 8(d)). The results of differential expression analysis
of paired samples were consistent (Figures 8(b) and 8(e)).
Subsequent ROC curve analysis suggested that NTSR1
(AUC: 0.601 (0.532−0.671), Figure 8(c)) and MAP3K19
(AUC: 0.710 (0.633−0.787), Figure 8(f)) had a good diagnos-
tic performance for the differential diagnosis of LUAD
samples.
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Figure 7: Univariate and multivariate Cox regression analyses determined the prognostic value and predictive performance of the 2-gene
signature prognostic model, MAP3K19 and NTSR1. (a) K-M survival analysis revealed that the high-risk group had a higher mortality
risk than the low-risk group; (b) 1, 3, and 5-year time-dependent ROC curve analysis based on OS in LUAD patients; (c) nomogram
effectively integrated and shows the ability of age, sex, tumor pathological status grade, and TNM stage, as well as MAP3K19 and NTSR1
(high- and low-expression groups based on the median value) in the training set-related prognostic variables to predict LUAD overall
survival; (d) calibration plot for internal validation of nomograms for overall survival prognostic status for LUAD at 1, 3, and 5 years of
training set; (e) nomograms effectively integrate and demonstrate the ability of prognostic variables in TCGA-LUAD to predict overall
survival in LUAD; (f) calibration plot for internal validation of nomograms for overall survival prognostic status for LUAD at 1, 3, and 5
years of the TCGA-LUAD dataset.
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Figure 8: Differential expression analysis and diagnostic efficacy verification of oxidative stress-related 2-gene marker prognostic factors
MAP3K19 and NTSR1 in TCGA-LUAD. (a) Unpaired differential analysis of NTSR1 in LUAD between normal and LUAD samples
indicated significantly high expression; (b) paired differential analysis of NTSR1 in LUAD and normal samples suggested significantly
high expression; (c) ROC curve validated MAP3K19. It has good diagnostic performance for the differential diagnosis of LUAD samples;
(d) between normal and LUAD samples, the unpaired differential analysis of MAP3K19 in LUAD suggests significantly lower expression
in LUAD and significantly lower expression in LUAD; (e) MAP3K19 in LUAD paired difference analysis with normal samples indicated
significantly low expression; (f) ROC curve verified that MAP3K19 has good diagnostic performance for the differential diagnosis of LUAD.
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Figure 9: Continued.
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We further analyzed the clinical variable subgroup sur-
vival analysis of oxidative stress-related 2 gene signatures
MAP3K19 and NTSR1 in TCGA-LUAD, suggesting that
high NTSR1 expression and low expression of MAP3K19
were remarkably linked to poorer OS outcomes in LUAD
(Figure 9(a)); subgroup survival analysis of clinical variables
of primary therapy outcome, pathologic stage, and TNM
stage exhibited that high expression of NTSR1 was signifi-
cantly linked to poor prognosis, respectively (Figures 9(b)–
9(f)). In addition, our logistic regression forest plot of
dichotomous variables for clinical subgroups of MAP3K19
demonstrated correlations (not statistically significant in
NTSR1 analysis) (Figure 9(h)). Meanwhile, in vivo RT-
PCR and IHC results against NTSR1 (Figures 10(a)–10(c))
and MAP3K19 (Figures 10(d)–10(f)) were also consistent
with our previous analysis.

3.7. Differential Analysis and Enrichment Analysis Based on
Oxidative Stress-Related 2 Gene Signatures. All of the above
analyses confirmed the superior predictive performance of
MAP3K19 and NTSR1 for poor prognosis in LUAD, and
the following analysis focused on exploring how the oxida-
tive stress-related 2 gene signature might lead to poor prog-
nosis in LUAD.

In order to additionally explore the molecular mecha-
nism engaged in the identification of high-risk populations
with poor prognosis of LUAD in the oxidative stress prog-
nostic model composed of MAP3K19 and NTSR1, we sepa-
rately analyzed the significant differences between two risk
groups in the prognostic model constructed by the LASSO
algorithm in the training set and the validation set. We per-
formed differential analysis on the two risk groups defined

by the median risk of the training set (Figure 11(a)) and val-
idation set (Figure 11(b)) prediction model, respectively,
showing the expression of significantly different genes as a
heatmap. The 92 prognostic risk genes of oxidative stress
coexisting in both sets were obtained by the Venn diagram
(Figure 11(c)). These genes were then subjected to enrich-
ment analysis. GSVA analysis shows enriched entries with
jLogFCj > 0:5 and adj:p < 0:05 as a heatmap. We then ana-
lyzed the reference gene set retrieved from the MSigDB data-
base in “c2.cp.v7.2.symbols.gmt,” “h.all.v7.2.symbols.gmt”
gene set, and immune cell infiltration-related gene set.
Enrichment scores for each gene functional pathway were
obtained utilizing the GSVA package in R. The heatmap
visualizes the differential gene expression between the two
risk groups in the training set as well as the validation set.
It was found that the gene set enrichment results of
“h.all.v7.2.symbols.gmt” (Figure 11(d)) and “c2.cp.v7.2.sym-
bols.gmt” (Figure 11(e)) based on the MSigDB database were
concentrated in UNFOLDED PROTEIN RESPONSE, GLY-
COLYSIS, MTORC1 SIGNALING, MYC TARGETS V1,
MYC TARGETS V2, and other functions and ways.
Immune-related “immune.gmt” (Figure 11(f)) gene set
enrichment results focused on Eosinophil, Natural.killer.cell,
Immature..B.cell, Activated.B.cell, Mast.cell, and Type.1.-
T.helper .cell.

Next, the GO (Table 3) and KEGG (Table 4) enrichment
analysis results are shown by bubble plots (Figures 12(a)
and 12(b)) and bar graphs (Figures 12(c) and 12(d)). BP
was significantly enriched in oxidative phosphorylation,
mitochondrial translational elongation, mitochondrial
translational termination, translational termination, purine
ribonucleoside triphosphate metabolic process, and other
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Figure 9: Subgroup survival analysis of clinical variables for oxidative stress-related 2 gene signatures MAP3K19 and NTSR1 in TCGA-
LUAD. (a) K-M survival curves suggest that elevated NTSR1 expression level is substantially linked to poorer OS outcomes in LUAD;
(b–f) K-M survival curves suggest that high NTSR1 expression is linked to poor pathologic outcomes, respectively; stage, primary
therapy outcome and TNM stage were significantly correlated; (g) K-M survival curve suggested that low expression of MAP3K19 was
remarkably linked to poorer OS outcome in LUAD; (h) logistic regression forest plot of binary variables of clinical subgroups of
MAP3K19 showed the correlation sex.
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Figure 10: qRT-PCR and IHC analysis of model genes. (a–c) NTSR1 mRNA and protein expression were significantly increased in LUAD
samples; (d–f) MAP3K19 expression in LUAD samples was significantly lower than that in paratumor normal tissue.
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items. CC was significantly enriched in mitochondrial
inner membrane, protein complex, matrix, ribosome, orga-
nellar ribosome, and other entries. MF was significantly
enriched in the structural components of the ribosome,
proton transmembrane transporter activity, cytochrome-c
oxidase activity, electron transfer activity, heme-copper
terminal oxidase activity, and other items. KEGG was sig-

nificantly enriched in oxidative phosphorylation, thermo-
genesis, ribosome, Parkinson’s disease, cardiac muscle
contraction, and other pathways. A pathview diagram with
differentially expressed genes colored for the arachidonic
acid metabolism pathway is displayed in (Figures 12(e)–
12(i)), including hsa00190, hsa03010, hsa04260, hsa04714,
and hsa05012.

Immature..B.cell

Activated.B.cell

Eosinophil

Mast.cell

Natural.killer.cell

Type.1.T.helper.cell

Project
Cluster

Cluster

High

Low

−2

−1

0

1

2

(f)

Figure 11: Differential analysis based on oxidative stress-related 2 gene signatures and GSVA enrichment analysis. (a, b) We obtained
heatmaps of differential gene expression between the training set (a) and validation set (b) between high- and low-risk groups,
correspondingly; (c) Venn diagram obtained the coexisting 92 prognostic risk genes of oxidative stress; (d–f) “h.all.v7.2.symbols.gmt” (e),
“c2.cp.v7.2.symbols.gmt” with jLogFCj > 0:5 and adj:p < 0:05 as a heatmap (e), enriched entries for immune-related (f) gene set GSVA
analysis.

Table 3: GO enrichment analysis of coexpressed genes based on the LUAD oxidative stress-related prognostic risk model.

Ontology ID Description BgRatio p value p.adjust Q value

BP

GO:0006119 Oxidative phosphorylation 145/18670 8.76e-10 1.28e-06 1.17e-06

GO:0070125 Mitochondrial translational elongation 88/18670 5.21e-09 2.78e-06 2.53e-06

GO:0070126 Mitochondrial translational termination 89/18670 5.70e-09 2.78e-06 2.53e-06

GO:0006415 Translational termination 104/18670 1.97e-08 7.19e-06 6.56e-06

GO:0009205 Purine ribonucleoside triphosphate metabolic process 335/18670 2.83e-08 7.42e-06 6.76e-06

CC

GO:0005743 Mitochondrial inner membrane 473/19717 3.79e-18 7.50e-16 6.10e-16

GO:0098798 Mitochondrial protein complex 262/19717 1.10e-10 1.09e-08 8.85e-09

GO:0005759 Mitochondrial matrix 469/19717 1.45e-08 9.60e-07 7.81e-07

GO:0000313 Organellar ribosome 87/19717 1.03e-07 4.09e-06 3.33e-06

GO:0005761 Mitochondrial ribosome 87/19717 1.03e-07 4.09e-06 3.33e-06

MF

GO:0003735 Structural constituent of ribosome 202/17697 3.60e-06 9.07e-04 7.84e-04

GO:0015078 Proton transmembrane transporter activity 133/17697 3.07e-05 0.004 0.003

GO:0009055 Electron transfer activity 114/17697 1.66e-04 0.011 0.009

GO:0004129 Cytochrome-c oxidase activity 28/17697 2.69e-04 0.011 0.009

GO:0015002 Heme-copper terminal oxidase activity 28/17697 2.69e-04 0.011 0.009

26 Oxidative Medicine and Cellular Longevity



3.8. Gene Set Enrichment Analysis of Oxidative Stress Gene
Model in LUAD. In order to additionally explore the molec-
ular processes engaged in the identification of high-risk pop-
ulations with poor prognosis of LUAD in the oxidative stress
prognostic model composed of MAP3K19 and NTSR1,
GSEA is a computational method utilized to ascertain if a
predefined set of genes shows statistical differences between
two biological states, which is typically utilized to estimate
expression in a dataset sample. Changes in the pathway as
well as biological process activity were analyzed [23]. To
investigate the variations in biological mechanisms between
the two groups of samples, employing the gene expression
profile dataset, we obtained the reference gene set
“c2.cp.kegg.v7.4.entrez.gmt” from the MSigDB database, uti-
lizing the R package “clusterProfiler.” The GSEA method is
included in enrichment analysis and visualization of data-
sets. p value < 0.05 was considered statistically significant
(Figure 13 and Table 5).

3.9. Pan-Cancer Analysis of Immune Cells and Immune
Infiltration Based on MAP3K19 and NTSR1. The infiltration
abundance of immune cells was analyzed by CIBERSORT,
and the correlation heatmap in pan-cancer showed that
MAP3K19 (Figure 14(a)) and NTSR1 (Figure 14(b)) were
significantly correlated with immune infiltration in more
types of tumors. Based on TCGA LUAD transcription pro-
file and CIBERSORT, we derived the proportions of 22
tumor-infiltrating immune cells. In our study, the use of
RNA-seq data as well as global proteomic data inferred
MAP3K19 and NTSR1 for pan-cancer tumor purity,
immune score, and stromal score. From this, significantly
correlated immune infiltration scores were identified, and
we analyzed the scores for stromal cell levels, tumor purity,
and immune cell infiltration levels in cancer tissues calcu-
lated with ESTIMATE expression was substantially posi-
tively linked to immune score, ESTIMATE score, and
stromal score, respectively. The results suggest that NTSR1
(Figures 14(c)–14(e)) and MAP3K19 (Figures 14(f)–14(h))
were closely related to stromal cell level, tumor purity, and
immune cell infiltration level in the lung tumor microenvi-
ronment and may affected the prognosis of LUAD by chang-
ing the tumor immune microenvironment.

3.10. Correlation Analysis of Immune Cell Infiltration. It was
found that MAP3K19 was positively correlated with T cell
CD4 memory resting and B cell memory (Figures 15(a)
and 15(b)) and negatively correlated with mast cells acti-
vated and dendritic cells activated (Figures 15(c) and
15(d)). NTSR1 was positively correlated with neutrophils,

macrophages M0, and T cell gamma delta (Figures 15(e)–
15(g)) and negatively linked to mast cells resting
(Figure 15(h)). In our study, the use of RNA-seq data as well
as global proteomic data inferred MAP3K19 and NTSR1 for
pan-cancer tumor purity, immune score, and stromal score.
From this, significantly correlated immune infiltration
scores were identified, and we analyzed the scores for stro-
mal cell levels, tumor purity, and immune cell infiltration
levels in cancer tissues calculated with ESTIMATE expres-
sion which was substantially positively linked to immune
score, ESTIMATE score, and stromal score, respectively.
The results suggest that NTSR1 (Figures 14(c)–14(e)) and
MAP3K19 (Figures 14(f)–14(h)) were closely related to stro-
mal cell level, tumor purity, and immune cell infiltration
level in the lung tumor microenvironment and may affected
the prognosis of LUAD by changing the tumor immune
microenvironment.

4. Discussion

Globally, lung cancer is the major cause of cancer-related
mortalities, whereas LUAD is the most prevalent histological
subtype of the disease. About two-thirds of LUAD have acti-
vated oncogenes. Most oncogene mutations often activate
downstream signaling pathways through oxidative stress
pathways and states, ultimately leading to lethal malignan-
cies, including LUAD [24, 29, 30]. Molecularly targeted ther-
apy significantly improves survival in patients with
treatment-targeted lesions compared to conventional che-
motherapy [31, 32]. However, the clinical efficacy of targeted
drugs has been improved due to the lack of appropriate
small molecules to bind major tumor-causing gene
mutations.

For the survival of both normal cells and cancerous cells,
redox hemostasis is fundamental. Nonetheless, numerous
malignancies have increased levels of reactive oxygen species
(ROS) and exhibit signs of chronic oxidative stress as a result
of oncogenic injury, metabolic malformations, hypoxia, and
proteotoxic stress [33]. The increased ROS at the sublethal
level is implicated in the enhancement of tumor develop-
ment via triggering mutations and altering cell signaling
[34]. Because traditional cytotoxic agents additionally influ-
ence normal tissues, targeted approaches that induce cata-
strophic oxidative stress selectively in malignant cells
would avail a better therapeutic window [35].

The LUAD cohort of TCGA availed both the expression
and clinical data in this study. Among oxidative stress-
related genes, we did differential expression analysis as well
as univariate Cox analysis to screen 32 prognostic DEGs

Table 4: KEGG enrichment analysis of coexpressed genes based on the LUAD oxidative stress-related prognostic risk model.

Ontology ID Description BgRatio p value p.adjust Q value

KEGG

hsa00190 Oxidative phosphorylation 133/8076 4.47e-08 3.35e-06 2.82e-06

hsa04714 Thermogenesis 231/8076 4.98e-07 1.87e-05 1.57e-05

hsa03010 Ribosome 158/8076 2.71e-05 6.77e-04 5.70e-04

hsa05012 Parkinson disease 249/8076 6.90e-05 0.001 0.001

hsa04260 Cardiac muscle contraction 87/8076 1.25e-04 0.002 0.001
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from 147 differentially expressed oxidative stress-related
genes and utilized Lasso-penalized Cox regression analysis
constructed 2 gene markers associated with prognosis. At
the same time, by constructing a PPI network, we analyzed
the distribution of 18 differentially oxidative stress hub genes
in transport vesicles, endoplasmic reticulum lumen, etc.,
affecting blood pressure, hormone secretion, nucleotide sec-
ond messengers, and other functions to regulate oxidative
stress effect. To construct and validate the oxidative stress
gene signature affecting the diagnosis and prognosis of
LUAD, we randomly divided 445 patients with complete
clinical informatics data in TCGA-LUAD into the training
set (2/3 of the total, n = 296) and the test set (1/3 of the total,
n = 149); the grouping is normally distributed. We first per-
formed a univariate Cox regression analysis of gene expres-
sion premised on the expression data of 147 oxidative
stress-related genes in the training and test set, correspond-
ingly. Thirty-five genes with prognostic values coexisting in
both sets were identified. Then, we performed LASSO-Cox
proportional hazards regression based on 35 prognostic-
related differential oxidative stress genes in the training
and validation set, correspondingly, and found that
MAP3K19 and NTSR1 in both sets showed a better predic-
tion of poor prognosis in LUAD ability. Therefore, the prog-
nostic independence of 2-gene signature prognostic factors,

MAP3K19 and NTSR1, was further analyzed in combination
with clinical features. A nomogram was constructed to effec-
tively integrate prognostic variables and validated with cali-
bration. Next, the difference analysis of MAP3K19 and
NTSR1 in TCGA-LUAD and the correlation analysis of clin-
ical variables indicated that both the high expression of
NTSR1 and the low expression of MAP3K19 had a better
diagnostic performance for the diagnosis of LUAD and the
identification of poor prognosis. At the same time,
MAP3K19 and NTSR1 were found to be significantly corre-
lated with clinical variables such as LUAD pathological stage
and TNM grade. Prognosis-related differential oxidative
stress gene signatures are independent prognostic factors in
patients with LUAD.

The importance of tumor immune activity on tumori-
genesis and development, as well as individual variation at
the gene level, has attracted more and more researchers to
focus on the significance of differential genes that may be
useful in distinguishing pRCC patients with heterogeneous
responses and predicting prognosis potentially meaningful.
The ESTIMATE analysis of pan-cancer species analysis of
MAP3K19 and NTSR1 in TCGA database systematically
recorded the abundance of 22 tumor-infiltrating immune
compartments in LUAD samples through the CIBERSORT
algorithm and integrated it with the MAP3K19 and NTSR1
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(c) Kanehisa laboratories
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Figure 12: GO and KEGG enrichment analysis. (a–d) GO (a, c) and KEGG (b, d) enrichment analysis of 92 differentially expressed genes
associated with LUAD prognosis. Bubble and bar graphs show the results of GO and KEGG enrichment analysis; (e–i) pathview diagrams
with DEGs colored for expression are shown for hsa00190, hsa03010, hsa04260, hsa04714, and hsa05012, respectively. The figure shows
term with p:adjust < 0:05. The length of the bars in the histogram denotes the amount of gene enrichment, the color denotes the
significance, and the significance level increases gradually from blue to red.
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Figure 13: Gene set enrichment analysis of oxidative stress prognostic gene signature in LUAD. (a) JAK_STAT_SIGNALING_PATHWAY
(ES = 0:5561, NP = 0:0000); (b) SYSTEMIC_LUPUS_ERYTHEMATOSUS (ES = 0:6502, NP = 0:0040); (c) LEISHMANIA_INFECTION
(ES = 0:5961, NP = 0:0041); (d) NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY (NP = 0:0064); (e) AUTOIMMUNE_
THYROID_DISEASE (ES = 0:7506, NP = 0:0021); (f) VIRAL_MYOCARDITIS (ES = 0:6040, NP = 0:0000); (g) CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION (ES = 0:4820, NP = 0:0142); (h) T_CELL_RECEPTOR_SIGNALING_PATHWAY
(ES = 0:5250, NP = 0:0000); (i) ALLOGRAFT_REJECTION (ES = 0:7815, NP = 0:0021).

33Oxidative Medicine and Cellular Longevity



molecular profiles to analyze the degree of immune infiltra-
tion in LUAD. Subsequently, further immune score, stromal
score, and ESTIMATE score in the pan-cancer TME
revealed the potential roles of MAP3K19 and NTSR1 in reg-
ulating stromal/immune scores and gene expression in
tumors. This suggests that the oxidative stress prognostic
model composed of MAP3K19 and NTSR1 may be involved
in the molecular mechanism in the identification of high-
risk populations with poor prognosis of LUAD.

Studies have shown that MAP3K19 level is elevated in
COPD and bronchoalveolar lavage macrophages from
patients with IPF. At the level of target gene transcription
or protein synthesis, molecular studies have confirmed that
MAP3K19 inhibitors are linked to pirfenidone or ninted-
anib. At the same time, MAP3K19 significantly attenuated
bleomycin-induced pulmonary fibrosis [36] and is a central
mediator of cigarette smoke-induced pulmonary inflamma-
tion and lower airway destruction [37]. In studies on lung
cancer, targeting MAP3K19 has been reported to prevent
human lung myofibroblast activation in vitro and in a
humanized SCID model of idiopathic pulmonary fibrosis
[38]. On the other hand, it can also phosphorylate MAP2K,
thereby activating ERK as well as JNK kinases and increasing
the KRAS mutant lung cancer cells’ viability [39]. The mech-
anism of action of NTSR1 in various tumors has also been
reported many times [40]. Effects, underlying mechanisms,
and clinical roles of NTSR1 on gastric adenocarcinoma cell
proliferation and invasion. Interfering with NTSR1 expres-
sion exhibits anti-invasive effects through the Jun/miR-
494/SOCS6 axis in glioblastoma cells [41]. The mechanism
of action of NTSR1 in various tumors has also been reported
many times. Effects, underlying mechanisms, and clinical
roles of NTSR1 on gastric adenocarcinoma cell proliferation
and invasion. Interfering with NTSR1 expression causes
anti-invasive effects through the Jun/miR-494/SOCS6 axis
in glioblastoma cells. NTSR1 and Wnt/β-catenin enhance
tumor growth in glioblastoma [42]. Furthermore, NTSR1
methylation is linked to the lateral and noninvasive progres-
sion of colorectal tumors, whereas lowered levels of methyl-
ation might enhance the malignant potential via activation
of NTSR1 [43].

In conclusion, this study constructed and validated a 2-
gene oxidative stress-related LUAD prognostic model,
MAP3K19 and NTSR1, which were significantly correlated
with clinical variables (including LUAD pathological stage
and TNM grade) and significantly affected the infiltration
of immune cells in the tumor microenvironment (TME)
of LUAD. And they are all involved in the process of oxi-
dative stress and the energy metabolism network of ROS.
The results of enrichment analysis based on the biological
functions of GO, KEGG, and GSEA and pathway signaling
patterns suggest that the molecular expression of
MAP3K19 and NTSR1 and other immune cells help in
the process of oxidative stress, even though conclusive evi-
dence is still unavailable. Studies have shown that during
apoptosis, immune cells are attracted and aggregated by a
set of signals that enhance programmed cell death [44,
45]. In terms of bioinformatics, various studies have
revealed a possible link between tumor and immune infil-
tration [46, 47]. Additionally, to palliative targeted therapy,
monotherapy with new immunotherapies, such as immune
checkpoint inhibitors (ICIs), has also demonstrated quite
successful outcomes in some individuals with advanced
LUAD [48]. In this study, through risk group-based
immune annotation analysis, we found that macrophages,
Tregs, and other types of immune cells and costimulation
of immune-related roles were significantly enriched in
both cohorts, suggesting that there may be potential regu-
latory mechanisms.

This study found some limitations. In a bioinformatics
study, the weakness of the absence of experimental as well
as clinical validation remains, and the utilization of alterna-
tive cutoff criteria, statistical methodologies, or analytical
tools may provide varied results. Furthermore, building a
prognostic model by focusing on a single marker may result
in the deletion of numerous other potential prognostic
genes. In conclusion, we created a novel 2-gene signature
associated with oxidative stress that was shown to be an
independent prognostic predictor of OS in LUAD. Through
functional annotation analysis, the gene signature was asso-
ciated with tumor immunity; nonetheless, its underlying
process is not clear and needs to be explored further.

Table 5: Results of gene set enrichment analysis of gene signatures in prognostic models of oxidative stress.

Term ES NES p value FDR

VIRAL_MYOCARDITIS 0.604 2.0023 0.0117 0.04

AUTOIMMUNE_THYROID_DISEASE 0.7506 2.0069 0.0021 0.0149

ASTHMA 0.7919 2.0269 0.002 0.0168

NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.5455 1.9577 0.0064 0.0191

JAK_STAT_SIGNALING_PATHWAY 0.5561 2.0488 0.0259 0.023

LEISHMANIA_INFECTION 0.5961 1.8795 0.0041 0.0266

ALLOGRAFT_REJECTION 0.7815 1.9236 0.0021 0.0269

T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.525 1.8848 0.0288 0.0149

SYSTEMIC_LUPUS_ERYTHEMATOSUS 0.6502 1.897 0.004 0.0293

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.482 1.8142 0.0142 0.046

TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.4956 1.8005 0.0151 0.0487
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Figure 14: Continued.
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The TCGA-LUAD cohort availed both the clinical data
and the expression data in this study. Among oxidative
stress-related genes, we did differential expression analysis
and univariate Cox analysis in order to screen 32 prognostic
DEGs from 147 differentially expressed oxidative stress-
related genes and utilized Lasso-penalized Cox regression
analysis constructed 2 gene markers associated with progno-
sis. At the same time, by constructing a PPI network, we
analyzed the distribution of 18 differentially oxidative stress
hub genes in transport vesicles, endoplasmic reticulum
lumen, etc., affecting blood pressure, hormone secretion,
nucleotide second messengers, and other functions to regu-
late oxidative stress effect. To construct and validate the oxi-
dative stress gene signature affecting the diagnosis and
prognosis of LUAD, we randomly divided 445 patients with

complete clinical informatics data in TCGA-LUAD into the
training set (2/3 of the total, n = 296) and the test set (1/3 of
the total, n = 149); the grouping is normally distributed. We
first performed a univariate Cox regression analysis of gene
expression premised on the expression data of 147 oxidative
stress-related genes in the training and test sets, respectively.
Thirty-five genes with prognostic values coexisting in both
sets were identified. Then, we performed LASSO-Cox pro-
portional hazards regression based on 35 prognostic-
related differential oxidative stress genes in the training set
as well as the validation set, respectively, and found that
MAP3K19 and NTSR1 in the two sets showed a better pre-
diction of poor prognosis in LUAD ability. Therefore, the
prognostic independence of 2-gene signature prognostic fac-
tors, MAP3K19 and NTSR1, was further analyzed in
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Figure 14: Immune cell infiltration analysis. (a, b) CIBERSORT analysis of MAP3K19 (a) and NTSR1 (b) heatmaps related to the
infiltration abundance of immune cells in pan-cancer; (c–h) ESTIMATE analyzed the scores of tumor purity, stromal cell level, and
immune cell infiltration level in tumor tissue and showed NTSR1 (c–e) and MAP3K19 (f–h) expression with immune score, ESTIMATE
score, and stromal score, respectively, with a scatterplot positively correlated.
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Figure 15: Continued.
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combination with clinical features. A nomogram was con-
structed to effectively integrate prognostic variables and val-
idated with calibration. Next, the difference analysis of
MAP3K19 and NTSR1 in TCGA-LUAD and the correlation
analysis of clinical variables indicated that both the high
expression of NTSR1 and the low expression of MAP3K19
had a better diagnostic performance for the diagnosis of
LUAD and the identification of poor prognosis. At the same
time, MAP3K19 and NTSR1 were found to be significantly
correlated with clinical variables such as LUAD pathological
stage and TNM grade. Prognosis-related differential oxida-

tive stress gene signatures are independent prognostic fac-
tors in patients with LUAD. ESTIMATE analysis results of
pan-cancer species analysis of MAP3K19 and NTSR1 in
TCGA database. The abundances of 22 tumor-infiltrating
immune compartments in LUAD samples were systemati-
cally recorded by the CIBERSORT algorithm and integrated
with MAP3K19 and NTSR1 molecular profiles to analyze
the degree of immune infiltration in LUAD. Subsequently,
further immune score, stromal score, and ESTIMATE score
in the pan-cancer TME revealed the potential roles of
MAP3K19 and NTSR1 in regulating stromal/immune scores
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Figure 15: Correlation analysis of immune cell infiltration. (a, b) MAP3K19 was positively correlated with T cells CD4 memory resting and
B cells memory; (c, d) MAP3K19 was negatively correlated with mast cells activated and dendritic cells activated; (e–g) NTSR1 was positively
correlated with neutrophils, macrophages M0, and T cells gamma delta; (h) NTSR1 was negatively linked to mast cells resting.
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and gene expression in tumors. This suggests that the oxida-
tive stress prognostic model composed of MAP3K19 and
NTSR1 may be involved in the molecular mechanism in
the identification of high-risk populations with poor prog-
nosis of LUAD.
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