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Background. Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and
development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a
kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and
predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced
ALI/ARDS remains unclear. Materials and Methods. Sera samples from 50 patients with sepsis/septic shock were used to detect
iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-
related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission
electron microscopy (TEM) was used to assess morphological changes of cells. Results. The results showed that the iron
metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder.
The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation
levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In
terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the
phosphorylation level of GSK3β, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4,
enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1
reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung
tissues, and aggravated alveolar injury and edema. Conclusions. Our study was the first to explore the changes of iron
metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and
reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.

1. Background

Sepsis is a severe clinical syndrome, which is caused by
inflammatory reaction dysregulation and subsequent multi-
ple organ dysfunction [1, 2]. Sepsis has high morbidity and
mortality [3–5]; with the speeding up of the aging popula-
tion, the number of patients is on the increase [6, 7]. Severe
sepsis or septic shock can lead to functional impairment of

various organs, among which the lung is one of the most
common and vulnerable organs [8]. It has been reported
that about 40% of the occurrence of ARDS/ALI was caused
by sepsis [9].

ARDS is a kind of acute diffuse inflammatory injury
caused by multiple factors inside and outside the lung [10,
11]. As one of the main causes of acute respiratory failure,
ARDS is characterized by increased pulmonary endothelial
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Figure 1: Continued.

2 Oxidative Medicine and Cellular Longevity



and epithelial permeability and diffused alveolar damage
[12]. Subsequently, a large number of inflammatory factors
and reactive oxygen species (ROS) lead to imbalance
between oxidative and antioxidant systems, which results
in a series of inflammatory responses [13, 14]. Studies have
shown that for patients with sepsis-induced ARDS, the pro-
gression of the disease is much faster than expected [15, 16].
Currently, there is no specific treatment for sepsis-induced
ARDS [8, 17]; therefore, exploring its mechanism is condu-
cive to finding biomarkers for the early identification of sep-
sis that may develop into ARDS and identifying potential
therapeutic targets.

Ferroptosis is a nonapoptotic form of programmed cell
death, which was first discovered in 2012 [18, 19]. Different
from other kinds of programmed cell death, ferroptosis is

characterized by iron dependence and accumulation of
intracellular lipid peroxides [18], and a variety of molecular
signaling pathways is involved [20]. In addition, ferroptosis
has its unique morphological and bioenergetic characteris-
tics, mainly including the reduction or disappearance of
the mitochondrial crest, increase of membrane density, and
destruction of membrane integrity [21]. Many studies have
shown that ferroptosis is closely related to damage-
associated molecular patterns (DAMPs) and sustained
release of cytokines, which further promote the intensifica-
tion of the inflammatory response. Therefore, ferroptosis is
considered as an immune-derived cell death [22, 23]. The
release of inflammatory cytokines further accelerates the
occurrence of ferroptosis and other forms of cell death, thus
forming a cascade amplification effect and exacerbating
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Figure 1: Changes of iron metabolism-related indicators in sepsis-induced ALI/ARDS. (a–d) Differences of iron metabolism-related
indicators in sepsis patients complicated with or without ARDS; (e–h) differences of iron metabolism-related indicators between survival
group and nonsurvival group in sepsis patients complicated with ARDS; (i–n) expression levels of total iron and divalent iron in lung
tissues, sera, and BALF of sepsis mice; (o–t) expression levels of iron metabolism-related genes in lung tissues of sepsis mice. All data
were expressed in the form of mean ± standard deviation; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 2: Continued.
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damage of organs [24]. Relevant studies have reported that
the imbalance of oxides and antioxidants played an impor-
tant role in sepsis-induced ALI/ARDS [25–27]; however,
the specific mechanism needed to be elucidated. In this
study, we aim to clarify the correlation between ferroptosis
and the occurrence, development, and prognosis of ALI/
ARDS in sepsis.

MUC1 is a high molecular weight type I transmembrane
glycoprotein, mainly composed of MUC1-N and MUC1-C,
two noncovalently bound polypeptides [28, 29]. The pri-
mary role of MUC1-N is antiadhesion and lubrication, and
MUC1-C is mainly related to the activation of various signal
pathways [30]. In recent years, many studies have shown

that MUC1 had effective anti-inflammatory functions,
which were mainly concentrated in the respiratory system
[31, 32]. Our previous studies found that MUC1 played an
important role in the inhibition of the TLR-4-NF-κB inflam-
matory pathway by paclitaxel in alleviating acute lung injury
of septic mice [33]. Meanwhile, we also found that the
expression level of MUC1 (KL-6) in the plasma of sepsis
patients complicated with ARDS was significantly increased
and had a good predictive value for early sepsis patients
complicated with ARDS [34]. Li et al. found that MUC1
was a ferroptosis-related gene and had an important prog-
nostic value in idiopathic pulmonary fibrosis [35]. Cui
et al. identified MUC1 as a possible marker of ferroptosis
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Figure 2: Ferroptosis occurred in lung tissues and alveolar epithelial cells of sepsis. (a–e) Western blot assay was used to evaluate the
expression levels of ferroptosis-related genes; (f–i) expression levels of redox products in the lung tissues of sepsis mice; (j–n) effects of
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in ulcerative colitis through database integration analysis
[36]. However, whether MUC1 plays a role in the ferroptosis
of ALI/ARDS in sepsis remains obscure, and the specific
mechanism needs to be illustrated.

Vitamin E, as a lipophilic antioxidant, could reduce or
terminate the damaging chain reaction caused by ROS to
alleviate ferroptosis [37]. Clinical benefits of vitamin E
include regulation of oxidative stress, inflammation, and cell
death. It has been reported that vitamin E regulated ferrop-
tosis through the regulatory mechanism of oxidoreductase
15-lipooxygenase (15-LO), but the mechanism remained
unclear [38, 39]. Other studies have found that vitamin E
could act synergistically with GPX4 to prevent lipid peroxi-
dation [40]. Currently, the role and mechanism of vitamin
E in ferroptosis from ALI/ARDS in sepsis has not been elu-
cidated, and there is a lack of relevant studies on the interac-
tion between MUC1 and vitamin E.

In this study, we first tested iron metabolism-related
indicators from the sera of sepsis/septic shock patients and
found that there were marked iron metabolism disorders.
Through in vivo and in vitro model of sepsis-induced ALI,
expression levels of ferroptosis-related genes, and oxidation
reduction product levels of lung tissues had obvious changes,
which prompted the occurrence of ferroptosis. Further
research suggested that MUC1 might alleviate lung injury
by inhibiting ferroptosis and have a sensitization effect on
vitamin E, and the corresponding mechanism was revealed
for the first time.

2. Materials and Methods

2.1. Samples of Enrolled Patients. 50 patients with sepsis or
septic shock were enrolled. Relevant clinical data have been
analyzed in our previous study [34]. This study was
approved by the Ethics Committee of Ruijin Hospital (No.
20210101). The investigation was based on the institution’s
guidelines for human studies and conformed to the ethics
guidelines of the Declaration of Helsinki.

Inclusion criteria are as follows: 18 years old < age < 90
years old, meet the diagnostic criteria of sepsis 3.0 for sep-
sis/septic shock, and stay longer than 24 hours; patients
who did not develop sepsis or septic shock at the time of

admission but developed the condition during hospitaliza-
tion were excluded.

Exclusion criteria were as follows: patients discharged
from hospital or died within 24 hours after admission,
patients who participated in other clinical studies, patients
who required emergency surgery upon admission, patients
suffering from a malignant tumor, pregnant or breast-
feeding patients, and patients lacking necessary clinical data.

Patients were divided into the ARDS group and No
ARDS group according to the occurrence of ARDS during
hospitalization and the survival group and nonsurvival
group according to the survival of patients. Blood samples
were collected from all enrolled patients on the day of
admission to detect the levels of sera iron, ferritin, transfer-
rin, and transferrin saturation, and 30 healthy adults were
regarded as controls.

2.2. Animals. C57BL/6J male mice (6–8 weeks) were pur-
chased from Slac Lab Animals (Shanghai, China) and kept
in a temperature-regulated (21–23°C) and humidity-
regulated (30–70%) room with a 12-hour light/dark cycle.
There was no dietary or water restrictions for the animals.
All animal experiments were in accordance with guidelines
from the Ruijin Hospital Ethical Committee of Shanghai Jiao
Tong University School of Medicine (No. 092) and the Inter-
national Guide for the Care and Use of Laboratory Animals
(National Academy of Sciences Health Publication No. 85–
23, revised in 1996).

2.3. Reagents and Group. MUC1 inhibitor GO203 (Selleck
Chemicals, Houston, TX, USA) and its negative control
CP2 (Selleck Chemicals, Houston, TX, USA) were used
for in vivo and in vitro experiments. For in vivo experi-
ments, GO203 or CP2 (20mg/kg) was dissolved in PBS
and injected intraperitoneally (n = 6 for each group). For
in vitro experiments, cells were treated with 5μM GO203
or CP2 for 48 h. Ferrostatin-1 (Fer-1), CT99021, and vita-
min E were all purchased from Selleck Chemicals and
used for in vivo or in vitro studies, the efficiency of which
was detected via western blot. For in vivo experiments,
Fer-1 (5mg/kg, dissolved in PBS) was injected intraperito-
neally 1 h after CLP modeling. 2.5mg/kg of vitamin E was
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Figure 3: Fer-1 inhibited the occurrence of ferroptosis and alleviated lung injury in lung tissues and alveolar epithelial cells of sepsis. (a, b)
Western blot assay was performed to evaluate the effect of Fer-1 on the expression level of GPX4 in lung tissues of septic mice. (c, d) Western
blot assay was performed to evaluate the effect of Fer-1 on GPX4 expression in MLE-12 cells. (e–h) Effects of Fer-1 on the expression level of
redox products in lung tissues of septic mice. (i, j) Flow cytometry was used to detect the effects of Fer-1 on lipid peroxides in MLE-12 cells.
(k) HE staining results in each group. (l) Lung injury score in each group. (m) Wet-dry weight ratio of lung tissues in each group. (n–q)
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data were expressed in the form of mean ± standard deviation; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 4: Continued.
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injected intraperitoneally twice per day (n = 6 for each
group). For in vitro experiments, the dosage of Fer-1 was
2μM, the dosage of CT99021 was 2 nM, and the dosage
of vitamin E was 10μM.

2.4. CLP Model. The mice model of sepsis was constructed
using the Cecal Ligation and Puncture (CLP) method.
C57BL/6 male mice (6-8 weeks) were used as the research
objects. The basic principle of the CLP method was to find
the caecum through anatomy and puncture at the blind
end and extrude the contents into the abdominal cavity. Dif-
fuse peritonitis was formed, and systemic infection appeared
in mice. Mice in the control group were only treated with
laparotomy. All mice were sacrificed 24 h after modeling,
and 20-30 g of lung tissues was placed into cryopreserved

tubes and stored at -80°C. Sera and bronchoalveolar lavage
fluid (BALF) were also taken for subsequent experiments.

2.5. Cell Culture. We purchased the murine lung epithelial
cell line (MLE-12) from the Institute of Stem Cell Research
within the Chinese Academy of Sciences (Shanghai, China).
MLE-12 cells were cultured in DMEM-f12 (Gibco, Grand
Island, NY, USA) supplemented with 10% heat-inactivated
fetal calf sera (Gibco), 1% penicillin, and streptomycin
(Millipore, Waltham, MA, USA) in a 37°C incubator with
5% CO2.

2.6. Histological and Biochemical Analysis.We first fixed lung
tissues in 4% paraformaldehyde for 24h and then stained
them using hematoxylin and eosin staining (HE staining).
The severity of organ injury was assessed on the basis of the
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Figure 4: Inhibiting MUC1 triggered ferroptosis in lung tissues and alveolar epithelial cells of sepsis. (a, b) Western blot assay was
conducted to evaluate the effect of MUC1 inhibitor GO203 on GPX4 expression in lung tissues of septic mice. (c–f) The expression
levels of redox products in lung tissues of septic mice; (g, h) Flow cytometry was used to detect the levels of lipid peroxides in MLE-12
cells. (i) TEM evaluation of the effects of GO203 on the morphology of ferroptosis-related organelles in MLE-12 cells. All data were
expressed in the form of mean ± standard deviation; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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criteria [41, 42]. At least six areas of view at 100x magnifica-
tion were double-blind evaluated by three pathologists.

The lung tissues were weighed (wet weight) at 24h after
modeling and then placed in the oven at 60°C for 24h and
weighed again (dry weight) to calculate the wet-dry weight
ratio. Student’s t test was used to evaluate differences between
groups.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). The
changes of TNF-α, IL-1β, IL-6, and IL-10 in sera and
BALF of mice (n = 6 for each group) were detected using
an ELISA Kit (MultiSciences Biotechnology Co., Ltd.,
Hangzhou, China), and all programs were in accordance
with manufacturer’s protocol. Student’s t test was used to
evaluate differences between groups.
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Figure 5: Inhibiting MUC1 triggered ferroptosis via the Keap1/GSK3β-Nrf2-GPX4 pathway. (a–g) Effects of inhibiting MUC1 on the
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2.8. qRT-PCR. We first used a TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) to extract total RNA from lung tissues
and cell lines, then carried out reverse transcription using
the HiScript III RT SuperMix (Vazyme, Nanjing, China),
and finally used the AceQ Universal SYBR qPCR Master
Mix (Vazyme, Nanjing, China) to detect total RNA under
recommended conditions. GAPDH was used as the negative
control. Sequences of primers were synthesized by Bioegene
Co., Ltd. (Shanghai) and listed in Table S1. Sequences of
Keap1 siRNA were as follows: NC sense 5′UUCUCCGAA
CGUGUCACGUdTdT3′, NC antisense 5′ACGUGACAC
GUUCGGAGAAdTdT3′, Keap1 siRNA sense 5′GUGGCG
AAUGAUCACAGCAAUTT3′, and antisense 5′AUUGCU
GUGAUCAUUCGCCACTT3′. We set three independent
events for each group.

2.9. Western Blot. Protein samples from cells or lung tissues
were lysed using the RIPA buffer, then subjected to 10%
SDS-PAGE and transferred onto polyvinylidene fluoride
(PVDF) membranes. Primary antibodies including anti-
ASCL4, anti-SLC7A11, anti-ATF4, anti-GPX4, anti-Nrf2,
anti-Keap1, anti- GSK3β, and anti-pGSK3β were used
(Table S2). GAPDH and histone H3 were used as the
negative control.

2.10. Nuclear and Cytoplasmic Extraction. The cytoplasmic
and nuclear proteins were purified using NE-PER Nuclear
and Cytoplasmic Extraction Reagents (Pierce Biotechnology,
Inc., Rockford, IL, USA) according to the manufacturer’s
protocol. Western blot was conducted to detect expression
levels of cytoplasmic and nuclear proteins.

2.11. Transmission Electron Microscopy. The adherent cell
samples were first removed from the culture medium and
fixed with 2.5% glutaraldehyde for 5min. Cells were gently
removed with cell scraping, transferred into the centrifuge
tube, and centrifuged at 3000 rpm for 2min. The fixator
was removed, and a new electron microscope fixator was
added. Then, cells were dehydrated with ethanol, embedded

with pure acetone+embedding solution (2 : 1), cured, sliced
with an ultrathin slicer, stained, and photographed with
transmission electron microscopy.

2.12. Iron Metabolism Indicator Measurement. Iron and Fe2+

concentrations in sera, BALF, and lung tissues were detected
using the Iron Assay Kit (MAK025-1KT, Sigma) according
to the manufacturer’s instructions. Total iron and Fe2+ were
measured in 10μL of sera and BALF or 10mg of tissue
homogenate. Absorption was measured at 593 nm and com-
pared with a standard curve for known concentrations.

Ferritin, transferrin, and transferrin saturation from sera
of sepsis or septic shock patients were measured in accor-
dance with the manufacturer’s protocol (Servicebio Technol-
ogy, Wuhan, China). Student’s t test was used to evaluate
differences between groups.

2.13. Reactive Oxidative Stress Activity Assay. The lung tis-
sues were weighed accurately. Precooled normal saline was
added according to the weight-to-volume ratio, and the lung
tissues were ground at high speed. The levels of redox prod-
ucts (glutathione (GSH), malondialdehyde (MDA), myelo-
peroxidase (MPO), and superoxide dismutase (SOD)) in
the lung tissues were detected using commercial biochemical
kits (Nanjing Jiancheng, China) following the manufactur-
er’s instructions. Student’s t test was used to evaluate differ-
ences between groups.

2.14. Lipid Peroxidation Activity Assay. To determine the
level of lipid peroxides, C11 BODIPY 581/591 (50μM) was
added to the treated cells and incubated for 1 h. The cells
were cleaned with PBS to remove the excess dye, then
digested with trypsin, and resuspended in PBS (containing
5% FBS) for flow cytometry analysis. We set three indepen-
dent events for each group.

2.15. Statistical Analysis. SPSS 20.0 (IBM, SPSS, Chicago, IL,
USA) and GraphPad Prism 7.0 (GraphPad Software Inc.,
CA, USA) were used to analyze data which were expressed
as mean ± standard deviation (SD). Student’s t test and
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Figure 6: Vitamin E inhibited the occurrence of ferroptosis and alleviated lung injury in lung tissues and alveolar epithelial cells of sepsis. (a,
b) Western blot assay was performed to evaluate the effect of vitamin E on the expression level of GPX4 in lung tissues of sepsis mice. (c–f)
The expression levels of redox products in lung tissues of sepsis mice. (g, h) Flow cytometry was used to detect the levels of lipid peroxides in
MLE-12 cells. (i) The effects of vitamin E on the morphology of ferroptosis-related organelles were assessed by TEM. (j) HE staining results
in each group. (k) Lung injury scores and lung wet-dry weight ratio in each group. (l–o) Levels of TNF-α, IL-1β, IL-6, and IL-10 in sera of
each group. (p–s) Levels of TNF-α, IL-1β, IL-6, and IL-10 in BALF of each group. (t–z) Western blot assay was used to evaluate the effects of
vitamin E on the expression levels of related genes. All data were expressed in the form of mean ± standard deviation; ∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:001.
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one-way ANOVA were used to evaluate differences between
groups. P value < 0.05 was considered statistically
significant.

3. Results

3.1. Changes of Iron Metabolism-Related Indicators in Sepsis-
Induced ALI/ARDS. We collected data from 50 patients with
sepsis/septic shock, including 34 patients without ARDS, 16
patients with ARDS, and another 30 healthy controls. By
detecting serum total iron, ferritin, transferrin, and transfer-
rin saturation levels of all the patients during the first day in
the hospital, we found that ferritin of sepsis patients was
higher than that of the control group, while total iron, trans-
ferrin, and transferrin saturation were lower in the control
group, however, whether or not sepsis patients with or with-
out ARDS had an significant effect on sera iron metabolism
indicators (Figures 1(a)–1(d)). Further, patients with sepsis
complicated with ARDS were divided into the survival group
(n = 10) and nonsurvival group (n = 6). Results showed that
ferritin in the nonsurvival group was significantly higher

than that in the survival group, but transferrin was signifi-
cantly lower in the survival group, with no significant differ-
ences in other indicators (Figures 1(e)–1(h)). In animal
experiments, the CLP method was used to construct the sep-
sis mouse model, and the levels of total iron and divalent
iron in lung tissues, sera, and bronchoalveolar lavage fluid
(BALF) of sepsis and control mice were detected, respec-
tively. Results showed that the levels of total iron and diva-
lent iron in lung tissues of sepsis mice were significantly
higher than those of the control group (Figures 1(i) and
1(j)), while the levels of total iron and divalent iron in sera
and BALF were lower in the control group (Figures 1(k)–
1(n)). Expression levels of iron metabolism-related genes
including Hamp1, Bmp6, Tfr1, Fpn, Fth, and Ftl in lung tis-
sues were detected using qRT-PCR, and the results indicated
that expression levels of the above genes in the CLP group
were significantly higher than those in the control group
(Figures 1(o)–1(t)).

3.2. Ferroptosis Occurred in the Lung of Septic Mice. Western
blot was used to detect the expression levels of ferroptosis-

120
Sham

0

C
ou

nt
s

100 101 102 103 104

120
LPS+GO203

0

C
ou

nt
s

100 101 102 103 104

120
LPS

0

C
ou

nt
s

100 101 102 103 104

120
LPS+Vitamin E

0

C
ou

nt
s

100 101 102 103 104

120
LPS+CP2

0

C
ou

nt
s

100 101 102 103 104

120
LPS+Vitamin E+CP2

0

C
ou

nt
s

100 101 102 103 104

120
LPS+Vitamin E+GO203

0

C
ou

nt
s

100 101 102 103 104

M1 M1
M2 M2

M2 M2 M2

M2
M1

M1 M1 M1

M1
M2

(l)

50
40
30
20

Li
pi

d 
pe

ro
xi

da
tio

n 
le

ve
ls

m
on

ito
re

db
y 

flo
w

 cy
to

m
et

ry

10
0

Sham
LPS
LPS+Vitamin E
LPS+CP2
LPS+GO203
LPS+Vitamin E+CP2
LPS+Vitamin E+GO203

⁎

⁎⁎
⁎⁎

⁎⁎⁎ ⁎⁎⁎

(m)

Figure 7: MUC1 sensitized vitamin E to inhibit ferroptosis and relieve lung injury. (a) HE staining results in each group. (b) Lung injury
score in each group. (c) Wet-dry weight ratio of lung tissues in each group. (d–g) Levels of TNF-α, IL-1β, IL-6, and IL-10 in sera of each
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related genes in lung tissues of septic mice, and the results
indicated that the expression levels of ASCL4 and ATF4 in
the CLP group were significantly higher than those in the
control group, while SLC7A11 and GPX4 were lower in
the CLP group (Figures 2(a)–2(e)), suggesting occurrence
of ferroptosis in the lungs of septic mice. By detecting the
levels of redox products in lung tissues, we found that the
levels of MDA and MPO in the CLP group were higher than
those in the control group, while the levels of GSH and SOD
were lower in the CLP group (Figures 2(f)–2(i)).

3.3. LPS Stimulated Alveolar Epithelial Cells to Trigger
Ferroptosis. In cell experiments, we used mouse alveolar epi-
thelial (MLE-12) cells to simulate the sepsis model in vitro
via LPS stimulation. We first set 3 different concentrations
of LPS (2.5, 5, 10μg/mL) to treat the cells. Western blot

was conducted to detect expression levels of ferroptosis-
related genes, and results showed that different concentra-
tions of LPS could increase the expression levels of ASCL4
and ATF4, inhibit the expression levels of SLC7A11 and
GPX4, and trigger ferroptosis. 5μg/mL LPS had the best
activation effect on ferroptosis (Figures 2(j)–2(n)). Then,
we set three time points (12, 24, and 48 h). Western blot
was used to detect the expression levels of related genes, it
was found that LPS could trigger ferroptosis at different time
points, and the optimal time was 24 h (Figures 2(o)–2(s)).
Lipid peroxidation levels were evaluated using a lipid perox-
idation probe, and the results showed that the levels of lipid
peroxides in the LPS group was significantly higher than
those in the control group (Figures 2(t) and 2(u)). In addi-
tion, we further verified our conclusions by observing the
morphology of cells using electron microscopy. The results
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showed that, compared with the control group, the mem-
brane of mitochondria in the sepsis group was broken
and vacuolated, mitochondrial spine was decreased or
absent, and the membrane density obviously increased
(Figure 2(v)).

3.4. Fer-1 Inhibited the Occurrence of Ferroptosis in Lung
Tissues and Alveolar Epithelial Cells of Sepsis. Fer-1, a ferrop-
tosis inhibitor, was used to further confirm the occurrence of
ferroptosis in septic mice. Fer-1 was intraperitoneally
injected, and changes of related indicators in lung tissues
were detected 24 hours after modeling. Western blot exper-
iments showed that Fer-1 could significantly reverse the
decrease of the GPX4 expression level caused by sepsis and
inhibit the occurrence of ferroptosis (Figures 3(a) and
3(b)). In vitro experiments further verified our conclusion
(Figures 3(c) and 3(d)). By detecting the levels of redox
products in lung tissues, it was found that Fer-1 could
increase the levels of GSH and SOD and reduce the levels
of MDA and MPO compared with the CLP group
(Figures 3(e)–3(h)). Lipid peroxidation levels in MLE-12
cells of the Fer-1 group were significantly lower than those
of the LPS group (Figures 3(i) and 3(j)).

3.5. Fer-1 Could Alleviate ALI in Sepsis. We explored the
effects of Fer-1 on ALI in septic mice. The results showed
that Fer-1 could significantly alleviate the severity of acute
lung injury caused by sepsis, reduce the aggregation of
inflammatory cells in lung tissues, mitigate alveolar injury
and edema, and decrease the wet-dry weight ratio
(Figures 3(k)–3(m)). We detected the expression levels of
TNF-α, IL-1β, IL-6, and IL-10 in sera and BALF of septic
mice using ELISA, and the results indicated that Fer-1
reduced the upregulation of the expression levels of inflam-
matory factors caused by sepsis in mice (P < 0:05)
(Figures 3(n) and 3(u)).

3.6. Inhibiting MUC1 Could Further Trigger Ferroptosis in
Lung Tissues and Alveolar Epithelial Cells of Sepsis. To clarify
whether MUC1 was involved in the occurrence and develop-
ment of ferroptosis in sepsis ALI, we treated mice with the
MUC1 inhibitor GO203 and its control CP2 before CLP
modeling and performed western blot and redox product
detection 24 h after modeling to explore the effects of
MUC1 on ferroptosis in lungs of sepsis mice. Results showed
that MUC1 inhibitors could inhibit the expression level of
GPX4 (Figures 4(a) and 4(b)), decrease the expression levels
of GSH and SOD, and increase the expression levels of MDA
and MPO (Figures 4(c)–4(f)). Besides, inhibiting MUC1
could increase the levels of lipid peroxides (Figures 4(g)
and 4(h)), break the membrane of mitochondria, decrease
the mitochondrial spine, and increase membrane density in
MLE-12 cells stimulated by LPS (Figure 4(i)). The above
results indicated that the MUC1 inhibitor could further trig-
ger ferroptosis in lung tissues and alveolar epithelial cells of
sepsis.

3.7. Inhibiting MUC1 Triggered Ferroptosis through the
GSK3β/Keap1-Nrf2-GPX4 Pathway. Western blot results
showed that the MUC1 inhibitor could increase the expres-

sion level of Keap1, reduce the phosphorylation level of
GSK3β, inhibit Nrf2 entry into the nucleus, and further
reduce the expression level of GPX4 (Figures 5(a)–5(g)).
This suggested that MUC1 could activate the expression of
GPX4 and inhibit the process of ferroptosis by decreasing
Keap1 and improving the phosphorylation level of GSK3β,
promoting the entry of Nrf2 into the nucleus. To further ver-
ify the above results, CT99021, a kind of GSK3β inhibitor,
was used to treat MLE-12 cells. Western blot results indi-
cated that inhibition of GSK3β phosphorylation had no sig-
nificant effect on Keap1 expression but could significantly
increase the accumulation of Nrf2 in the cytoplasm, reduce
its entry into the nucleus, and reduce the expression level
of GPX4 (Figures 5(h)–5(m)). Besides, Keap1 siRNA was
used to inhibit the expression of Keap1, and western blot
results showed that inhibiting the expression of Keap1 sig-
nificantly promoted the accumulation of Nrf2 and improved
the expression level of GPX4 (Figures 5(n)–5(r)). The above
results suggested that MUC1 could inhibit Keap1 and
increase the phosphorylation level of GSK3β, thereby pro-
moting the entry of Nrf2 into the nucleus, improving the
expression level of GPX4 and inhibiting the ferroptosis
process.

3.8. Vitamin E Inhibited the Occurrence of Ferroptosis in
Lung Tissues and Alveolar Epithelial Cells of Sepsis. Vitamin
E was intraperitoneally injected after the septic mice were
successfully modeled, and the changes of related indicators
in lung tissues were detected 24 hours after modeling. West-
ern blot results showed that vitamin E could significantly
reverse the decrease of the GPX4 expression level caused
by sepsis and inhibit the occurrence of ferroptosis
(Figures 6(a) and 6(b)). By detecting the levels of redox
products in lung tissues, we found that compared with the
sepsis group, vitamin E increased the levels of GSH and
SOD and reduced the levels of MDA and MPO
(Figures 6(c)–6(f)). Lipid peroxidation levels of MLE-12
cells were evaluated with a lipid peroxidation probe, and
the results showed that the lipid peroxide levels in the vita-
min E group were lower than those in the LPS group
(Figures 6(g) and 6(h)). In addition, we verified our conclu-
sions by observing the morphology of cell ferroptosis via
electron microscopy in MLE-12 cells stimulated by LPS.
Results indicated that compared with the vitamin E group,
the membrane of mitochondria in the LPS group was broken
and vacuolated, the mitochondrial spine was decreased or
absent, and the membrane density increased (Figure 6(i)).

3.9. Vitamin E Alleviated ALI in Sepsis.We explored whether
vitamin E had an effect on acute lung injury in septic mice.
The results showed that vitamin E alleviated the severity of
acute lung injury caused by sepsis, reduced the aggregation
of inflammatory cells in the lung tissues, mitigated the
alveolar injury and edema, and reduced the wet-dry weight
ratio (Figures 6(j) and 6(k)). TNF-α, IL-1β, IL-6, and IL-
10 in sera and BALF of septic mice were detected using
ELISA. Results showed that vitamin E reduced the upreg-
ulation of inflammatory factors caused by sepsis (P < 0:05)
(Figures 6(l)–6(s)).
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For mechanism studies, western blot analysis showed
that vitamin E could inhibit the expression of Keap1 and
increase the phosphorylation level of GSK3β, reduce the
expression level of Nrf2 in the cytoplasm, and promote its
entry into the nucleus, thus improving the expression level
of GPX4 and inhibiting the process of ferroptosis
(Figures 6(t)–6(z)).

3.10. MUC1 Had a Sensitizing Effect on Vitamin E. In order
to explore whether MUC1 could sensitize vitamin E, septic
mice were treated with the MUC1 inhibitor GO203 and its
control CP2 before CLP modeling, and vitamin E was intra-
peritoneally injected after modeling. Results showed that
MUC1 inhibitor reversed the alleviating effect of vitamin E
on acute lung injury caused by sepsis, increased the aggrega-
tion of inflammatory cells in the lung tissues, aggravated
alveolar injury and edema, and increased the wet-dry ratio
(Figures 7(a)–7(c)). ELISA results showed that the MUC1
inhibitor reversed the decreased effect of vitamin E on the
expression levels of inflammatory factors in sera and BALF
of septic mice (P < 0:05) (Figures 7(d)–7(k)). Lipid peroxida-
tion levels in MLE-12 cells were further evaluated using lipid
peroxidation probes, and the results showed that the MUC1
inhibitor reversed the decrease in lipid reactive oxygen levels
induced via vitamin E (Figures 7(l)–7(m)). Western blot
results indicated that the addition of the MUC1 inhibitor
reversed the inhibition of Keap1 via vitamin E, reduced the
phosphorylation level of GSK3β, reduced Nrf2, and finally
decreased the expression level of GPX4 (Figures 8(a)–8(f)).

4. Discussion

Ferroptosis is a new form of nonapoptotic programmed cell
death, which is characterized by iron dependence and accu-
mulation of lipid peroxides [20, 43].

Iron is a kind of redox-active metal and participates in
lipid peroxidation and the formation of free radicals [44].
Trivalent iron is reduced to divalent iron in the endosome
by iron reductase, which is released into the cytoplasm of
an unstable iron pool. Excess trivalent iron is stored in ferri-
tin, and iron can be released into the unstable iron pool
when ferritin is depleted, which leads to increased sensitivity
to ferroptosis. It has been shown that the dependent lipoxy-
genase triggers ferroptosis by causing the production of lipid
peroxides, and divalent iron can transfer lipid peroxides,
leading to extensive lipid peroxidation reactions [38, 45].
The iron metabolism disorder in ARDS patients is closely
related to lung tissue injury. Clinical studies have confirmed
that the severity of ARDS was related to iron-related pro-
teins [46]. Other researchers detected the levels of total iron
and iron regulatory factors in BALF of ARDS patients and
found significant changes [47]. Our results indicated that
the ferritin level in patients with sepsis or septic shock was
significantly higher than that in the control group, which
was consistent with the previous results, because ferritin
was an inflammatory protein (acute-phase reactant). In
addition, we found that sera transferrin and transferrin sat-
uration in patients with sepsis or septic shock were lower
than those in the control group, which might be due to the

decreased production capacity under stress, as well as the
damage to transferrin caused by the increased ability of fer-
ritin to bind iron [48–50]. These results lead to the rapid
onset of hypomagnesemia, resulting in obvious lower serum
iron levels in patients with sepsis or septic shock. Animal
experiments verified our conclusions that the levels of total
iron and divalent iron in sera and BALF of sepsis mice were
lower than those in the control group, but the levels of total
iron and divalent iron in lung tissues were significantly
higher than those in the control group, suggesting that there
was iron metabolism disorder in the lung of septic mice.

Multiple studies have suggested that ferroptosis played
an important role in organ damage caused by sepsis, espe-
cially in the lung. It has been reported that ferroptosis inhib-
itors could significantly improve the prognosis of sepsis, but
the specific mechanism remained unclear [25]. In the mouse
ALI model, ferroptosis activators could aggravate alveolar
inflammation and pulmonary edema and increase the level
of inflammatory factors, while these effects could be reversed
by ferroptosis inhibitors [26, 27]. We found that expression
levels of genes promoting ferroptosis increased significantly
in sepsis; however, genes that restrained the ferroptosis were
reduced. Redox product levels were changed obviously, and
the levels of lipid peroxides increased. Results of the trans-
mission electron microscopy showed that the mitochondrial
membrane was broken and vacuolated, and membrane den-
sity increased in the mouse alveolar epithelial cells stimu-
lated by LPS. The above results revealed the occurrence of
ferroptosis in the lung of sepsis, and the reversal of ferropto-
sis inhibitors on the above experimental results further con-
firmed our conclusions.

In recent years, the mechanism of ferroptosis has been
partially elucidated; in short, the balance between produc-
tion and degradation of intracellular lipid peroxides is bro-
ken, the antioxidant capacity of cells is reduced, and the
accumulation of lipid peroxides is continuous [43]. There
are many inducers of ferroptosis, which involve different sig-
naling pathways, but all upstream signaling pathways ulti-
mately reduce the antioxidant capacity of cells by directly
or indirectly affecting the activity of glutathione peroxidase
(GPX), leading to ferroptosis [51–53]. GPX4, as one of the
most important members of the GPX family, plays a crucial
role in ferroptosis which can convert glutathione to oxidized
glutathione and reduce lipid peroxides to corresponding
alcohols. Inhibition of GPX4 leads to accumulation of lipid
peroxides, resulting in ferroptosis [54]. Previous studies have
confirmed the key regulatory role of GPX4 in the occurrence
of ferroptosis [55–57]. Our study found that the expression
level of GPX4 in the lung tissues of septic mice and the alve-
olar epithelial cells stimulated by LPS were significantly
lower than those of the control group.

MUC1, as a polymeric transmembrane glycoprotein,
plays an important role in many inflammatory diseases,
especially respiratory diseases [32]. Our research group has
been focused on the role of MUC1 in sepsis-induced ALI/
ARDS. Through a series of experiments, we found that
MUC1 was involved in the process of paclitaxel-alleviating
ALI in septic mice [33], and inhibition of MUC1 dimeriza-
tion could significantly reduce the severity of ALI and the
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levels of inflammatory factors in sera and BALF of septic
mice. Besides, MUC1 might be a biomarker for predicting
whether patients with early sepsis would develop into ARDS,
which had important potential application value [34]. How-
ever, the mechanism of MUC1 in alleviating lung injury of
sepsis was still unclear. In recent years, studies have shown
that MUC1 was closely associated with ferroptosis and
might be a biomarker related to ferroptosis [35, 36]. Our
studies indicated that inhibiting the dimerization of MUC1
could significantly reduce the expression level of GPX4,
decrease the expression levels of GSH and SOD, improve
MDA and MPO, increase the level of lipid peroxides, break
mitochondrial membrane, and increase membrane density,
thereby stimulating ferroptosis and aggravating lung injury,
which proved the close relationship between MUC1 and fer-
roptosis in the ALI model of sepsis.

Nuclear erythroid 2 related factor 2 (Nrf2) is an impor-
tant transcription factor that regulates genes related to iron
metabolism during oxidative stress [58, 59], the activation
of which can promote iron storage, reduce iron uptake,
and limit reactive oxygen species production. Nrf2 has many
target genes, among which glutathione peroxidase (GPX) is
the most important one. This indicates the close relationship
between Nrf2 and ferroptosis. Nrf2 expression is affected by
multiple pathways, including Keap1- (Kelch-like-Ech-asso-
ciated protein 1-) dependent and independent pathways.
Keap1 is a high molecular protein anchored to actin [60]
and could bind to Nrf2 under normal conditions, which
is continuously inactivated through the ubiquitin protea-
some pathway. When cells are exposed to oxidative stress
or stimulated by cytotoxic agents, Nrf2 dissociates from
Keap1 and is incorporated into the nucleus to regulate
redox homeostasis of cells [60]. The Keap1-independent
pathway is the posttranslational modification of Nrf2,
which contains a lot of serine, threonine, and tyrosine res-
idues that provide phosphorylation sites for different
kinases (such as GSK3β, ERK, PI3K-AKT, and MAPK)
[61], leading to nuclear outward migration and degrada-
tion of Nrf2. GSK3β is a subtype of glycogen synthase
kinase 3 [62], which has been proven to be a key factor
regulating the stability of Nrf2 and a common down-
stream effector of many Nrf2 inducers by multiple studies
[61, 63]. GSK3β stabilizes Nrf2 by phosphorylation of the
Neh6 region, which in turn promotes ubiquitination of
connexin β-TrCP to form a complete E3 ligase, ultimately
leading to Nrf2 degradation [64]. GSK3β is the down-
stream targets of AKT, MAPK, and other kinase cascade
reactions, and activation of these pathways inhibits GSK3β
through multiple phosphorylation sites [63], thus helping
Nrf2 to play a better role. In our studies, we found that
MUC1 inhibitors could increase the expression level of
Keap1, reduce the phosphorylation level of GSK3β, inhibit
the entry of Nrf2 into the nucleus, and reduce the expres-
sion level of GPX4. The above conclusions were further
verified by the application of GSK3β inhibitors and Keap1
siRNA. These results suggested that MUC1 might inhibit
the occurrence and development of ferroptosis through
the GSK3β/KEAP1-NRF2-GPX4 signaling pathway, thus
alleviating sepsis-induced ALI.

Vitamin E is a common antioxidant, which has been
reported to play an important role in the occurrence and
development of ferroptosis in recent years [40]. Qian et al.
reported that GPX4 and vitamin E could cooperatively pro-
tect hematopoietic stem and progenitor cells from lipid per-
oxidation and ferroptosis [37]. Another study revealed that
vitamin E exerted neuroprotective effects in pentylenetetra-
zole kindling epilepsy via suppression of ferroptosis [65].
However, whether it is involved in the ferroptosis process
of ALI/ARDS in sepsis is still unclear. Our results confirmed
the important role of vitamin E in ferroptosis of sepsis-
induced ALI and found it could obviously increase the
expression levels of genes that inhibited ferroptosis and
decrease the expression level of genes that accelerate ferrop-
tosis, change redox product levels, reduce the levels of lipid
peroxide levels, and reverse mitochondrial membrane
destruction and membrane density increase caused by fer-
roptosis. Through further exploration, we found that
MUC1 had a sensitization effect on vitamin E. MUC1 could
promote the protective effect of vitamin E on lungs of sepsis
and reduce the levels of inflammatory factors in sera and
BALF. In terms of mechanism, MUC1 was able to enhance
the inhibitory effect of vitamin E on Keap1 and stimulate
the phosphorylation level of GSK3β, thereby promoting
Nrf2 entry into the nucleus, increasing GPX4 expression,
inhibiting ferroptosis process, and finally alleviating acute
lung injury in sepsis.

5. Conclusion

This study was the first to explore the changes of iron
metabolism indicators in ALI/ARDS of sepsis, clarify the
importance of ferroptosis in the occurrence and develop-
ment of ALI/ARDS of sepsis, and reveal the role and specific
mechanism of MUC1 in regulating ferroptosis, as well as the
sensitization of vitamin E. MUC1 can inhibit Keap1,
increase the phosphorylation level of GSK3β, and promote
Nrf2 entry into the nucleus, thus improving the expression
level of GPX4, sensitizing vitamin E, inhibiting ferroptosis,
and alleviating acute lung injury in sepsis. These results will
provide new ideas for the treatment strategy of ALI/ARDS in
sepsis, with important potential application value.
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