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Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian
arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin
resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and
inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase
expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its
complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing
number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against
the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the
regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are
explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its
related pathologies.

1. Introduction

Diabetes mellitus (DM), one of the most prevalent chronic
metabolic diseases, which leads to life-threatening, disabling,
and costly complications and compromises life expectancy
[1]. There are two primary forms of DM: type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Fun-
damental pathogenic differences exist in the two types of
DM, of which T1DM is insulin-dependent [2]. T2DM is
the most common type of diabetes, accounting for more
than 90% and is characterized by insulin resistance (IR)
and/or β-cell dysfunction [3]. Intriguingly, abnormalities in

NO production, inflammatory responses, and oxidative
stress have all been implicated in the development and pro-
gression of DM and its complications [4]. In the past few
decades, researchers have been working to interpret the
underlying mechanisms of DM pathogenesis and progres-
sion in order to seek effective and efficient therapeutic tar-
gets. Nevertheless, the exact mechanism remains elusive.

Arginase is a binuclear manganese-containing metal-
loenzyme that catalyzes the conversion of L-arginine to L-
ornithine and urea in the last reaction of the urea cycle
(UC) [5]. Available data have demonstrated the pathophys-
iological importance of aberrant arginase expression in
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hypertension [6], obesity [7], aging [8], diabetes [9], etc.
Currently, arginase is being considered by the scientific com-
munity as a potential biomarker for the progression and
severity of these diseases. In type 2 diabetic patients, plasma
arginase activity was increased by 50% in diabetic versus
control group [10]. Accumulating studies have revealed that
arginase may contribute to the progression of DM and its
complications, owing to its regulatory role in β-cell func-
tions [11], IR [12], and vascular dysfunction [13] via mediat-
ing L-arginine metabolism, inflammatory responses, and
oxidative stress. Alterations of arginase expression and activ-
ity have been confirmed in experimental and clinical investi-
gations as a diagnostic tool for the progression of DM and its
complications [9, 10, 14–17]. Therefore, arginase may repre-
sent an appealing and prospective pharmacological target for
the treatment of DM and its complications.

Spurred by this context, here we conducted a thorough
review of arginase’s biological functions in diabetes-related
pathological processes, as well as its mechanism of action
in DM complications. The developmental progress and chal-
lenges of arginase inhibitors in treating DM and related
complications are also highlighted. Moreover, we offer sev-
eral potential approaches to tackle the issues concerning
the clinical application of arginase as the diagnostic tool
and therapeutic target for DM and its complications. We
hope this knowledge will help us better understand the func-
tions of arginase in DM pathogenesis and provide a refer-
ence for future clinical development of arginase in DM
therapy.

2. The Features of Arginase and Its Roles in
DM Pathology

2.1. Arginase Isoforms. Arginase, a ubiquitous metalloen-
zyme with L-arginine hydrolase activity, which has been
found in bacteria, yeasts, plants, invertebrates, and verte-
brates, plays a critical role in both physiological and patho-
logical conditions [18]. In mammals, there are two distinct
isoforms of arginases, arginase1 (ARG1) and arginase2
(ARG2). Despite the fact that both isoforms are present
throughout the body and present similar physicochemical
properties, they differ in encoding genes, expression pat-
terns, and physiological activities as well as molecular regu-
lation [19]. ARG1, a cytoplasmic enzyme mainly expressed
in the liver and also exists in extrahepatic tissues, is located
on chromosome 6q23 and encodes a 322 amino acid protein
[20]. Whereas ARG2, a mitochondrial enzyme widely
expressed in the kidney and some extrahepatic tissues (such
as the heart, blood vessels, prostate, gastrointestinal tract,
muscle, and endocrine tissues), is found on chromosome
14q24.1 and encodes a 354 amino acid protein [21]. The
different biochemical environments of tissues favor the com-
plementary roles of these two isomers in the body. ARG1
primarily functions in the UC to remove toxic ammonia
and fight inflammation. ARG2 has been shown to modulate
cellular L-arginine metabolism, polyamine synthesis, NO
homeostasis, and proinflammation as well as oxidative
stress [22].

2.2. L-Arginine Metabolism. Arginase catalyzes the conver-
sion of L-arginine to L-ornithine and urea to dispose of toxic
ammonia in the last step of UC. L-ornithine is further
metabolized by ornithine decarboxylase (ODC) to synthesize
polyamines (putrescine, spermidine, and spermine) which
are involved in β-cell dysfunction, IR, and proinflammation,
or catalyzed by ornithine aminotransferase (OAT) to form
L-proline that mediates β-cell dysfunction and IR [23]
(Figure 1). In both diabetic rats [24–27] and human patients
[15, 28, 29], plasma arginine concentrations were markedly
decreased, which might be positively correlated with the
upregulation of arginase in DM [30]. Experimental and clin-
ical data confirmed that L-arginine supplementation might
be helpful in improving insulin secretion [31] and insulin
sensitivity [32] as well as glucose tolerance [33]. Urea,
another metabolite of arginase-mediated L-arginine metabo-
lism, has been demonstrated that it is implicated in β-cell
dysfunction, insulin sensitivity reduction, and glucose intol-
erance [34, 35]. A clinical study found that elevated blood
urea nitrogen (BUN) levels significantly increased the risk
of incident T2DM in humans [36]. Compared to healthy
subjects, the level of salivary urea was elevated in diabetic
patients [37]. Moreover, increased serum levels of urea were
observed to be significantly associated with the severity of
diabetic retinopathy (DR) [38]. In mammals, L-ornithine is
a crucial precursor for polyamines and L-proline biosynthe-
sis. Elevated ornithine was recently reported to be specifi-
cally correlated with an increased risk of T2DM [39]. In
T2DM patients with dysregulated polyamine metabolism,
serum putrescine and spermine levels are significantly ele-
vated [40]. Accumulated polyamines have been shown to
promote the pathogenesis of T1DM via inducing β-cell dys-
function and enrichment of proinflammatory immune cells
[41, 42]. Furthermore, impaired glucose-stimulated insulin
secretion was also observed in transgenic mice with hyperac-
tivation of the polyamine catabolic pathway [43]. Increased
polyamine synthesis exacerbates DM complications in the
kidney [44] and liver [45] of diabetes animal models. L-
proline can be partially synthesized from L-ornithine. It
has also been discovered to be elevated in T2DM patients
[46], and excessive L-proline contributes to β-cell dysfunc-
tion [47] and insulin resistance (IR) [48]. L-citrulline, a
product of nitric oxide synthase (NOS) catalyzing L-argi-
nine, has been shown to improve IR, which is associated
with enhanced insulin sensitivity [49]. In rat β-cells, L-
citrulline at a physiologic concentration increased glucose-
stimulated insulin release [50]. Considering the essential role
of arginase in the metabolism of L-arginine, abnormal argi-
nase activity and expression are doomed to influence the
progression of DM.

2.3. Arginase and NO Production. L-arginine also serves as a
specific substrate for nitric oxide synthase (NOS), which
metabolizes explicitly L-arginine to produce L-citrulline
and NO [51] (Figure 1). Consequently, under conditions of
excessive arginase activity, it will compete with NOS for L-
arginine, eventually leading to NOS uncoupling, producing
less NO and more superoxide [52, 53]. Arginase-mediated
removal of L-arginine is also able to suppress inducible
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NOS (iNOS) expression via decreasing the translation and
stability of iNOS proteins, resulting in the reduction of intracel-
lular NO production [54]. Additionally, arginase-mediated urea
production may also regulate NO generation [55].

NO, a key signaling molecule and unique gas transmit-
ter, is associated with the development of DM due to its role
in the modulation of insulin secretion and glucose homeo-
stasis [56]. It serves as a Janus-faced molecule in DM and
its complications, the effect of which is mainly dependent
on its concentration and NOS isoform. At the physiological
level, it is of the essence in maintaining insulin secretion,
improving insulin signaling and sensitivity, increasing
peripheral glucose uptake, and reducing hepatic glucose out-
put (Figure 1). In endothelial nitric oxide synthase- (eNOS-)
deficient mice, impaired NO synthesis is explicitly related to
the development of IR rather than insulin-stimulated glu-
cose uptake [57]. Whereas excessive NO (mostly iNOS
derived) induced by certain pathological factors, including
obesity and inflammation, results in β-cell dysfunction,
insulin secretion impairment, and hyperglycemia as well as
the development of adipose tissue IR [58–60] (Figure 1).
Furthermore, aberrant NO levels in endothelial cells (ECs),
vascular smooth muscle cells (VSMCs), macrophages, kera-
tinocytes, and corpus cavernosum tissue contribute to the
development of DM complications, including diabetic car-
diovascular disease [61], diabetic nephropathy [62], diabetic
retinopathy [63], diabetic wound-healing disorder [64], and
diabetic erectile dysfunction [65]. As such, the dysregulated
NO level provoked by an imbalance between arginase and

NOS contributes to the pathophysiology of DM and its
complications.

2.4. Arginase Mediates Inflammation. DM and its complica-
tion are inflammatory diseases [66]. Over the past few years,
increasing solid evidence has demonstrated that arginase is
involved in mediating pro- and anti-inflammatory responses
linked to the pathology of DM and its complications. ARG1,
mainly expressed in M2-like macrophages, protects inflam-
matory tissue from damage and clears pathogens by decreas-
ing intracellular iNOS bioavailability of L-arginine [67]. In
rat β-cells and RINm5F cells, inhibition of ARG1 expression
resulted in aggravation of insulitis, which is an inflammatory
lesion and a pathologic hallmark of T1DM [68, 69]. Transac-
tivation of macrophage ARG1 drives an anti-inflammatory
M2 phenotype, which lowers inflammation, promotes white
adipose tissue (WAT) beiging, and maintains metabolic
homeostasis in WAT, thereby reducing the risk of obesity-
related DM [70] (Figure 2). Whereas, the elevation of ARG1
in ECs induces eNOS uncoupling that limits NO production
and enhances reactive oxygen species (ROS) generation,
resulting in a proinflammatory response [71] (Figure 2). In
high fat-high sucrose- (HFHS-) stimulated obesity mice,
endothelial-specific ARG1 knockout attenuates obesity-
induced adipose tissue inflammation via maintaining endo-
thelial NO levels [72]. By contrast, ARG2 appears to function
as a proinflammatory M1-like phenotype [67]. Our previous
studies in vitro and in vivo showed that targeted disruption
of the ARG2 gene prevents high-fat diet- (HFD-) induced IR
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Figure 1: Scheme of competitive L-arginine metabolism via arginase and NOS. Arginase cleaves L-arginine to urea and L-ornithine. L-
ornithine is further metabolized by ODC to synthesize polyamines, which promote β-cell dysfunction, insulin secretion reduction, and
inflammation response, or by OAT to form L-proline, which promotes β-cell dysfunction and IR. Urea is implicated in β-cell
dysfunction, insulin sensitivity reduction, and glucose intolerance. Meanwhile, NOS metabolizes arginine into L-citrulline and NO.
Physiologically, NO is essential for maintaining insulin secretion, improving insulin sensitivity, and promoting vascular health. Whereas,
under pathological conditions, NO has been implicated in the development of β-cell dysfunction, IR, vascular dysfunction,
proinflammatory responses, etc. L-citrulline has also been shown to protect β-cell function and improve IR. ODC: ornithine
decarboxylase; OAT: ornithine aminotransferase; IR: insulin resistance; NOS: nitric oxide synthase; NO: nitric oxide; CAT: cationic
amino acid transporter.
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by suppressing the proinflammatory response of macrophage
in mice [73] (Figure 2). In the aging-associated T2DM mice
model, ARG2 is mainly expressed in acinar cells and upregu-
lated with aging, which promotes tumor necrosis factor-α
(TNF-α) release from pancreatic acinar cells, ultimately result-
ing in β-cell apoptosis and subsequent reduction of insulin

secretion [11]. In adipose tissue and ECs, disruption of
ARG2 reduces aging-related inflammation [74, 75]. In mice
model, ARG2 deletion prevents HFHS-induced collagen
deposition and visceral adipose tissue (VAT) inflammation,
enhances adipocyte metabolism, and improves IR [76]
(Figure 2). Moreover, ARG2 deficient mice have been shown
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necrosis factor alpha; VAT: visceral adipose tissue; IR: insulin resistance; ROS: reactive oxygen species; ADSCs: adipose-derived stem
cells; WAT: white adipose tissue; IL-1: interleukin-1; IFN-γ: interferon-γ; iNOS: inducible nitric oxide synthase.
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to protect HFD-induced DM complication (hepatic steatosis)
via inhibition of liver macrophage-mediated proinflammatory
responses [77]. As L-arginine displays anti-inflammatory
effects, aberrant arginase expression and activity induces the
dysregulation of intracellular L-arginine, which is essential
for pancreatic β-cell functional integrity, metabolism, and
defense from an inflammatory challenge, thereby modulating
insulin sensitivity and secretion [78]. These findings uncover
that the two isoforms of arginase exert different functions
in regulating inflammatory responses, contributing to the
pathological progression and prognosis of DM and its
complications.

2.5. Arginase and Reactive Oxygen Species (ROS). Reactive
oxygen species (ROS) is thought to be one of the culprits
to the induction and progression of DM and its complica-
tions, owing to an excess of ROS that causes oxidative stress,
which promotes β-cell dysfunction, IR, and vascular dysfunc-
tion by activating multiple cellular stress-sensitive signaling
pathways [66, 79]. To date, the emerging evidence suggests
that arginase regulates ROS generation upon various patho-
logical stimuli, which further modulates the progression of
DM and its complications in particular. In streptozotocin-
(STZ-) induced diabetic rat model, significantly increased
arginase activity and ROS levels were observed. In contrast,
suppression of arginase by almond treatment remarkably
ameliorated blood glucose levels and vasculogenic erectile dys-
function via the reduction of ROS production [80]. Red blood
cells (RBCs) from T2DM patients display higher levels of argi-
nase activity and ARG1 protein expression, which can induce
endothelial but not smooth muscle cell dysfunction in both
healthy rat aortas and human internal mammary arteries
through a ROS-dependent manner [81]. Diabetic mice and
retinal ECs treated with high glucose (HG) or H2O2, showed
prominent increases in ROS formation and ARG1 expression
and activity, which lead to ECs premature senescence [82].
Our previous study discloses that obesity-induced ARG2
upregulation enhances mitochondrial ROS production, subse-
quently accelerating the development of obesity-associated IR
[73] (Figure 2). Urea, as a crucial metabolite of arginase-
mediated L-arginine metabolism, its infusion in normal
animals has been shown to induce IR and elevation of
IR-related adipokines as a consequence of excessive ROS
generation [83]. Additionally, arginase inhibition boosting
endogenous NO production helps to dissipate ROS and pro-
mote β-cell survival, leading to the amelioration of insulin
release [84]. However, overproduced NO may react with
ROS to generate peroxynitrite, which triggers β-cell dysfunc-
tion and death [85], contributing to the onset of DM in non-
obese diabetic (NOD) mice [86]. In this context, the delicate
interaction between arginase and ROS may represent a novel
mechanism of DM and its complications pathogenesis.

3. Roles of Arginase in the Regulation of β-Cell
Function and IR

3.1. Arginase and β-Cell Function. Destruction or dysfunction
of insulin-producing pancreatic β-cells persists throughout
the pathological course of T1DM and T2DM. Accumulating

evidence demonstrates that arginase is implicated with DM
development via the mediation of β-cell functions [87].
Immunohistochemical analysis of mice pancreas showed that
two arginase activities were indeed present in the pancreas.
ARG1 but not ARG2 was detected in islets, and ARG2 was
moderately expressed in acini [88]. Constitutive arginase
activity and ARG1 are detected in freshly isolated rat islets of
Langerhans and RINm5F cells [89]. However, compared to
ARG1, ARG2 is dominantly expressed in human pancreatic
islets [90]. In various models, arginase has been suggested
to directly or indirectly modulate β-cells function through
regulating inflammatory response, NO production, and L-
arginine metabolism. For example, ARG1 has been shown
to modulate proinflammatory cytokines- (IL-1 and IFN-γ)
induced β-cells apoptosis and dysfunction via the excessive
NO production from iNOS activation [69, 90, 91]
(Figure 2). In our previous study, upregulated ARG2 expres-
sion in acinar cells during aging activate p38 MAPK, which
induces the release of paracrine TNF-α, resulting in the β-cell
apoptosis and insufficient insulin secretion, contributing to
the aging-associated glucose intolerance [11] (Figure 2). Fu
et al. found that in arginase-mediated ureagenesis diminishes
arginine utilization for producing NO, which protects β-cells
from inflammation and death [92]. Polyamines, the metabo-
lite of arginase-catalyzed arginine, were found to be restricted
to the insulin-producing β-cells; its depletion in mouse
models of STZ-induced T1DM can protect islet β-cell from
inflammation-induced dysfunction and destruction [93, 94]
(Figure 2). Recently, β-cells regeneration is expected to offer
a novel therapy for DM. In alloxan-induced diabetic rats, tar-
geting neuronal nitric oxide synthase (nNOS) in arginine
metabolic pathway ameliorates blood insulin and glucose
levels in a manner of stimulating β-cell neogenesis via acti-
vating pancreas duodenum homeobox-1 (PDX-1) and
nuclear factor-kappa-B (NF-kB) [95] (Figure 2). Besides,
inhibiting polyamine biosynthesis by either α-difluoro-
methylornithine (DFMO) (NCT02384889) or imatinib
(NCT01781975) could also enhance β-cell regeneration in
the setting of DM [96]. This compelling evidence reveals
the important implications of arginase in the regulation of
β-cell mass and function.

3.2. Arginase and Insulin Resistance. Insulin resistance (IR),
also known as damaged insulin sensitivity, is a fundamental
aspect of the etiology of T2DM and is also linked to obesity
[97]. Over the past decade, arginase has been verified to be
implicated in the development of IR. In epididymal white
adipose tissue (eWAT), abnormal ARG1 expression induced
by an imbalance of M1- and M2-macrophage proportions is
able to provoke adipose tissue dysfunction and obesity-
related IR [58]. In HFD mice, upregulation of ARG1 reduces
infiltration of macrophages in adipose tissue and facilitates
polarization of macrophages to M2, thus alleviating obesity
and improving insulin sensitivity [98]. Additionally, exo-
somes from adipose-derived stem cells (ADSCs) facilitate
immune and metabolic homeostasis in WAT through the
transactivation of ARG1 by exosome-carried active STAT3,
thereby relieving obesity-related IR [70] (Figure 2). ARG2,
also has been found to be upregulated in obesity mice, which
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contributes to IR via the promotion of hydrogen peroxide
production and proinflammatory responses. Furthermore,
ARG2-deficient mice showed lower fasting blood glucose
and improved glucose tolerance and insulin sensitivity
[73]. In obese Zucker rats (ZR) with IR, arginase inhibition
enhances insulin sensitivity [12]. More important, in clinical
practice, elevated arginase activity is detected in the plasma
of T2DM patients, while IR causes a decrease in NOS activ-
ity through producing methylated arginine [10]. These stud-
ies indicate that arginase may represent a promising
therapeutic target for ameliorating obesity-associated IR.
Nevertheless, the underlying mechanisms of ARG1/ARG2
modulate IR still requires further investigation.

4. Arginase in DM Complications

DM, not a single disease, is also strongly associated with
both microvascular and macrovascular complications,
including macrovascular diseases (cardiovascular disease,
CVD) and microvascular diseases (diabetic nephropathy,
retinopathy, and wound-healing disorder), leading to the
major cause of morbidity and mortality in individuals with
DM [99]. To date, etiologies of DM vascular complications
have not yet been fully elucidated. Most notably, both
ARG1 and ARG2 have been identified as crucial modulators
in the pathogenesis of DM complications [52, 100–102], and
targeting arginase is capable of improving macrovascular
and microvascular complications in DM patients [15, 16,
103, 104] (Table 1) (Figure 3).

4.1. Arginase and Diabetic Cardiovascular Disease. CVD
increases 2-4 times in adults with DM, and the risk increases
dramatically with worsening glycemic control. Increased
activity and expression of arginase have been reported to
exacerbate pathological diabetic CVD, such as coronary
artery disease (CAD), ischemia-reperfusion (I/R) injury,
and hypertension, by lowering NO generation, boosting
ROS production, and proinflammation [21, 105]. Clinically,
ARG1 is found in the walls of coronary arterioles in T1DM
or T2DM patients but not in the nondiabetic group [15]. In
the diabetes-related HG model, upregulated ARG1 induced
eNOS uncoupling through the sequential activation of
RhoA/Rho kinase (ROCK) and p38 mitogen-activated pro-
tein kinases (p38 MAPK) in mouse aortic and bovine aortic
endothelial cells (BAECs), contributing to the development
of diabetes/hyperglycemia-induced vascular endothelial dys-
function [106, 107] (Figure 2). In addition, sequential activa-
tion of low-density lipoprotein receptor-1 (LOX-1), c-Jun N-
terminal kinase (JNK), and ARG1 induces ROS-dependent
oxidative stress and impairs coronary arteriolar function
during DM [108] (Figure 2). In STZ-induced diabetic Wistar
rats, activation of p38 MAPK promotes DM-induced endo-
thelial dysfunction via selectively upregulating the expres-
sion of ARG1 in coronary arteries and the expression of
ARG2 in mesenteric arteries [109]. Our group also found
that increase of ARG2 promoted eNOS uncoupling and vas-
cular dysfunction via the activation of p38 MAPK in HFD-
induced obesity mice, which could be prevented by ARG2
gene knockout [110]. ARG2 expression is significantly

enhanced in the aorta and myocardium of Goto-Kakizaki
(GK) rats with T2DM. Disrupting ARG2 activity by arginase
inhibitor restores coronary microvascular function through
a mechanism related to the increased NO availability [111].
Importantly, a clinical study showed that arginase inhibition
improved isolated coronary dilation and protected against
endothelial dysfunction caused by I/R in DM patients with
CAD [17]. Hypertension is also commonly associated with
DM. Increased vascular ARG1 expression and arginase
activity have been associated with higher blood pressure in
numerous experimental models of hypertension [112].
STZ-induced DM is accompanied by the elevation in systolic
and diastolic blood pressure and arginase activity. In con-
trast, arginase inhibition mitigates DM-induced hypertension
through preventing the impairment of endothelial-dependent
relaxation and NO production [113]. Therefore, arginase
might be considered as a novel marker for the diagnosis of
DM vascular complications.

4.2. Arginase and Diabetic Nephropathy. Diabetic nephropa-
thy (DN) is one of the terrifying chronic microvascular com-
plications of DM and the leading cause of end-stage renal
disease (ESRD) [114]. Inflammation and mitochondrial dys-
function have been identified as the key pathogenic factors
in DN development [115]. ARG1 is reduced in STZ-
administrated diabetic kidneys. Inducing ARG1 expression
in renal macrophages can prevent the progression of DN
via alleviating inflammation and mitochondrial dysfunction
in tubular epithelial cells (TECs) [116]. Macrophage-specific
deletion of ARG1 reduces macrophage infiltration but does
not affect albuminuria as an early DN marker in STZ-
induced DM [117]. On the contrary, after 6 and 18 weeks
of STZ administration, kidney arginase activity and ARG2
exhibited significant elevation in wild-type (WT) mice,
which was associated with a reduction in renal medullary
blood flow and diabetic renal injury [118] (Figure 3).
ARG2 expression was also increased in the renal cortex of
HFD-induced obese mice. Inhibition of ARG2 was able to
protect mouse kidneys from proinflammatory responses to
ameliorate DN [119]. Significantly, pharmacological block-
ade or genetic deficiency of ARG2 reduced proteinuria levels
and renal histopathological changes and lowered blood urea
nitrogen and macrophage recruitment, thereby slowing
down the development of DN [118, 120] (Figure 3). Further
research disclosed that arginase inhibition protects renal tis-
sue in DN via an eNOS-dependent mechanism while simul-
taneously having an eNOS-independent effect on renal
macrophage recruitment [121]. Thus, targeting arginase,
particularly ARG2, could be a new potential therapeutic
intervention for DN treatment.

4.3. Arginase and Diabetic Retinopathy. Diabetic retinopathy
(DR) is a common microvascular disorder of DM and a
leading cause of blindness. The bulk of accumulating studies
suggest that arginase is involved in the mediation of DR
pathophysiological progression. Recently, a clinical study
claims that ARG1 rs2781666 single nucleotide polymor-
phism (SNP) is substantially linked to DR susceptibility in
T2DM patients [122]. Retinal ECs senescence under HG
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condition is the main pathomechanism of DR. Retinal ECs
treated with HG or H2O2 showed prominent increases in
arginase expression and activity, which evoked retinal ECs
senescence through a mechanism related to NADPH oxi-
dase-2- (NOX2-) generated ROS and decrease in NO bio-
availability, hastening the onset of DR [82]. In a mice
model, STZ-induced DM promoting the increase in ARG1

expression accelerated retinal ECs senescence, which could
be prevented by ARG1 gene deletion or pharmacological
inhibition [123] (Figure 3). Elms et al. also found that the
diabetes-induced vascular dysfunction was markedly attenu-
ated in mice with heterogeneous ARG1 gene deletion
(ARG1+/-) and in mice treated with arginase inhibitors
[124]. Retinal ARG2 was similarly upregulated in HFHS

Table 1: The dysregulated expression of arginase in DM complications.

DM
complications

Location
Arginase
expression

Species/region Effect of arginase Inducer or activator Refs.

Diabetic
cardiovascular

disease

EC

↑ARG1

Human coronary
arterioles

Reduced NO production and
diminished vasodilation

Increased in DM [15]

Mouse aorta and BAEC
Promote vascular endothelial
dysfunction

Activated by RhoA/
ROC, ERK1/2, and p38
MAPK

[106]

HUVEC
Reduced eNOS activity and
induced endothelial dysfunction

Activated by p38
MAPK pathway

[107]

Pig coronary arterioles
Induced ROS-dependent oxidative
stress and impaired coronary
arteriolar function

Activated by LOX-1
and JNK

[108]

Male Wistar rats
coronary arteries

Promote diabetes-induced
endothelial dysfunction

Activated by p38
MAPK pathway

[109]

↑ARG2

Male Wistar rats
mesenteric arteries

Reduced expression of eNOS and
impaired endothelium-dependent
relaxations

Activated by p38
MAPK pathway

[109]

Mice aorta
Induced eNOS-uncoupling and
vascular dysfunction

Increased in obesity [110]

Rat aorta and
myocardium

Reduced NO availability and
impaired coronary artery
microvascular function

Increased in T2DM [111]

RBC ↑ARG1
Rat aortas and human
internal mammary
arteries (IMA)

Induced endothelial dysfunction Activated by ROS [81]

VSMC ↑ARG1
Human coronary
arterioles and internal
mammary artery

Reduced NO availability and
impaired endothelial dysfunction

Increased in T2DM [16]

Diabetic
nephropathy

Macrophages ↓ARG1 Mouse renal tissues
Promote inflammation and
mitochondrial dysfunction

_
[116,
117]

Renal cortex ↑ARG2 Mouse mesangial Promote inflammation Increased in obese [119]

Kidney tissue ↑ARG2 Mice kidney
Increased blood urea nitrogen and

macrophage recruitment
_ [118]

Diabetic
retinopathy

Peripheral
blood
leukocytes

ARG1 Patients with DM
Increased susceptibility to diabetic
retinopathy

ARG1 rs2781666 single
nucleotide
polymorphism (SNP)

[122]

Retinal EC ↑ARG1 Mice retinal vessels Accelerated retinal ECs senescence Increased in DM [123]

Central
retinal artery

↑ARG1 Rat CRA
Impaired endothelial-dependent

vasodilation responses
_ [124]

Retinal EC ↑ARG2 BREC
Increased retinal oxidative stress

and inflammation
Increased in HFHS-diet [125]

Diabetic ulcer
Epidermal
keratinocytes

↓ARG1
↑ARG2

Mice wound tissue
Induced wound healing

impairment
Increased in DM [133]

Diabetic
erectile

dysfunction

Cavernosal
tissue

↑ARG2

Human cavernosal
tissue

Decreased NO generation and CC
relaxation

_ [138]

Mice cavernosal tissue Decreased CC relaxation
Activated by ERK
pathway

[158]
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diet-induced retinopathy mice model, and depletion of
ARG2 was protected against the western diet-induced reti-
nopathy via the suppression of retinal oxidative stress and
inflammation [125]. Researchers studying DR patients’
metabolomics found that arginine and proline dysregulated
metabolism was associated with proliferative diabetic reti-
nopathy (PDR) [126, 127]. Besides, spermine, as an
arginase-modulated metabolite, is dramatically elevated in
vitreous samples from patients with PDR [128]. Studies by
Narayanan et al. and Liu et al. disclosed that diabetes-
induced upregulation of spermine oxidase (SMOX) leads to
the oxidation of spermine to spermidine, resulting in the
increase in reactive aldehydes and H2O2, which are further
converted to acrolein, resulting in retinal neuronal damage
and dysfunction [129, 130]. Thus, arginase mediated the
metabolism of arginine and proline, and polyamine metabo-
lism might also contribute to the pathogenesis of DR. How-
ever, the underlying mechanism that arginase-related
metabolites regulate DR development still requires further
investigations.

4.4. Arginase and Diabetic Wound-Healing Disorder. Dia-
betic wound healing disorder, e.g., diabetic foot ulcer, is a
severe complication of DM with significant morbidity and

mortality, as wound healing or skin repair impairment
occurs at the diabetic wound sites [131]. Arginase is
expressed in a variety of wound-healing cell types, including
epithelial cells, fibroblasts, polymorphonuclear cells, and
macrophages [132, 133]. Convincing clinical studies showed
the considerable elevation of arginase activity and protein
expression in diabetic ulcers, which influences the character-
istic callus formation around these ulcers [134] (Figure 3). In
db/db and ob/ob diabetic mice with severe wound healing
disorders, both ARG1 and ARG2 isoforms mRNA expres-
sion and arginase activity were strongly upregulated upon
injury, which paralleled the expressional and activity kinetics
of the iNOS. Conversely, leptin administration reduced the
overall arginase activity in healing wounds, which causes a
readjustment of arginases and iNOS at the wound site,
improving healing [133]. After surgery, wound closure is
accelerated by inhibiting arginase activity using an arginase
inhibitor via hastening re-epithelialization and localization
of myofibroblasts beneath the wound epithelium [135].
Notably, subcutaneous injection of arginine into the foot
ulcer of diabetic patients improved local blood circulation
and promoted wound healing by increasing NO-dependent
blood flow and nutrient supply [136]. These studies substan-
tially support the notion that arginase plays a vital role in

Arginase

ARG1? ARG2 ARG1  ARG2 ARG1  ARG2 ARG1  ARG2 ARG1  ARG2 ARG1  ARG2

CC
dysfunction

Keratinocytes
matrix deposition

EC dysfunction
NO ROS

Macrophage
Pro-inflammation

Adipocytes
inflammation

𝛽-cell
apoptosis

inflammation

Diabetic vascular
dysfunction

Diabetic
CVD

Diabetic
nephropathy

Diabetic
retinopathy

Diabetic
wound healing

disorder

Diabetic
erectile

dysfunction

Glucose
uptake

Glucose
output

Insulin
resistance

Insulin
secretion

Diabetes mellitus

Figure 3: DM complications and risk factors associated with upregulation of arginase. Two mammalian arginase isoforms, ARG1 and
ARG2, play a vital role in the regulation of β-cell functions, insulin resistance (IR), and diabetic vascular complications. Decreased ARG1
activity or expression impairs the normal function of keratinocytes, ECs, macrophages, adipocytes, and β-cells through enhancing
proinflammatory responses, leading to DM and its complications. Whereas elevation of ARG1 in ECs induces eNOS uncoupling that
limits NO production and enhances ROS generation, resulting in diabetic vascular dysfunction. Furthermore, upregulation of ARG2
activity further contributes to IR and insufficient insulin secretion through inducing adipocytes and β-cells dysfunction, respectively,
which promotes the progression of DM. DM: diabetes mellitus; ARG1: arginase 1; ECs: endothelial cells; eNOS: endothelial nitric oxide
synthase; ROS: reactive oxygen species; ARG2: arginase 2; IR: insulin resistance; CC: corpus cavernosum; CVD: cardiovascular disease.
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regulating DM-associated wound healing through the regu-
lation of NO production, inflammatory responses, or L-
arginine metabolism.

4.5. Arginase and Diabetic Erectile Dysfunction. Erectile dys-
function (ED), another complication of diabetic vascular
dysfunction, has a three-fold increased risk in people with
diabetes compared to healthy men [137]. Both ARG1 and
ARG2 are expressed in the corpus cavernosum (CC); their
expression and arginase activities appear to be dysregulated
in CC of diabetic individuals with ED [138–140]. Increased
ARG2 but not ARG1 expression in DM patients’ CC tissue,
along with decreased NO generation and CC relaxation, has
been found to contribute to ED [138] (Figure 3). In the ani-
mal model, the CC of WT diabetic mice displayed the
enhanced arginase activity and ARG2 protein expression
and the reduced phospho-eNOS at Ser-1177, while deletion
of the ARG2 gene or pharmacological inhibition of arginase
dramatically improved the nitrergic and endothelium-
dependent relaxation in CC of diabetic mice [139]. Mecha-
nistically, increased arginase activity caused the reduction
in NO production in the cavernous tissue of DM, leading
to the impairment of endothelial function and nitrogen
function [141]. Additionally, activated RhoA/Rho kinase
(ROCK) mediates diabetes-induced elevation of arginase
expression and activity, which contributes to impaired CC
relaxation probably through the activation of p38 MAPK
[140]. Undeniably, targeting arginase, particularly ARG2,
may represent a new approach to preventing diabetic
ED [142].

5. Arginase Inhibitors for DM and Its
Complications Therapy

Arginase inhibitors mainly comprise chemical and natural
compounds. Their effects have been evaluated in DM and
its complications, among which chemical arginine inhibitors
include N-omega-hydroxy-L-arginine (NOHA) and its ana-
log, 2(S)-amino-6-boronohexanoic acid (ABH), S-(2-boro-
nethyl)-l-cysteine (BEC), and α-difluoromethylornithine
(DFMO), of which natural arginine inhibitors comprise
amino acids, polyphenolic compounds, and traditional Chi-
nese medicine (TCM) herbs (Table 2).

5.1. Chemical Arginine Inhibitors. NOHA and nor-NOHA,
hydroxy derivatives of arginine, are both reversible and com-
petitive inhibitors of arginase. NOHA, a transition intermedi-
ate of NO from arginine catalyzed by NOS, is a competitive
inhibitor with Kd 3.6μM (pH 8.5) for human ARG1 [143]
and with K i 1.6μM (pH 7.5) for human ARG2 [144]. In dia-
betic patients, arginase suppression with NOHA markedly
improved coronary endothelium-dependent vasodilation
[15]. nor-NOHA, a derivate of NOHA, with a longer half-
life and higher affinity for arginase [145], binds to human
ARG1 with Kd 0.517μM (pH 8.5) [143] and inhibits human
ARG2 with K i 51nM (pH 7.5) [144].

In the obese Zucker rats (ZR) model, arginase inhibition
by nor-NOHA ameliorates obese-induced IR and prevents
the development of hypertension, while L-arginine adminis-

tration only attenuates hypertension [12]. Administration of
nor-NOHA in RBCs from T2DM patients has been shown
to reduce ROS generation and cardiac injury postischemia-
reperfusion in db/db mice [146]. Treatment with nor-
NOHA for 24 days, the citrulline-NO pathway was upregu-
lated, while the incidence of autoimmune diabetes was
reduced in elderly diabetic female NOD mice [147]. Simi-
larly, nor-NOHA administration protects I/R-induced car-
diac impairment in T1DM [148]. In the registered clinical
trial (NCT02009527), nor-NOHA administration suppresses
the elevated arginase activity in coronary artery disease
(CAD) patients with T2DM remarkably improved endothe-
lial function following I/R, and no side effects were reported
[17]. DM impairs endothelium-dependent dilation of retinal
arterioles, while nor-NOHA significantly improves endothe-
lial function of retinal arterioles in the STZ-induced diabetes
pig model [149].

ABH and BEC, two boronic acid analogs, are highly
selective and competitive arginase inhibitors that bind to
the active manganese cluster site of arginase [150], with K i
value of 0.11mM and 0.4~0.6mM, respectively [151]. ABH
inhibits human ARG1 with IC50 of 1.54μM and 2.55μM
on human ARG2 [152]. BEC binds to human ARG1 with
Kd of 270nM and K i of 30nM for human ARG2 [153,
154]. In T2DM patients, plasma arginase activity is signifi-
cantly elevated and accompanied by reduced NO production
and impaired vasorelaxation, while inhibition of arginase by
ABH (100μmol/L) restored these alternations to normal
[155]. Administration with ABH for 18 hours prevented
endothelium-dependent relaxation (EDR) injury induced
by T2DM erythrocytes in rat aorta [81]. Inhibition of
ARG1 with ABH therapy avoided the decline of NO and sig-
nificantly reduced the incidence of diabetes and obesity-
induced bone complications [156]. In the diabetic mice
model, BEC treatment markedly improved endothelium-
dependent vasorelaxation of the aortas [157]. Of note, BEC
administration can also prevent the progression of estab-
lished DN through the eNOS-dependent mechanism [118,
120, 121]. For DR, ABH and BEC have been shown in vivo
and in vitro studies to reduce oxidative stress and alleviate
diabetes-induced retinal blood flow impairment [124].
Besides, BEC was able to improve cavernosal relaxation in
STZ-diabetic mice [158].

DFMO, an irreversible mixed inhibitor of arginase and
ODC, has an inhibitory effect on arginase (K i of 3:9 ± 1:0mM
on HT-29 homogenate arginase) [159]. Its administration
significantly improved the diabetic endothelial-dependent
vasodilatory response via inhibiting arginase activity [52].

5.2. Natural Arginine Inhibitors. A portion of the natural
amino acids have been discovered to effectively decrease
arginase activity, preventing diabetes and its complications.
L-citrulline, an amino acid present in watermelon [160],
has been reported to be an allosteric inhibitor of bovine liver
arginase with 53% inhibition at 20mM [161]. L-citrulline
administrated hepatoma H4IIE cells, and SHRSP.Z-Leprfa/
IzmDmcr rats presented the improvement in insulin sensi-
tivity [49]. Clinically, T2DM patients taking L-citrulline sup-
plements (2000mg/day) for one month have been shown to
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decrease arginase activity by 21% and meanwhile improve
glycated hemoglobin (HbA1c) levels and plasma NO pro-
duction (NCT03358264) [162]. In vitro and vivo studies,
treatment with the arginase inhibitor L-citrulline (1mmol/L)
effectively blocked the HG-induced increase in arginase activ-
ity and superoxide formation in bovine coronary endothelial
cells (BCECs) and reversed diabetes-impaired coronary endo-
thelial cell-dependent vasorelaxation in the STZ-induced
diabetic rats model [52]. Excitingly, clinical studies have con-
firmed that amino acids are capable of producing the mini-
mum side effects compared to other medical treatments
[163]. L-norvaline is also a powerful arginase inhibitor and a
unique compound with a wide range of biological characteris-
tics [164]. Because of its structural similarities to ornithine, it
inhibits NO synthesis via a negative feedback mechanism
and significantly increases NO production rate [165]. In
HFD/STZ-induced diabetic mice, L-norvaline treatment
reduced fasting blood glucose levels by 27.1% when compared
with untreated HFD/STZ mice [166]. In fructose-induced
metabolic syndrome, L-norvaline administration reduced
hyperinsulinaemia and hypertriglyceridaemia without affect-
ing hyperuricaemia or hypercholesterolaemia associated with
metabolic syndrome [167]. Recently, it also has been reported
to improve vascular function in diabetics by decreasing argi-
nase activity in cavernous tissue and raising NO levels [168].
L-norvaline has minimal side effects, but because of its high
water solubility and high half-maximal inhibitory concentra-
tion (IC50 of 5.6mM on rat arginase), its application in block-
ing the arginase pathway is still unsatisfactory [169]. High
water solubility can lead to burst or uncontrolled release, while
high IC50 requires high drug loading content of L-norvaline to
satisfy high dosage.

Plant-derived molecules that inhibit arginase activity
have also been extensively investigated. Quercetin, a bioac-
tive plant flavonol compound, exhibits a competitive arginase
inhibitory activity and inhibits Leishmania arginase with IC50
of 3.8μM [170]. In cultured skeletal muscle cells, it stimulated
glucose uptake through an insulin-independent mechanism
involving the activation of adenosine monophosphate-
activated protein kinase (AMPK) signaling pathway [171],
which is consistent with our previous study that overexpressed
ARG2 inhibited the AMPK phosphorylation in ECs [172].
Treatment with a nanoformulation of quercetin for 21 days
alleviated DR in zebrafish by reducing arginase activity [173].
Moringa oleifera, an important natural source of phenolic
compounds that can inhibit rat arginase with IC50 of
159.59μg/mL [174], is an effective dietary food for the preven-
tion and treatment of obesity and T2DM [175]. Supplementa-
tion of 5%Moringa in a very high-fat diet (VHFD) fed C57BL/
6L mice significantly improved glucose tolerance and insulin
sensitivity compared to VHFD-fed mice [175]. In addition,
treatments of diabetic rats withMoringa oleifera had beneficial
effects on the management of ED caused by DM [176]. Mech-
anistically, Moringa oleifera inhibiting arginase activity pro-
motes the production of NO in penile tissue. Moreover, the
clinical trials evaluating the effects of Moringa oleifera in
patients with T2DM are undergoing [177–179].

With a history of over 2000 years, traditional Chinese
medicine (TCM) has developed into a unique system for

treating various diseases; TCM herbs show protective effects
against DM and its complications by modulating arginase
expression and activity. These herbs contain multiple biolog-
ical molecules, which interact with each other and produce
synergistic effects that strengthen therapeutic efficacy and
lower the toxicity of individual herbs [180]. Semen cuscutae
(SC), a well-known Chinese medicine extracted from the
mature dried seeds of Cuscuta chinensis Lam, owns various
biological properties, including antioxidant and anti-
inflammation [181]. In HFD-induced obese mice, SC treat-
ment remarkably inhibits HFD-induced increases in argi-
nase activity and weights of liver and visceral fat tissue in a
dose-dependent manner to reduce hepatic lipid metabolism
and systemic adiposity via the suppression of hepatic argi-
nase [182]. HuangqiGuizhiWuwu Decoction (HGWWD),
commonly used for the treatment of diverse cardiovascular
and cerebrovascular diseases in mice, was reported to lessen
STZ-induced impairment of velocity and pulsatility of left
femoral arteries; aortic pulse wave velocity and vascular
relaxation enhance NO production in the aorta and plasma,
as well as blunt endothelial arginase activity and aortic ARG1
expression [183]. In the type 1 DN mice model, Xiao-Shen-
Formula (XSF) treatment improved STZ-induced renal
hyper-filtration, glomerulosclerosis, and renal microvascular
remodeling and prevented the increased of oxidative stress
and inflammatory cytokines releases by ablating the increased
levels of ARG2 protein and arginase activity, which was com-
parable to that of ABH treatment alone [184].

6. Concluding Remarks

Overall, dysregulated arginase expression and activity play a
critical role in the onset and development of DM and its
complications via the modulation of insulin release, IR, L-
arginine metabolism, and oxidative stress as well as immune
response. Therefore, monitoring the alterations of arginase
activity and expression and targeting arginase offer a prom-
ising approach to diagnosing and treating DM and its com-
plications. Nevertheless, there are still some limitations and
challenges waiting for the translation of preclinical findings
into therapeutic applications.

First of all, substantial clinical and experimental studies
suggest that arginase could be a biomarker and diagnostic
parameter for DM and its complications. However, there is
no clinical definition standard of arginase activity or
ARG1/2 expression levels in blood or tissues for diagnosing
DM and its complications. For this purpose, it is feasible to
build an artificial intelligence- (AI-) based prediction model
through the deep learning of clinical data of patients with
DM or DM complications, including the arginase activity
values, expression levels, and patient information, to evalu-
ate the potential risk of DM and its complications quickly.
Secondly, arginase activity is indispensable for normal cellu-
lar physiological function since ARG1 exerts as the final
enzyme of UC to detoxify ammonia and ARG2 is required
for urine concentration in the kidney and smooth muscle
cell proliferation [185, 186]. Concerning safety consider-
ations, to lower the toxicity of arginase inhibitors, it is neces-
sary to take into account the inhibition potency of inhibitors
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on ARG1 and ARG2 and which isoform of arginase domi-
nantly contributes to the pathogenesis of DM and its compli-
cations in different individuals. Thirdly, as the distinct roles of
ARG1 and ARG2 in the pathogenesis of DM and its complica-
tions, developing isoform-specific arginase inhibitors is a
novel strategy to improve the therapeutic efficacy. In contrast,
the high homology of the active enzymatic sites between
human ARG1 and ARG2 frustrates this progress. Presently,
high-resolution crystallographic structures of the enzyme,
molecular and computational modeling have provided a pos-
sible route to developing hyperactive arginase inhibitors with
specific properties [112]. Finally, due to the molecular diver-
sity and low toxicity of nature arginase inhibitors, their extrac-
tion from natural medicinal plants or TCM herbs appears to
be a promising approach, which not only provides new struc-
tures references for designing pharmaceutical arginase inhibi-
tors but may also allow dietary therapy to treat DM and its
complications.
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