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Influenza A-Induced Acute Lung Injury

Meng-Meng Xu ,1,2 Jia-Ying Kang ,1,2 Shuang Ji ,1,2 Yuan-Yuan Wei ,1,2

Si-Liang Wei ,1,2 Jing-Jing Ye ,1,2 Yue-Guo Wang ,3 Ji-Long Shen ,4 Hui-Mei Wu ,2,5

and Guang-He Fei 1,2

1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei,
230022 Anhui, China
2Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of
Anhui Medical University, Hefei, 230022 Anhui, China
3Department of Emergency Critical Care Medicine, First Affiliated Hospital of Anhui Provincial Hospital, Division of Life Science
and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
4Provincial Laboratory of Microbiology and Parasitology of Anhui Medical University, Hefei, 230022 Anhui, China
5Anhui Geriatric Institute, Department of Geriatric Respiratory Critical and Care Medicine, The First Affiliated Hospital of Anhui
Medical University, Hefei, 230022 Anhui, China

Correspondence should be addressed to Hui-Mei Wu; wuhm@ahmu.edu.cn and Guang-He Fei; gh.fei@ahmu.edu.cn

Received 24 June 2022; Accepted 7 October 2022; Published 15 November 2022

Academic Editor: Jing Zhou

Copyright © 2022 Meng-Meng Xu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Influenza virus infection is one of the strongest pathogenic factors for the development of acute lung injury (ALI)/ acute
respiratory distress syndrome (ARDS). However, the underlying cellular and molecular mechanisms have not been clarified. In
this study, we aim to investigate whether melatonin modulates macrophage polarization, oxidative stress, and pyroptosis via
activating Apolipoprotein E/low-density lipoprotein receptor (ApoE/LDLR) pathway in influenza A-induced ALI. Here, wild-
type (WT) and ApoE-/- mice were instilled intratracheally with influenza A (H3N2) and injected intraperitoneally with
melatonin for 7 consecutive days. In vitro, WT and ApoE-/- murine bone marrow-derived macrophages (BMDMs) were
pretreated with melatonin before H3N2 stimulation. The results showed that melatonin administration significantly attenuated
H3N2-induced pulmonary damage, leukocyte infiltration, and edema; decreased the expression of proinflammatory M1
markers; enhanced anti-inflammatory M2 markers; and switched the polarization of alveolar macrophages (AMs) from M1 to
M2 phenotype. Additionally, melatonin inhibited reactive oxygen species- (ROS-) mediated pyroptosis shown by
downregulation of malonaldehyde (MDA) and ROS levels as well as inhibition of the NLRP3/GSDMD pathway and lactate
dehydrogenase (LDH) release. Strikingly, the ApoE/LDLR pathway was activated when melatonin was applied in H3N2-
infected macrophages and mice. ApoE knockout mostly abrogated the protective impacts of melatonin on H3N2-induced ALI
and its regulatory ability on macrophage polarization, oxidative stress, and pyroptosis. Furthermore, recombinant ApoE3 (re-
ApoE3) inhibited H3N2-induced M1 polarization of BMDMs with upregulation of MT1 and MT2 expression, but re-ApoE2
and re-ApoE4 failed to do this. Melatonin combined with re-ApoE3 played more beneficial protective effects on modulating
macrophage polarization, oxidative stress, and pyroptosis in H3N2-infected ApoE-/- BMDMs. Our study indicated that
melatonin attenuated influenza A- (H3N2-) induced ALI by inhibiting the M1 polarization of pulmonary macrophages and
ROS-mediated pyroptosis via activating the ApoE/LDLR pathway. This study suggested that melatonin-ApoE/LDLR axis may
serve as a novel therapeutic strategy for influenza virus-induced ALI.
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1. Background

Acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) is a rapidly progressing and refractory disease. Par-
ticularly, seasonal influenza-induced ALI/ARDS increasingly
contributes to annual global mortality. Recent studies indi-
cated that seasonal influenza epidemics annually affected
10–30% of the human population and cause 3-5 million
severe cases and approximately 290,000-650,000 deaths
worldwide especially among the elderly with chronic dis-
eases [1, 2]. And it was estimated that an annual average of
88,100 influenza-associated respiratory deaths occurred in
China [3]. Studies found that influenza viruses A- (H3N2-)
associated hospitalizations and mortality were the highest
among other circulating viruses [4–6], because it was easier
to progress to severe pneumonia with bilateral pulmonary
infiltrates, even consolidation (i.e., “white lung” in imageol-
ogy), and cause ALI/ARDS [1, 3]. Therefore, the further
study on cellular and molecular mechanisms of influenza-
associated ALI/ARDS remains urgently needed for more
efficient agents and therapeutic strategies.

Persistent influenza virus infection leads to robust oxida-
tive stress and cytokine storms (i.e., hypercytokinemia) with
extensive pulmonary leukocyte infiltration, edema, and alve-
olar haemorrhages [7], which are commonly caused by pul-
monary immune cells. Therein, macrophages are the most
important innate immune cells and constitute the first line
of defense against virus and bacteria in ALI/ARDS [8]. As
highly plastic cells, macrophages can be polarized into differ-
ent functional phenotypes, mainly including classically acti-
vated (M1) macrophages and alternatively activated (M2)
macrophages, which perform different biological functions
[9]. In the acute stage of influenza infection, macrophages
are polarized into M1 phenotype and release abundant pro-
inflammatory proteins and reactive oxygen species (ROS)
[10]. Studies indicated that ROS released by M1 macro-
phages were prone to causing pyroptosis via activating the
NLR family pyrin domain containing 3 (NLRP3) /gasdermin
D (GSDMD) pathway [11–13]. Additionally, macrophage
polarization may be regulated by Apolipoprotein E (ApoE)
signaling [14], and the ApoE/LDLR pathway was suggested
to be a potential signaling pathway involved in anti-
inflammation and antioxidation [15]. ApoE is an arginine-
rich glycoprotein primarily synthesized in the liver, brain,
lung epithelia, and macrophages [15, 16]. Low-density lipo-
protein receptor (LDLR), the primary binding receptor of
ApoE, can assist ApoE to mediate lipid metabolism and
the development of pulmonary diseases [15, 17]. Previous
studies demonstrated that ApoE knockout caused more
severe airway inflammation and oxidative stress in asthmatic
mice, whereas administration of an ApoE mimetic peptide
suppressed the negative effects in ApoE-/- asthmatic mice,
but no effects in LDLR-/- asthmatic mice [18, 19], indicating
that ApoE exerted the anti-inflammation and antioxidation
probably in a LDLR-dependent manner.

Melatonin (N-acetyl-5-methoxytryptamine,
C13H16N2O2), a kind of neuroendocrine hormone, is mainly
synthesized and secreted by the pineal gland of brains and
exerts effects via its membrane receptors (MT1 and MT2)

[20, 21]. Melatonin is also synthesized in respiratory epithe-
lia and bone marrow cells as well as macrophages [22, 23]. It
is widely recognized that melatonin is in charge of regulating
sleep and circadian rhythm and also plays important roles in
anti-inflammation and antioxidation [20]. Recent evidence
indicated that melatonin had potential abilities of antivirus
infection, including respiratory syncytial virus (RSV), influ-
enza virus, and severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) [24, 25]. Melatonin may inhibit viral
replication, improve mitochondrial metabolism via modu-
lating the circadian rhythm, and restrain the “influenza
virus-cytokine-trypsin” cycle via inhibiting NLRP3 inflam-
masome [25]. Moreover, melatonin is also capable of inhi-
biting the M1 polarization of macrophages to favor
antioxidation and anti-inflammation [26]. However, the
protective mechanisms of melatonin in influenza virus-
induced ALI/ARDS remain unknown.

Taken together, this study was aimed at investigating
whether melatonin inhibited influenza virus-induced ALI/
ARDS and its underlying molecular mechanisms, which
may provide potential therapeutic approaches and efficient
agents for influenza-associated ALI/ARDS.

2. Materials and Methods

2.1. Experimental Animals.Male C57BL/6 mice and ApoE-/-
C57BL/6 mice weighing 22-25 g (age 6-8 weeks) were pur-
chased from the Laboratory Animal Center of Hangzhou
Ziyuan (Hangzhou, China, Licence key SCXK2019-0004).
Experimental mice were housed in the Laboratory Animal
Research Center of Anhui Medical University under stan-
dard specific pathogen-free condition with 12h light/12 h
dark cycle at 20 ± 2°C. All animal experimental procedures
were carried out according to the protocols approved by
the Animal Care and Ethics Committee of Anhui Medical
University strictly in accordance with ethical principles
(Approval No. 20180430).

2.2. IAV/H3N2 Amplification and Plaque Assay. Influenza
A/Anhui/1/2017 (H3N2) virus was obtained from Prof.
Yan Liu (Department of Microbiology, Anhui Medical Uni-
versity, China) and isolated from the patient in 2017 and
used in laboratory studies under approved standard bio-
safety procedures. The influenza A (H3N2) virus samples
were amplified in Madin-Darby canine kidney (MDCK)
cells and specific pathogen-free embryonated chicken eggs,
and virus titers were assayed by standard plaque assay on
MDCK cells according to previous description [27]. MDCK
cells were infected with diluted virus samples for 2 h at 37°C.
After being washed with PBS, the cultivation was proceeded
with 50% 2× DMEM, 50% avecil (2.35%), and N-acetyl tryp-
sin (1.5μg/ml) for 72h. Then, cells were stained with naph-
thalene blue-black, and plaques were counted for the
calculation of virus titers. All experiments involved in influ-
enza virus were performed according to the biosafety level
two requirements with well-equipped personal protection
for all the researchers.
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Figure 1: Continued.

3Oxidative Medicine and Cellular Longevity



MT1 MT2
0

1

2

3

4

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n
no

rm
al

iz
ed

 to
 𝛽

-a
ct

in
 in

 R
aw

26
4.

7 

PBS
Mel (400 𝜇M)
H3N2

Mel (200 𝜇M) + H3N2
Mel (400 𝜇M) + H3N2

⁎

⁎⁎⁎

⁎⁎

⁎⁎
⁎⁎⁎

PBS

Mel (
40

0 𝜇
M)

H3N
2

Mel (
20

0 𝜇
M) +

 H
3N

2

Mel (
40

0 𝜇
M) +

 H
3N

2
0.0

0.2

0.4

0.6

0.8

M
T-

1/
2/
𝛽

-a
ct

in
 in

 R
aw

26
4.

7

p = 0.07 ⁎

⁎

MT-1/2

𝛽–Actin

H3N2 –
–

–
–
+ + +

400400 200Mel (𝜇M)

(d)

MT1 MT2
0

1

2

3

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n
no

rm
al

iz
ed

 to
 𝛽

-a
ct

in
 in

 m
ic

e 

PBS
PBS + Mel

H3N2
H3N2 + Mel

⁎

⁎⁎

⁎

⁎

⁎⁎

⁎

PBS

PBS +
 M

el
H3N

2

H3N
2 +

 M
el

0.0

0.2

0.4

0.6

0.8

1.0

M
T-

1/
2/
𝛽

-a
ct

in
 in

 m
ic

e

⁎

⁎

⁎⁎

H3N2 – –
–+
+ +

+–

𝛽–Actin

Mel

MT–1/2

(e)

Figure 1: Continued.

4 Oxidative Medicine and Cellular Longevity



2.3. Extraction and Culture of Bone Marrow-Derived
Macrophages (BMDMs).Murine bone marrow-derived mac-
rophages (BMDMs) were extracted from the tibias and
femurs of wild-type (WT) mice and ApoE-/- mice (age 6-8
weeks) according to previous description [28]. Cut tibias
and femurs were flushed with a 1ml syringe and centrifuged
at room temperature, 1500 rpm for 5min, to obtain bone
marrow cells. Bone marrow cells were cultured in Iscove’s
modified Dulbecco’s medium (IMDM) (Gibco, USA) con-
taining 10% Fetal Bovine Serum (FBS) (Excell Biology,
New Zealand), 1% penicillin-streptomycin, and 30ng/ml
macrophage colony-stimulating factor (M-CSF, PeproTech,
USA) to stimulate differentiation. On day 3, fresh BMDM
medium (half of original volume) was supplemented. On
day 7, cells were harvested to assess the purity of BMDMs
by flow cytometry analysis and plated at a density of 1 ×
106 cells/ml for further experiments.

2.4. IAV/H3N2-Induced ALI Model and Melatonin
Administration. WT mice and ApoE-/- mice were anesthe-
tized with 1% sodium pentobarbital (50 mg/kg) via intraper-
itoneal injection to ensure that mice are free from pain for
invasive trachea cannula. The model mice were instilled
intratracheally with 50μl H3N2 (100 plaque forming units,
PFUs) on day 0 and day 3, while the control mice were
instilled with 50μl PBS. The infection period of H3N2 was
seven days. From day 0, mice were injected intraperitoneally
with PBS or melatonin (Mel) (30mg/kg, dissolved in PBS
containing 5% DMSO) (C13H16N2O2, stated purity ≥ 98%,
M5250, Sigma-Aldrich, USA) daily at 18:00 for 7 consecu-
tive days. On the seventh day, the mice were sacrificed for
further experimental study.

2.5. Serum and BALF Collection and Leukocyte Counting.
After complete anesthesia with 0.2ml 1% sodium pentobar-

bital (about 100mg/kg) via intraperitoneal injection, bron-
choalveolar lavage was performed with 2ml sterile PBS via
an endotracheal tube. The bronchoalveolar lavage fluids
(BALF) were centrifuged at 4°C, 1000 rpm for 10min. Cell
pellets were resuspended in PBS with Red Blood Cell
(RBC) lysis buffer (C3702, Beyotime Technology, Shanghai,
China) for total leukocyte counting using a hemocytometer.
Then, smeared BAL cells were stained with Wright-Giemsa
stain solution (Baso Diagnostics Inc, Zhuhai, China) for dif-
ferential leukocyte counting mainly including neutrophils
and macrophages in a double-blind manner as previously
described [29]. Blood was drawn from the left heart through
a 1ml syringe and centrifuged at 4°C, 4000 rpm for 10min,
to obtain the serum. Serum and BALF of mice were stored
in a -80°C freezer for further cytokine analysis.

2.6. Measurement of Serum MDA and ApoE Levels and
BALF Cytokines. Malondialdehyde (MDA) contents in
serum of mice were measured via a MDA assay kit with
Thiobarbituric Acid (TBA) methods (A003-1, Nanjing Jian-
cheng, Nanjing, China) according to the protocols from the
manufacturer.

Serum ApoE levels were detected using an ApoE ELISA
kit (Elabscience, Wuhan, China), and the levels of IL-1β
and TNF-α in BALF were also measured with the corre-
sponding ELISA kit (MultiSciences, Hangzhou, China),
respectively, following the corresponding instructions from
the manufacturers.

2.7. Histological Analysis and Lung Wet/Dry Ratio. Mice
were euthanatized by an enough dose administration of 1%
sodium pentobarbital (100mg/kg, intraperitoneal), the left
lung lobes were dissected without proceeding with bronchoal-
veolar lavage, fixed with 4% paraformaldehyde, and embedded
in paraffin. 4μm sections were stained with haematoxylin and

PBS PBS + Mel H3N2 H3N2 + Mel

× 50

× 200

(f)

Figure 1: The expression of melatonin receptors in vitro and in vivo. Quantitative reverse transcription-polymerase chain reaction (RT-
PCR) measurements of the relative mRNA levels of melatonin receptor 1 (MT1) (a), MT2 (b), and IL-1β (c) in Raw264.7 cells infected
with influenza A (H3N2) (MOI = 2, 0-24 h). (d) Quantitative RT-PCR measurements and the relative mRNA levels of MT1 and MT2;
western blot analysis of the expression of total melatonin receptors (MT-1/2) to β-actin in Raw264.7 cells infected with influenza A
(H3N2) (MOI = 2, 12 h) with/without melatonin pretreatment (200 μM or 400 μM, 3 h before H3N2 infection). (e) Quantitative RT-PCR
measurements of the relative mRNA levels of MT1 and MT2; western blot analysis of the expression of MT-1/2 to β-actin in wild-type
(WT) mice from the control (PBS) group, PBS+Mel group, H3N2 group, and H3N2+Mel group. (f) Representative
immunohistochemical images of lung tissues stained with MT-1/2 as indicated by the brown staining (black arrows) from WT mice, bar
50μm (original magnification ×50, ×200). Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p<0.001 compared with
influenza A- (H3N2-) infected Raw264.7 cells or mice.
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Figure 2: Continued.
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eosin (H&E) for evaluating the severity of lung injury. The
indexes of lung injury were double-blindly calculated accord-
ing to the scoring system mainly including five histological
features: (a) neutrophils in the alveolar space, (b) neutrophils

in the interstitial space, (c) hyaline membrane formation, (d)
proteinaceous debris filling the airspace, and (e) alveolar septal
thickening. Each item was scored 0, 1, or 2 based on the sever-
ity of lung injury. The final injury scores were figured up
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Figure 2: The protective effects of melatonin on ALI induced by influenza A (H3N2). (a) Representative bronchial and alveolar
photomicrographs of murine lung tissues in H&E-stained sections as well as individual values of lung injury scores from the control
(PBS) group, PBS+Mel group, H3N2 infection group, and H3N2+Mel group, bar 50μm (original magnification ×50, ×200). (b)
Quantitative ELISA detection of IL-1β and TNF-α levels in BALF of mice. (c) Individual MDA contents in serum were detected using a
MDA assay kit. Western blot analysis of the expression of NLRP3, Caspase1, and GSDMD-N (d) as well as iNOS and Arg1 (e) to β-
actin in lung tissue homogenates. (f) Representative immunohistochemical images of lung tissues stained with M1 marker iNOS and M2
marker Arg1 as indicated by the brown staining (black arrows) from the control (PBS) group, PBS+Mel group, H3N2 infection group,
and H3N2+Mel group, bar 50μm (original magnification ×50, ×400). Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001 compared with influenza A- (H3N2-) infected mice.
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Figure 3: Continued.
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according to the following formula [30]: lung injury scores =
½ð20 × aÞ + ð14 × bÞ + ð7 × cÞ + ð7 × dÞ + ð2 × eÞ�/ðnumber of
fields × 100Þ.

The degree of lung edema was estimated according to
the wet/dry ratio of lung. After anesthesia with 1% sodium

pentobarbital (100mg/kg, intraperitoneal), whole lung tis-
sues were isolated and weighed as the wet weight of the lung.
After oven drying at 60°C for 48 h, lung tissues were sec-
ondly weighed as the dry weight of the lung. The weight
ratio of the wet and dry (W/D) lung was then calculated.
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Figure 3: The protective impacts of melatonin in influenza A- (H3N2-) infected ApoE-/- mice. (a) Representative bronchial and alveolar
photomicrographs of wild-type (WT) and ApoE-/- mouse lung tissues in H&E-stained sections as well as individual values of lung injury
scores from the control (PBS) group, H3N2 infection group, and H3N2+Mel group, bar 50μm (original magnification ×50, ×200). (b)
Representative lung morphology and individual values of wet/dry ratio measured from the ratio of wet lung weight to dry lung weight of
WT and ApoE-/- mice from the control (PBS) group, H3N2 infection group, and H3N2+Mel group. (c) Wright-Giemsa staining of BAL
cells in WT and ApoE-/- mice from the control (PBS) group, H3N2 infection group, and H3N2+Mel group, bar 50μm (original
magnification × 400). Quantitative ELISA detection of TNF-α (d) and IL-1β (e) levels in BALF of WT and ApoE-/- mice. (f) Individual
MDA contents in serum of WT and ApoE-/- mice. (g) Western blot analysis of the expression of NLRP3, Caspase1, and GSDMD-N to
β-actin in lung tissue homogenate of WT and ApoE-/- mice. (h) Quantitative RT-PCR measurement of the relative mRNA level of IL-1β
of WT and ApoE-/- mouse lung tissues. Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with
influenza A- (H3N2-) infected WT and ApoE-/- mice.
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2.8. Immunohistochemistry. Immunohistochemistry staining
was performed for characterizing the pulmonary localization
and expression of melatonin receptors 1/2 (MT-1/2), induc-
ible nitric oxide synthase (iNOS), and Arginase 1 (Arg1).
Briefly, 4μm lung sections were deparaffinized and incu-
bated with corresponding primary antibodies against MT-

1/2 (1:50, sc-398788, Santa Cruz, USA), iNOS (1:200,
ab178945, Abcam, Cambridge, UK), and Arg1 (1:50,
#93668S, Cell Signaling Technology, USA) overnight at 4°C
and horseradish peroxidase- (HRP-) conjugated secondary
antibody followed by diaminobenzidine (DAB) liquid. The
positive expression location of iNOS and Arg1 mainly
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Figure 4: The blocking of the ApoE/LDLR pathway suppressed the regulation of macrophage polarization by melatonin. (a) Western blot
images of the expression of ApoE, LDLR, iNOS, and Arg1 to β-actin in lung tissue homogenate of WT and ApoE-/- mice from the control
(PBS) group, H3N2 infection group, and H3N2+Mel group. (b) Representative immunohistochemistry images of WT and ApoE-/- mouse
lung tissues stained with iNOS and Arg1 as indicated by the brown staining (black arrows) from the control (PBS) group, H3N2 infection
group, and H3N2+Mel group, bar 50 μm (original magnification ×50, ×400). Quantitative RT-PCR measurements of the relative mRNA
levels of TNF-α (c), MCP1 (d), Arg1 (e), and Fizz1 (f) in lung tissues of WT and ApoE-/- mice. (g) Gating strategy of flow cytometry
analysis to identify alveolar macrophages (AMs) (CD45+Siglec-F+CD11c+) as well as the M1 (CD86+) and M2 (CD206+) phenotypes of
AMs in BALF. Individual percentages of AMs (h) in total leukocytes of BALF, CD86+ AMs (i), and CD206+ AMs (j) in total AMs in
WT and ApoE-/- mice from the control (PBS) group, H3N2 infection group, and H3N2+Mel group. Data expressed as mean ± SEM
(n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with influenza A- (H3N2-) infected mice.
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focused on the areas of leukocyte infiltration along bronchial
and alveolar walls.

2.9. Flow Cytometry Analysis of BALF Cells and BMDMs.
BAL cells were treated with RBC lysis buffer and stained
with the following fluorochrome-conjugated antibodies to
screen alveolar macrophages (AMs): CD45 (APC-CyTM7,
561037, BD Biosciences, USA), CD11c (PerCP-CyTM5.5,
561114, BD), and Siglec-F (BV421, 565934, BD). For inves-
tigating the effects of melatonin on AM polarization, BALF
cells were stained with M1 macrophage marker CD86 (PE,
561963, BD) and M2 marker CD206 (MR6F3 APC, Thermo-
Fisher Scientific, USA). Specifically, before transmembrane
protein CD206 stained, BALF cells were fixed and perme-
abilized for better intracellular staining. The images and data
of flow cytometry were collected using LSRFortessa X30 (BD
Biosciences, USA).

For determining the purity of matured BMDMs, har-
vested BMDMs were stained with CD45 (APC-CyTM7,
BD), F4/80 (PE, 565410, BD), and CD11b (FITC, 557396,
BD) antibodies. The purity of BMDMs was assessed via
observing the percentage of CD11b+F4/80+ population.

2.10. IAV/H3N2-Infected Cell Injury Model. Murine
Raw264.7 cell lines were provided by the Cell Bank of
Shanghai Institutes for Biological Sciences (China Academy
of Science, Shanghai, China). Raw264.7 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) (Hyclone,
Logan, UT, USA) with 10% FBS (Excell biology) at 37°C
under saturated humidity conditions and 5% CO2. When
growing to 60-70% confluence, cells were pretreated with
melatonin (100μM, 200μM, and 400μM) for 3 h. Then,

the cells were infected with H3N2 (Multiplicity of Infection,
MOI = 2) for 6 h, 12 h, 18 h, and 24 h.

For further verifying the effects of melatonin on macro-
phage polarization, BMDMs were infected with H3N2
(MOI = 2) for 12h to stimulate the M1 polarization. In the
melatonin intervention group, BMDMs were pretreated with
melatonin (400μM) for 3 h before H3N2 infection. Addi-
tionally, BMDMs were also pretreated with recombinant
ApoE (re-ApoE2, re-ApoE3, and re-ApoE4) (10μg/ml,
PeproTech) before H3N2 infection.

2.11. Detection of Cell Viability. Cell viability of Raw264.7
cells stimulated by influenza A (H3N2) with different multi-
plicities of infection (MOI) was measured by Cell Counting
Kit-8 (C0038, Beyotime Technology). Briefly, cells seeded
in 96-well plates were incubated with CCK8 working solu-
tion for 2 h at 37°C. The absorbance value at 450nm
(OD450) was measured by a microplate reader (BioTek
Instruments, Vermont, USA).

2.12. Detection of Cell Reactive Oxygen Species (ROS) Levels.
Cell ROS levels were detected using 2′,7′-dichlorodihydro-
fluorescein diacetate (DCFH-DA, D6883, Sigma-Aldrich)
according to the manufacturer’s instructions. Raw264.7 cells
were seeded in 96-well plates with a density of 5 × 104/ml
with 6 parallel wells, and BMDMs were seeded in 96-well
plates with a density of 20 × 104/ml with 6 parallel wells,
incubated overnight at 37C, and then treated with corre-
sponding prevention. After 12h incubation, cells were
stained with 10μM DCFH-DA at 37°C avoiding light for
30min. ROS levels were determined by Fluorescence
Microscopy (Leica, Germany) or Varioskan Flash (Thermo
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Figure 5: The effects of melatonin on macrophage polarization and oxidative injury in Raw264.7 cells. (a) Representative
immunofluorescence images of iNOS (green) and Arg1 (red) expression in Raw264.7 cells infected by influenza A (H3N2) infection
(MOI = 2, 12 h) with/without melatonin pretreatment (400 μM, 3 h before H3N2 infection) (original magnification ×630). (b) Western
blot analysis of the expression of iNOS and Arg1 to β-actin in Raw264.7 cells. (c) Quantitative RT-PCR measurements of the relative
mRNA levels of TNF-α, MCP1, CD86, Arg1, Fizz1, and CD206 in Raw264.7 cells. (d) Representative images of DCF fluorescence (green)
in Raw264.7 cells (original magnification ×50); quantitative ROS values were detected using a fluorescence plate reader. (e) The lactic
dehydrogenase (LDH) released into the medium was assessed based on OD490 values of LDH release in Raw264.7 cells. (f) Quantitative
RT-PCR measurement of the relative mRNA level of IL-1β in Raw264.7 cells. (g) Western blot analysis of the expression of NLRP3,
Caspase1, and GSDMD-N to β-actin in Raw264.7 cells. Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001
compared with influenza A- (H3N2-) infected Raw264.7 cells.
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Scientific, USA) at wavelengths of 488nm for excitation and
525nm for emission.

2.13. Lactate Dehydrogenase (LDH) Release Assay. LDH
release in Raw264.7 cells and BMDMs were detected using
LDH cytotoxicity assay kit (C0017, Beyotime Technology)
according to the protocols from the manufacturer. The
absorbance value at 490 nm (OD490) was measured by a
microplate reader (BioTek Instruments, Vermont, USA).

2.14. Immunofluorescence Staining. Raw264.7 cells and
BMDMs were fixed with 4% paraformaldehyde for 15min,
followed by permeabilization for 10min. After blocking with
5% BSA, the cells were incubated with primary antibodies
against iNOS (1 : 200, ab178945, Abcam), Arg1 (1 : 50,
#93668S, Cell Signaling Technology), and F4/80 (1 : 50,
MAB5580-SP, R&D systems, USA) overnight at 4°C. The
next day, corresponding secondary antibodies (1 : 500, Alexa
Fluor® 488 goat anti-rabbit IgG and Alexa Fluor® 594 goat
anti-mouse IgG, Abcam) were applied, followed by the
nuclei staining with 4′,6-diamidino-2-phenylindole (DAPI).
Confocal lazer scanning analysis of Raw264.7 cells and
BMDMs was performed using a laser confocal microscope
(Zeiss LSM880, Carl Zeiss AG, Germany).

2.15. Reverse Transcription-Polymerase Chain Reaction (RT-
PCR). Total RNA was isolated with TRIzol reagent (Invitro-
gen, USA), and reverse transcription was conducted using a
HyperScript III RT SuperMix for qPCR with gDNA
Remover (EnzyArtisan Biotech, Shanghai, China) according

to the manufacturer’s instruction. RT-PCR was performed
using a 2× S6 Universal SYBR qPCR Mix (EnzyArtisan Bio-
tech). All samples were assayed in triplicate, and the target
gene expression was normalized to β-actin. Relative mRNA
expression was calculated with the 2-ΔΔCt method. The spe-
cific primers for β-actin, MT1, MT2, ApoE, IL-1β, TNF-α,
monocyte chemoattractant protein 1 (MCP1), Arg1, Fizz1,
CD86, and CD206 were generated by EnzyArtisan Biotech.
The primer sequences are listed in Supplementary Table S1.

2.16. Western Blot Analysis. Total proteins were extracted
with RIPA lysis containing protease inhibitors from murine
lung tissues, Raw264.7 cells, and BMDMs. And protein sam-
ples were separated through 10–13% SDS-PAGE and trans-
ferred to PVDF membranes. The membranes were
incubated with primary antibodies: iNOS (1 : 2000,
ab178945, Abcam), Arg1 (1 : 1000, #93668S, Cell Signaling
Technology), NLRP3 (1 : 1000, #13158S, Cell Signaling
Technology), Caspase1 (1 : 200, sc-392736, Santa Cruz),
MT-1/2 (1 : 200, sc-398788, Santa Cruz), GSDMD (1 : 1000,
TA4012, Abmart, Shanghai, China), and β-actin (1 : 200,
sc-47778, Santa Cruz) overnight at 4°C. Subsequently, the
membranes were incubated with HRP-conjugated anti-
rabbit or anti-mouse secondary antibodies (1 : 2000, Cell Sig-
naling Technology) for 1 h at room temperature. Then, the
blots were visualized by Odyssey infrared imaging system
(Tanon, Shanghai, China).

2.17. Statistical Analysis. All experiments are randomized
and blinded. All results were presented as mean ± standard
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Figure 6: Melatonin promoted the activation of the ApoE/LDLR pathway in H3N2-induced ALI. (a) Representative immunohistochemical
images of ApoE in lung tissues of wild-type (WT) mice as indicated by the brown staining (black arrows) from the control (PBS) group,
PBS+Mel group, H3N2 infection group, and H3N2+Mel group, bar 50 μm (original magnification ×50, ×200). (b) Western blot analysis
of the expression of ApoE and LDLR to β-actin in lung tissue homogenate of WT mice. (c) Quantitative ELISA detection of ApoE levels
in the serum from the control (PBS) group, PBS+Mel group, H3N2 infection group, and H3N2+Mel group. (d) Quantitative RT-PCR
measurement of the relative mRNA level of ApoE in Raw264.7 cells infected with influenza A (H3N2) (MOI = 2, 12 h) with/without
melatonin pretreatment (100 μM, 200μM, or 400 μM, 3 h before H3N2 infection). (e) Western blot analysis of the expression of ApoE
and LDLR to β-actin in Raw264.7 cells. Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with
influenza A- (H3N2-) infected mice or Raw264.7 cells.
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error of themean (SEM) from at least three independent
samples or biological replicates (n ≥ 3). Statistical analysis
was performed using GraphPad Prism 9.0 (GraphPad Soft-
ware, Inc., San Diego, CA). Student’s t test was performed
for comparisons between two different groups. One-way
ANOVA with Bonferroni’s post hoc test (for equal variance)
or Dunnett’s T3 post hoc test (for unequal variance) was
performed for comparisons among multiple groups. ∗p <
0:05 was considered statistically significant.

3. Results

3.1. Melatonin Reversed Influenza A- (H3N2-) Induced
Decreased Expression of Melatonin Receptors. The detection
of CCK8 showed that influenza A (H3N2) stimulation with
MOI of 2 had no significant effects on the viability of
Raw264.7 cells (Figure S1(a)). And H3N2 infection
inhibited the mRNA expression of melatonin receptors
(MT1 and MT2), which showed a marked decrease after
infection at 12h and recovered at 24 h in Raw264.7 cells
(Figures 1(a) and 1(b)). Oppositely, H3N2 infection
upregulated IL-1β mRNA expression, which reached the
peak level at 12 h, then reduced at 18 h and 24 h in
Raw264.7 cells (Figure 1(c)). Additionally, in H3N2-
infected mouse lung tissues, the mRNA expression of MT1
and MT2 showed decreases compared to the PBS group
and PBS+Mel group (Figure 1(e)). However, melatonin
intervention significantly increased the mRNA expression
of MT1 and MT2 in H3N2-infected Raw264.7 cells and
mice (Figures 1(d) and 1(e)). Moreover, the protein
expression of MT-1/2 also decreased after H3N2 infection
in Raw264.7 cells and mice (Figures 1(d) and 1(e)),
suggesting that H3N2 infection may induce a reduced
secretion of melatonin. After melatonin treatment, MT-1/2
expression significantly increased in H3N2-infected

Raw264.7 cells and mice (Figures 1(d) and 1(e)).
Meanwhile, immunohistochemical staining also showed
that MT-1/2 expression was relatively reduced mainly
around the bronchial epithelia and areas of leukocyte
infiltration in H3N2-infected mice (Figure 1(f)). Likewise,
melatonin administration also upregulated the expressed
intensity of MT-1/2 in H3N2-infected mice, especially
around the bronchial epithelia (Figure 1(f)).

3.2. Melatonin Inhibited Influenza A- (H3N2-) Induced ALI
and Pyroptosis. HE staining showed that H3N2 infection
induced significant pulmonary destruction and leukocyte
infiltration on day 7, whereas severe lung injury and fibrous
changes happened on day 14 in lung tissues (Figure S1(b)).
Therefore, we chose H3N2 infection for 7 consecutive days
to establish the ALI mouse model (Figure S1(c)).
Administration of melatonin significantly attenuated
H3N2-induced ALI with the decreases of lung injury
scores (Figure 2(a)) and also reduced the wet/dry ratio of
the lung (Figure 3(b)), indicating inhibiting lung edema.
Meanwhile, melatonin significantly decreased total
leukocyte counting, especially neutrophils and
macrophages (Figure S2 (d-f)). Moreover, compared to the
H3N2 infection group, melatonin significantly decreased
the levels of IL-1β and TNF-α in BALF (Figure 2(b)) and
reversed H3N2-induced increases of MDA contents in the
serum of mice (Figure 2(c)). Subsequently, melatonin
significantly reduced H3N2-induced increases in the
expression of NLRP3, Caspase1, and GSDMD-N protein
(Figure 2(d)), indicating suppressing oxidative stress and
pyroptosis in mice.

3.3. Melatonin Inhibited the M1 Polarization of Pulmonary
Macrophages in Mice. Immunohistochemical staining
showed that iNOS (M1 marker) expression was relatively
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Figure 7: The effect of re-ApoE on the polarization of BMDMs and melatonin receptors. (a) Quantitative RT-PCR measurements of the
relative mRNA levels of MT1 and MT2 in wild-type (WT) BMDMs infected by influenza A (H3N2) (MOI = 2, 12 h) with pretreatments
of recombinant ApoE2, ApoE3, and ApoE4 (10 μg/ml, 3 h before H3N2 infection). (b) Western blot images of the expression of ApoE,
MT-1/2, iNOS, and Arg1 to β-actin in WT BMDMs. (c) Representative immunofluorescence images of F4/80 (red), iNOS (green), and
Arg1 (green) expression in WT BMDMs (original magnification × 400). (d, e) Quantitative RT-PCR measurements of the relative
mRNA levels of TNF-α, MCP1, CD86, Arg1, Fizz1, and CD206 in WT BMDMs. Data expressed as mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001 compared with influenza A- (H3N2-) infected BMDMs.
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Figure 8: re-ApoE3 remedied the loss of regulatory ability of melatonin on macrophage polarization and oxidative injury. (a) Western blot
images of the expression of ApoE, LDLR, iNOS, and Arg1 to β-actin in wild-type (WT) and ApoE-/- BMDMs infected by influenza A
(H3N2) (MOI = 2, 12 h) with/without melatonin pretreatment or combined pretreatment of melatonin and recombinant ApoE3 (10μg/
ml, 3 h before H3N2 infection). (b) Representative immunofluorescence images of F4/80 (red), iNOS (green), and Arg1 (green)
expression in WT and ApoE-/- BMDMs (original magnification ×400). Quantitative RT-PCR measurement of the relative mRNA levels
of TNF-α (c), MCP1 (d), CD86 (e), Arg1 (f), Fizz1 (g), CD206 (h), and IL-1β (j) in WT and ApoE-/- BMDMs. (i) Intracellular ROS
levels were quantificationally detected by DCFH-DA using a fluorescence plate reader in WT and ApoE-/- BMDMs. (k) Western blot
images of the expression of NLRP3, Caspase1, and GSDMD-N to β-actin in WT and ApoE-/- BMDMs. (l) The lactic dehydrogenase
(LDH) released into the medium was assessed based on OD490 values of LDH release in WT and ApoE-/- BMDMs. Data expressed as
mean ± SEM (n ≥ 3). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with influenza A- (H3N2-) infected WT or ApoE-/- BMDMs.
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increased around the areas of leukocyte infiltration of
bronchial epithelia and alveolar walls in H3N2-infected
mice (Figure 2(f)). After melatonin treatment, iNOS
expressed intensity showed an obvious decrease, whereas
Arg1 (M2 marker) expression showed a marked enhance-
ment in H3N2-infected lung tissues (Figure 2(f)), as indi-
cated in western blot analysis of iNOS and Arg1 of lung
tissues (Figure 2(e)). Similarly, PCR analysis also showed
that melatonin reversed H3N2-induced increases of M1
markers (IL-1β, TNF-α, and MCP1) and upregulated the
mRNA expression of M2 markers (Arg1 and Fizz1) in
H3N2-infected mice (Figures S2(a) and S2(b)). In order
to further investigate the effects of melatonin on the
polarization of pulmonary macrophages, alveolar
macrophages (AMs) in BALF were defined by flow
cytometry analysis based on the specific markers of M1
AMs (CD45+Siglec-F+CD11c+CD86+ population) and
M2 AMs (CD45+Siglec-F+CD11c+CD206+ population).
Flow cytometry analysis of BAL cells revealed that H3N2
infection significantly decreased the percentage of AMs,
particularly CD206+ AMs, and increased CD86+ AMs
(Figures 4(g)–4(j)). However, administration of melatonin
increased the percentage of CD206+ AMs and decreased
the percentage of CD86+ AMs in H3N2-infected wild-
type (WT) mice (Figures 4(g)–4(j)). These results
suggested that melatonin exerted anti-inflammatory
effects by inhibiting the M1 polarization of pulmonary
macrophages in H3N2-induced ALI.

3.4. Melatonin Inhibited H3N2-Induced M1 Polarization and
Oxidative Injury of Raw264.7 Cells. In vitro, after H3N2
infection, the morphology of Raw264.7 cells showed marked
differentiation from circular toward spindle shapes
(Figure S3(a)), indicating the M1 polarization of Raw264.7
cells. Immunofluorescence staining showed that melatonin
significantly attenuated H3N2-induced enhancement of
iNOS fluorescence intensity and upregulated Arg1
fluorescence intensity in H3N2-stimulated Raw264.7 cells
(Figure 5(a)), in line with the results of western blot
analysis (Figure 5(b)). Specifically, the gray value ratio of
Arg1 and iNOS showed a significant elevation after
melatonin prevention (Figure S3(b)), indicating the M2
polarization of Raw264.7 cells. Meanwhile, H3N2 infection
promoted the mRNA expression of TNF-α, MCP1, and
CD86, whereas it was inhibited by melatonin (Figure 5(c)).
Melatonin also increased the mRNA expression of Arg1,
Fizz1, and CD206 in H3N2-infected Raw264.7 cells
(Figure 5(c)). Moreover, ROS burst was enhanced by
H3N2 stimulation and inhibited by melatonin
pretreatment in Raw264.7 cells (Figure 5(d)). And
melatonin inhibited H3N2-induced increases in the protein
expression of NLRP3, Caspase1, and GSDMD-N as well as
IL-1β mRNA expression and LDH release (Figures 5(e)–
5(g)). Altogether, these results suggested that melatonin
inhibited the M1 polarization, ROS production, and
pyroptosis of H3N2-infected Raw264.7 cells.

3.5. ApoE/LDLR Pathway Was Involved in the Protective
Impacts of Melatonin. Recent evidence demonstrated that

melatonin exerted anti-inflammation probably involved in
the activation of ApoE signaling [31]. Immunohistochemical
staining showed that ApoE expressed intensity was obvi-
ously enhanced around bronchial epithelia and alveolar
walls after melatonin intervention in H3N2-infected mice
(Figure 6(a)). And ApoE protein expression also showed
an obvious increase after melatonin intervention accompa-
nied by an increase of LDLR expression in H3N2-infected
mice (Figure 6(b)). ELISA also demonstrated that serum
ApoE levels significantly decreased after H3N2 infection,
whereas they were upregulated after melatonin intervention
(Figure 6(c)). Additionally, in H3N2-infected Raw264.7
cells, melatonin intervention also significantly upregulated
ApoE mRNA expression (Figure 6(d)) and promoted the
protein expression of ApoE and LDLR (Figure 6(e)). These
results suggested that the ApoE/LDLR pathway was posi-
tively related with the protective impacts of melatonin.

3.6. ApoE Knockout Mostly Abrogated Anti-Inflammatory
Impacts of Melatonin on Influenza A- (H3N2-) Infected
Mice. To investigate whether melatonin inhibited H3N2-
induced ALI in an ApoE-dependent manner, ApoE-/- mice
were infected with H3N2 with melatonin intervention. The
PCR analysis showed that ApoE mRNA expression was
entirely lost in ApoE-/- mice (Figure S2(c)). H&E staining
showed that H3N2-induced ALI was further aggravated in
ApoE-/- mice compared to that of WT mice, mainly
manifested in more severe leukocyte infiltration and
hyaline membrane formation as well as alveolar septal
thickening (Figure 3(a)). And lung morphology showed
that H3N2 infection induced more obvious lung
hyperaemia and edema in ApoE-/- mice compared to that
of WT mice, as indicated in analysis of the wet/dry ratio of
the lung (Figure 3(b)). However, melatonin administration
failed to improve H3N2-induced ALI and edema of
ApoE-/- mice (Figures 3(a) and 3(b)). BAL cell smearing
and counting also showed that H3N2 infection further
increased total leukocyte counting, especially neutrophils
and macrophages in ApoE-/- mice, but no obvious
reduction after melatonin intervention (Figure 3(c) and
Figure S2(d-f)).

Moreover, melatonin did not reduce H3N2-induced
increases in TNF-α and IL-1β levels of BALF as well as
MDA contents of serum in ApoE-/- mice (Figures 3(d)–
3(f)). Accordingly, melatonin failed to inhibit the protein
expression of NLRP3, Caspase1, and GSDMD-N
(Figure 3(g) and Figure S4(a)), as well as IL-1β mRNA
expression in H3N2-infected ApoE-/- mice (Figure 3(h)),
suggesting that the antioxidant and antipyroptosis ability
of melatonin was almost lost in ApoE-/- mice.

3.7. ApoE Knockout Suppressed the Regulation of Melatonin
on Macrophage Polarization in Mice. In H3N2-infected
ApoE-/- mice, melatonin failed to increase ApoE and LDLR
expression (Figure 4(a) and Figure S4(b)). There was a
significant increase of iNOS expression in H3N2-infected
ApoE-/- mice compared to that of WT mice. However,
melatonin failed to inhibit iNOS expression and promote
Arg1 expression in H3N2-infected ApoE-/- mice
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(Figure 4(a) and Figure S4(c)). Similarly,
immunohistochemical staining showed that iNOS
expressed intensity in areas of infiltration of leukocytes was
obviously enhanced, and Arg1 expressed intensity was
attenuated, whereas there were no obvious changes in
expressed intensities of iNOS and Arg1 after melatonin
intervention in H3N2-infected ApoE-/- mice (Figure 4(b)).
Additionally, the PCR results indicated that melatonin
inhibited H3N2-induced increases of mRNA expression of
TNF-α and MCP1 and promoted mRNA expression of
Arg1 and Fizz1 in H3N2-infected WT mice (Figures 4(c)–
4(f)). Oppositely, in ApoE-/- mice, melatonin failed to do
this (Figures 4(c)–4(f)). Similarly, flow cytometry analysis
of BAL cells revealed that administration of melatonin had
no significant effects on the percentage of AMs, especially
CD86+ AMs and CD206+ AMs in H3N2-infected ApoE-/-
mice (Figures 4(g)–4(j)). These results indicated that ApoE
knockout mostly abrogated the regulatory impacts of
melatonin on the polarization of pulmonary macrophages.

3.8. re-ApoE3 Promoted Influenza A- (H3N2-) Induced M1
BMDMs to M2 Polarization. To further explore the role of
ApoE on macrophage polarization regulated by melatonin,
recombinant ApoE proteins (re-ApoE2, re-ApoE3, and re-
ApoE4) were added in H3N2-infected bone marrow-derived
macrophages (BMDMs). Flow cytometry analysis showed that
the purity of matured BMDMs reached over 95% (Figure S5).
The PCR analysis showed that re-ApoE3 pretreatment
significantly reversed H3N2-induced decreases in the mRNA
expression of MT1 and MT2 as well as the protein
expression of MT-1/2, but no effects after re-ApoE2 and re-
ApoE4 pretreatment in H3N2-infected BMDMs
(Figures 7(a) and 7(b) and Figure S6(b)), suggesting that
ApoE3 may affect the secretion of melatonin via regulating
the expression of melatonin receptors.

The morphology of BMDMs showed marked differenti-
ation from original spindle shapes toward circular shapes
after H3N2 stimulation, whereas it was reversed by re-
ApoE3 intervention (Figure S6(a)). Western blot analysis
indicated that ApoE expression significantly increased in
H3N2-infected BMDMs with re-ApoE2 and re-ApoE3
pretreatments, but no significant increase on re-ApoE4
(Figure 7(b) and Figure S6(c)). And re-ApoE3 significantly
reversed H3N2-induced increase of iNOS expression and
promoted Arg1 expression (Figure 7(b) and Figure S6(d)).
Likewise, immunofluorescence staining also showed that
only re-ApoE3 significantly alleviated the fluorescence
intensity of iNOS and enhanced that of Arg1 in H3N2-
infected BMDMs (Figure 7(c)), indicating the M2
polarization of BMDMs by ApoE3. Additionally, re-ApoE3
significantly inhibited the mRNA expression of TNF-α,
MCP1, and CD86 and increased the mRNA expression of
Arg1, Fizz1, and CD206 in H3N2-infected BMDMs
(Figures 7(d) and 7(e)). These results indicated that re-
ApoE3 exerts potential anti-inflammatory impacts by
modulating macrophage polarization.

3.9. Re-ApoE3 Enhanced the Regulatory Ability of Melatonin
on Macrophage Polarization and Oxidative Injury. In H3N2-

infected ApoE-/- BMDMs, melatonin failed to promote
ApoE, LDLR, and Arg1 expression and inhibit iNOS expres-
sion (Figure 8(a) and Figure S7(a, b)). However, melatonin
combined with re-ApoE3 significantly upregulated the
protein levels of ApoE, LDLR, and Arg1 and inhibited
H3N2-induced increase of iNOS expression compared to
H3N2-infected ApoE-/- BMDMs (Figure 8(a) and
Figure S7(a, b)), as shown by immunofluorescence staining
of iNOS and Arg1 in BMDMs (Figure 8(b)). Likewise,
melatonin and re-ApoE3 cotreatment further effectively
inhibited the mRNA expression of TNF-α, MCP1, and
CD86 and promoted the mRNA expression of Arg1, Fizz1,
and CD206 compared to single melatonin intervention in
H3N2-infected ApoE-/- BMDMs (Figures 8(c)–8(h)).
Moreover, the morphological images of BMDMs also
showed marked differentiation from circular shapes toward
spindle shapes after melatonin and re-ApoE3 cotreatment
in H3N2-infected ApoE-/- BMDMs (Figure S7(c)).

Next, in H3N2-infected ApoE-/- BMDMs, melatonin
failed to downregulate H3N2-induced increases of ROS
levels (Figure 8(i)) and also did not inhibit the protein
expression of NLRP3, Caspase1, and GSDMD-N
(Figure 8(k) and Figure S7(d)). There were also no
significant changes in IL-1β mRNA expression and LDH
release after melatonin intervention in H3N2-infected
ApoE-/- BMDMs (Figures 8(j) and 8(l)). Further assessing,
we found that melatonin combined with re-ApoE3
significantly decreased ROS levels (Figure 8(i)) and
inhibited the protein expression of NLRP3, Caspase1, and
GSDMD-N as well as the IL-1β mRNA expression and
LDH release in H3N2-infected ApoE-/- BMDMs
(Figures 8(j)–8(l) and Figure S7(d)). These results
demonstrated that exogenous re-ApoE3 enhanced the
beneficial effects of melatonin, and the activation of the
ApoE/LDLR pathway improved the modulation of
melatonin on macrophage polarization, oxidative stress,
and pyroptosis.

4. Discussion

In the present study, we put forward novel insights into the
regulatory role of melatonin-ApoE/LDLR axis in macro-
phage polarization, oxidative stress, and pyroptosis and con-
firmed melatonin as a potential therapeutic agent in
influenza virus-induced ALI, as indicated in Figure 9. Specif-
ically, we proved that melatonin significantly attenuated
influenza A- (H3N2-) induced ALI with the activation of
the ApoE/LDLR pathway. ApoE knockout almost abrogated
the protective impacts of melatonin on H3N2-induced ALI;
re-ApoE3 inhibited H3N2-induced M1 polarization of
BMDMs and inflammatory responses. Furthermore, melato-
nin and re-ApoE3 cotreatment reversed damaged effects
induced by ApoE knockout, effectively switched macrophage
polarization from M1 to M2 phenotype, and inhibited ROS
production and pyroptosis. Taken together, melatonin sup-
pressed macrophage M1 polarization and ROS-mediated
pyroptosis via activating the ApoE/LDLR pathway in ALI.
The conclusion provided new direct evidence that melatonin
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exerted the anti-inflammation and antioxidation in an
ApoE-dependent manner.

In view of increasing global influenza and COVID-19
pandemics, more studies are devoted to elucidating the path-
ophysiology of ALI induced by virus infection for further
developing the effective therapeutic agents [32, 33]. Particu-
larly, relative studies indicated that the clinical and patho-
genic features of SARS-CoV-2 infection had many parallels
with influenza [34]. Virus-damaged epithelial cells can
recruit a series of immune cells, especially macrophages,
which induce the cascading amplification of inflammatory
responses and the damage of lung structures [35]. Specially,
at least three types of macrophages exist in lung tissues:
bronchial macrophages, interstitial macrophages (IMs),
and alveolar macrophages (AMs). Therein, AMs in the alve-
olar lumen form 90-95% of the cellular contents at homeo-
stasis [36]. In ALI, monocytes recruited into the lung can
differentiate into AMs. Under mild influenza A virus
(IAV) infection, AMs can exert protective impacts through
phagocytizing apoptotic epithelial cells [37]. With the exac-
erbation of IAV infection, the phagocytic capacity of AMs
is decreased; oppositely, AMs may phagocytize IAV and
assist the replication of progeny virus so as to infect sur-
rounding cells [38]. Therefore, AMs also are regarded as a
vehicle for virus dissemination. Moreover, IAV infection
also induced a conversion of AMs toward M1 phenotype
with an increase of iNOS expression [39]. And IAV-
infected M2 BMDMs tended to polarize into M1 phenotype
with excessive expression of iNOS and TNF-α [40]. Our
results also showed that the M1 pulmonary macrophages
were predominant in H3N2-induced ALI.

Studies have clarified that melatonin influenced multiple
physiological functions of macrophages from host defenses
to immune disorders, modulating inflammation and
oxidation-antioxidant system [26, 41]. In a stress-induced
inflammation model, melatonin switched macrophage
polarization from M1 to M2 phenotype with increases of
the M2 marker Arg1 and MRC1 expression and inhibited
inflammatory injuries [42]. And in PM2.5-induced athero-
sclerosis, melatonin effectively alleviated PM2.5-induced oxi-
dative damage of the aorta and atherosclerotic plaque
formation via inhibiting macrophage M1 polarization and
NOX2-mediated oxidative stress [43]. These studies demon-
strate that melatonin can inhibit the M1 polarization of mac-
rophages and oxidative stress. Accordingly, we firstly
confirmed that melatonin mainly targeted pulmonary mac-
rophages to exert the protective impacts in H3N2-infected
mice. Mechanistically, melatonin inhibited H3N2-induced
M1 polarization of pulmonary macrophages and oxidative
stress.

With unbridled hyperinflammatory reactions, influenza
virus infection will also lead to pyroptosis, a kind of pro-
grammed necrotic cell death [33]. Pyroptosis commonly
relies on the gasdermin family members to cause cell ruptur-
ing and the formation of membrane pores. And GSDMD is
considered as the real executioner of pyroptosis which is
commonly cleaved to expose the N-terminal domains in a
caspase1-dependent manner following NLRP3 inflamma-
some assembly [44]. Recent studies pointed that melatonin

attenuated LPS-induced pyroptosis by inhibiting the
NLRP3/GSDMD pathway which was primarily activated by
ROS [29, 45]. Generally speaking, ROS are also regarded as
biomarkers of M1 macrophage polarization [9]. Therefore,
we can consider that the M1 polarization of macrophages
promotes the occurrence of pyroptosis via activating the
ROS-mediated NLRP3/GSDMD pathway. Consistently, a
recent study proved that the M2 polarization of AMs allevi-
ated LPS-induced lung pyroptosis via downregulating the
Caspase1/GSDMD pathway [46]. As indicated in our results,
melatonin inhibited ROS-driven activation of the NLRP3/
GSDMD pathway via switching macrophage polarization
from M1 to M2 phenotype.

Emerging evidence increasingly recognized that ApoE
protein played a protective role in the development of lung
diseases based on their ability to regulate inflammation and
oxidative stress [15]. Previous studies indicated that ApoE-/-
mice showed more severe pulmonary toxicity and neutrophil
infiltration in the ALI model [47, 48], whereas administra-
tion of COG1410, an ApoE mimetic peptide, inhibited
LPS-induced increases of alveolar neutrophils and macro-
phages [49]. And ApoE-/- mice transplanted with ApoE-
expressed bone marrow showed increased plasma levels of
IL-1RA (M2 Marker), and peritoneal macrophages of trans-
planted mice were also polarized into the M2 phenotype
with increases of IL-1RA and CD206 levels [14]. Moreover,
ApoE also had positive antioxidant effects, in a spinal cord
injury mouse model; exogenous ApoE administration signif-
icantly improved oxidative stress and neural function via
Nrf2/HO-1 signaling [50]. These studies indicated that
ApoE can be considered as an anti-inflammatory and anti-
oxidant protein with an ability of regulating macrophage
polarization. Additionally, a recent study demonstrated that
melatonin decreased ROS levels and caspase activity by
upregulating ApoE expression in oxygen and glucose depri-
vation-reoxygenation- (OGD-R-) stimulated endothelial
cells [31]. Particularly, melatonin and ApoE are all highly
expressed in brains so that potential interaction may be
existing between them. In our results, ApoE knockout
almost abrogated the positive effects of melatonin on ALI,
and exogenous ApoE3 remedied the protective impacts of
melatonin. Therefore, we considered that melatonin exerted
anti-inflammation and antioxidation in an ApoE-dependent
manner. It is a completely new application area for the mod-
ulation of melatonin on macrophage polarization, oxidative
stress, and pyroptosis via the ApoE/LDLR pathway.

Specifically, human ApoE is polymorphic with three var-
iants that encodes different amino acids in codons 112 and
158: cysteine at both sites for ApoE2, arginine at both sites
for ApoE4, and respectively, cysteine and arginine for
ApoE3 [16]. This variation greatly modifies ApoE protein
functions and causes minimal binding activity with LDLR
in ApoE2. Accumulated ApoE2 may induce dysbetalipopro-
teinaemia and accelerate aging [51]. And the variation in
ApoE4 may cause the loss of antioxidant ability and become
the strongest risk factor of Alzheimer's disease (AD) [52].
ApoE3 is the one of the highest frequencies and accounts
for 65-70% of total ApoE [53]. ApoE3 possesses the requisite
lipid-binding ability and higher affinity with LDLR [54].
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Moreover, the cysteine residues of ApoE3 drive the covalent
binding with 4-hydroxynonenal (HNE) so as to inhibit lipid
peroxidation and inflammation [44]. Studies indicated that
human ApoE3-knockin mice decreased the levels of TNF-α
and IL-1β and elevated the survival compared to those of
ApoE4-knockin mice in the caecal ligation and puncture
model [55]. Interestingly, in our results, re-ApoE3 switched
H3N2-induced M1 BMDMs toward the M2 polarization
and also increased the expression of melatonin receptors;
however, re-ApoE2 and re-ApoE4 failed to do this. These
results indicated a potential synergetic protective impact
between melatonin and ApoE3. And re-ApoE3 also
enhanced the regulated ability of melatonin on macrophage
polarization, oxidative stress, and pyroptosis, which further
proved that melatonin attenuated H3N2-induced ALI in an
ApoE-dependent manner.

5. Conclusion

In this study, we have provided strong direct evidence for
the first time that melatonin attenuated influenza A-
(H3N2-) induced ALI by inhibiting macrophage M1 polari-
zation and ROS-mediated pyroptosis via activating the
ApoE/LDLR pathway. We found that re-ApoE3 exerted the
positive protective impacts by promoting H3N2-induced
M1 BMDMs toward M2 polarization and also enhanced
the anti-inflammatory and antioxidant abilities of melato-
nin, indicating that melatonin-ApoE/LDLR axis may serve
as a novel intervention signal for treating influenza A-
induced ALI. Meanwhile, this study also provided a potential
clue for the therapy of ARDS induced by the novel corona-
virus SARS-CoV-2.
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