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There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by
decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to
hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to
maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and
humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have
been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors
contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity,
metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway,
nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related
integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different
hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes
occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly
alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC
aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.

1. Introduction

Hematopoiesis is defined as a continuous process by which
hematopoietic stem cells (HSCs) replenish diverse types of
blood cells such as erythrocytes, B and T lymphocytes, mye-
loid cells, natural killer (NK) cells, dendritic cells (DCs),
mast cells, and platelets during the lifespan of an organism
[1, 2] (Figure 1). HSCs are the first isolated and identified
stem cells and, more importantly, are still the most studied
stem cells. Based on repopulation capacity, HSC pool is
divided into three distinct types, including long-term repo-
pulating HSCs (LT-HSCs), short-term repopulating HSCs
(ST-HSCs), and multipotent progenitors (MPPs). These

progenitors are identified based on cell surface markers
and fluorescence-activated cell sorting (FACS) analysis. All
murine HSCs are characterized by the lack of lineage-
specific surface markers (Lin-), overexpression of stem cell
antigen-1 (Sca-1)+, and c-Kit+ (LSKs), referring to Lin−

Sca1 ++ Kit + or LSK. In addition, it was found that murine
HSCs have some primitive markers, including CD48
(Slamf2), CD150 (Slamf1), Flt3, and CD34 [3].

HSCs have the capacity to self-renew and differentiate
into diverse types of immune cells, but, similar to adult stem
cells, they are susceptible to aging-related stresses. Despite
the increasing numbers of human HSCs during aging, a
decrease in the self-renewal ability and reconstitution
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potential of HSCs was observed after transplantation [4].
Upon aging, this gradual loss of the self-renewal and recon-
stitution potential makes HSCs distinct from pluripotent
embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs) [5]. Besides, aged human HSCs displayed pro-
found epigenetic reprogramming by targeting cancer path-
ways, predisposing them to leukemia [6].

Several cell-intrinsic and cell-extrinsic factors contribute
to HSC aging. The functional alterations of HSCs with aging
are regulated mainly by various cell-intrinsic signals such as
DNA damage, reactive oxygen species (ROS), epigenetic
changes, and changes in polarity. Furthermore, hematopoie-
tic niche-derived cell-extrinsic factors have a substantial role
in the function and maintenance of HSCs [7, 8]. A better
understanding of the molecular mechanisms responsible
for HSC aging will enable the scientific community to
enhance the regenerative capacity and function of healthy
HSCs and delay the aging process of the hematopoietic sys-
tem in the elderly [9].

Given that HSC aging is accompanied by its dysfunction,
several studies have investigated the mechanisms behind

this. HSC aging is associated with altered expression of some
genes and mutations of specific genes [5, 10]. Furthermore,
inhibition of specific pathways, such as the mammalian tar-
get of rapamycin (mTOR) and p38 mitogen-activated pro-
tein kinase (P38 MAPK) signaling pathways, is involved in
the aging of HSCs [11]. Additionally, disturbances in epige-
netic profiles contribute to the functional decline of HSCs
during aging [12]. Various factors within the HSC niche play
a crucial role during aging, for instance, cytokines and
enzymes [13]. This review compares the distinct biological
hallmarks, signaling pathways, and epigenetic profiles of
young and aged HSCs. Due to the strong association
between hematological malignancies and aging, this review
also highlights the relationship between molecular mecha-
nisms and functional alteration and finally may offer impor-
tant clinical insights.

2. Hallmarks of HSC Aging

2.1. Repopulation Capacity Defects. It is known that the
number of HSCs in bone marrow (BM) is increased by 2
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Figure 1: The BM niches. The BM hosts two kinds of adult stem cells, including MSCs and HSCs. The HSCs can give rise to the HPCs
which in turn give rise to the lymphoid progenitor cells and the myeloid progenitor cells.
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to 10 times as mice and humans age. Nevertheless, the rea-
sons that underlie this aging-associated increase in the
HSC number are still vague. This can be due to a possible
compensatory mechanism of HSCs to deal with the func-
tional loss [14]. Even though both young and aged HSCs
have a similar cell division frequency, an increase in the fre-
quency of symmetric cell divisions may also contribute to an
increased number and functional defects in aged HSCs.
Besides, several studies indicated that aged HSCs exhibit less
quiescence and undergo more cell division [4]; thus, they
accumulate more oxidative DNA damage than young HSCs
[15]. These factors limit the self-renewal and reconstitution
ability of aged human HSCs in the hematopoietic system.

A growing body of evidence showed myeloid-biased dif-
ferentiation in aged human HSCs [3]. Adelman et al. found
that transplantation of young HSCs into aged niches led to
homing deficit and reduced differentiation with a bias
toward the myeloid lineage [6]. In contrast, there was a lim-
ited and incomplete rejuvenation of aged HSCs in the young
BM niche [7, 8].

To verify the functional difference between agedHSCs and
young, the long-term self-renewal andmultilineage capacity of
HSCs were determined by a competitive transplantation anal-
ysis as a gold standard. In this method, HSCs with BM cells
were mixed in order to restore immunity of postirradiation
recipient animals [14]. As reported by several investigations,
aged HSCs had a diminished repopulation capacity [4]. This
evidence implies that the increased number of aged HSCs
cannot compensate for immune cells’ impaired function and
immune homeostasis in aged populations.

2.2. Aged HSC Rejuvenation Strategies. HSCs’ function
declines during aging, but whether this dysfunctionality
can be reversible remains vague. Villeda et al. found that
exposing old animals with young blood improved the age-
related phenotype and reversed preexisting effects of brain
aging [16]. This part summarizes some rejuvenation
approaches to restore at least the partial function of aged
HSC (Table 1). HSC aging is linked with alterations in vari-
ous gene expressions. The special AT-rich sequence binding
protein 1 (Satb1) is an oncogenic driver with potential ther-
apeutic targeting. The reduced level of Satb1 was observed in
aged HSCs, and thereby, forced Satb1 overexpression could
partially restore the function [17]. In addition, it was found
that sirtuins 3 [18] and 7 [19] were suppressed with age.
Therefore, upregulation of these regulators might improve
the HSC regenerative capacity.

Another approach for rejuvenating aged HSCs relies on
the inhibition of the mTOR pathway [20]. mTOR is a crucial
regulator of cellular metabolism that acts as a nutrient-
sensing and links to cell growth, proliferation, and survival.
Nutrient-sensing pathways are a significant determinant of
longevity [21]. As mentioned earlier, stem cells are main-
tained in a quiescent state before activation; thereby, they
reduce transcriptional, translational, and metabolic activity
by suppressing mTOR activity [22]. Considering the central
role of mTOR in age-related disease, inhibition of mTOR by
rapamycin or other gene modulatory agents can ameliorate
age-related pathologies [23]. It is well known that fasting

and refeeding regimens have rejuvenating effects on the
hematopoietic system. Cheng et al. reported that extended
fasting could regenerate HSCs by reducing protein kinase
A (PKA) activity and circulating IGF-1 levels [24]. More-
over, the rejuvenation of aged HSCs can also be affected by
diverse pharmacological agents as well as changes in the
BM niche, as shown in Table 1.

2.3. Homing Defect and Increased Mobilization. Throughout
adulthood, HSCs are located in the marrow cavity of all long
bones and coexist with other cells in a well-organized struc-
ture called niche. It has been revealed that engraftment of
HSC into nonmyeloablative recipients led to a spatially
localized niche of stem cells. In contrast, other transplanted
BM cells became flattened on the bone lining in the perios-
teum of the bone. Nilsson et al. showed that whole BM
transplant containing cells of the bone lineage could engraft
and turn into the competent osteoblasts producing the bone
matrix [34]. Several lines of evidence demonstrated that
osteoblastic cells have a regulatory role in the niche and
function of HSCs via the Notch activation pathway [35].

Live imaging-based techniques revealed distinct popula-
tions of hematopoietic cells in different regions, depending
on their differentiation stage [36]. It is worth noting that
transplanted HSCs were more prone to settle in the endos-
teum of irradiated recipients, while nonirradiated mice had
random distributions [37]. Successful treatment of a broad
spectrum of blood disorders and malignant diseases such
as leukemia, lymphoma, and myeloma relies on the homing
and trafficking ability of donor HSCs into the BM of the host
[38]. Liang et al. reported harmful effects of aging on hom-
ing ability and engraftment of HSCs. According to their
findings, aged mouse HSCs had a threefold lower homing
efficiency than young HSCs [39].

Another similar report displayed the decreased homing
potential of aged HSCs in BM compared to the young coun-
terparts [40]. Systemically administered cytokines or cyto-
toxic agents could induce mobilization of HSCs from the
BM into the peripheral blood (PB), which subsequently
could be collected for HSC transplantation and treatment
of immune deficiencies and malignancies [41]. A body of
growing evidence has revealed the crucial role of Granulo-
cyte Colony-Stimulating Factor (G-CSF) in mobilizing
hematopoietic cells from the BM into the PB. It was reported
that mice treated with G-CSF exhibited a higher level of all
lineage progenitors in the spleen [42, 43]. In other words,
hematopoietic progenitor cell (HPC) mobilization was
noticeably impaired in mice deficient with the G-CSF recep-
tor (G-CSFR). Given the expression of G-CSFR on mature
hematopoietic cells, it can be assumed that G-CSFR signals
have a fundamental role in HPC mobilization [42]. How-
ever, Liu et al. reported that G-CSFR expression on HPCs
was not necessary for their mobilization, indicating the
indirect effect of G-CSF on hematopoietic cells for HSC
mobilization [44].

Xing et al. reported that upon stimulation with G-CSF,
mobilization of hematopoietic stem and progenitor cells
(HSPCs) from BM into the PB was strongly dependent on
deadhesion of HSPCs from the niche. They showed that
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aged mice exhibited a 5-fold increase in HSC mobilization in
a mouse model of G-CSF-induced mobilization [45].

2.4. Skewing in Lineage Distribution. Under the normal
physiologic conditions, HSCs differentiate into myeloid
and lymphoid lineages, maintaining a balanced pattern and
controlled production. On the other hand, a higher preva-
lence of anemia and compromised adaptive immunity occur
in older adults. The reasons behind this are related to the
impaired function of T and B lymphocytes due to the invo-
lution of the thymus and a low number of aged lymphoid
progenitors [46]. Indeed, aging can drive HSC differentia-
tion toward myeloid lineage with high myeloid cells in PB.
There is a severe upregulation in the age-associated genes
in myeloid malignancies [47]. During aging, myeloid cells
are preserved, while B lymphoid cells are decreased, result-
ing in a skew in the myeloid to lymphoid ratio (myeloid/
lymphoid) [48]. This skewing may explain a higher
incidence of myeloid versus lymphoid malignancies in aged
subjects [49].

In this context, Sudo et al. reported that despite less dif-
ferentiation in aged HSCs, they still exhibited self-renewal
potential to regenerate blood cells. According to their study,
HSC levels gradually increased with age due to the constant
self-renewal of HSCs [50]. As evidenced by aged mice, mye-
loid progenitor numbers showed relative expansion com-
pared to the young mice, a characteristic of aged HSCs

known to be cell autonomous [51]. Collectively, the expres-
sion of myeloid-specific genes is upregulated during HSC
aging, whereas lymphoid-specific genes are downregu-
lated [52].

2.5. The Cell-Intrinsic Mechanisms of HSC Aging. As dis-
cussed earlier, the decline of HSC functioning with age is
thought to be driven by a variety of molecular and cell-
intrinsic mechanisms [14]. Although mechanistically, it is
possible to separately discuss these multiple aging pathways,
they are highly interconnected and interdependent
(Figure 2).

2.6. DNA Damage Responses and Genetic Mutations in HSC
Aging. Unlike proliferating progenitors, which rely on reli-
able homologous recombination (HR) pathways to repair
DNA damage, quiescent HSCs use the error-prone nonho-
mologous end joining (NHEJ) repair pathway, making them
prone to DNA damage [53]. Several studies have demon-
strated an increase of 2-3-fold in accumulated DNA damage
in aged HSCs, as identified by staining of H2A histone
family member X (H2AX) foci, DNA mutation frequency,
the alkaline comet assay, and the LOH assay [54–56]. Rely-
ing on these findings, it can be explained that the elderly
are more likely to acquire mutations, age-related clonal
hematopoiesis, and a higher risk of myeloid malignancies
[57, 58]. It was identified that DNA damage has a crucial

Table 1: Rejuvenation approaches in aged HSCs.

Rejuvenation approach Mechanism of action Outcomes Ref

Satb1 upregulation Genetic modulation
Promote reconstituting and lymphopoietic potential of aged

HSCs
[17]

Sirtuin 3 upregulation Genetic modulation Enhancement of the regenerative potential of aged HSCs [18]

Sirtuin 7 upregulation Genetic modulation
Restoring mitochondrial dysregulation

Reduce myeloid bias
[19]

Curcumin
Pharmacological

modalities
Boost the regenerative potential of aged HSCs

Restore the engraftment ability
[25]

Microvesicles from young MSC
Pharmacological

modalities

Rejuvenate the aged HSCs
Restore function via transferring microvesicles containing

autophagy-related mRNAs
[26]

Extended fasting
Pharmacological

modalities
Decreasing circulating IGF-1 levels and PKA activity [24]

cdc42 inhibitor (CASIN)
Pharmacological

modalities

Promote rejuvenation capacity of the HSC
Reverting a normal phenotype

Restore the cellular function of aged HSCs
[27]

p38/MAPK inhibitor (TN13)
Pharmacological

modalities
Rejuvenating aged HSCs through reducing ROS [28]

p38/MAPK inhibitor (SB203580)
Pharmacological

modalities
Restore the repopulating potential
Maintenance of HSC quiescence

[29]

BCL-2and BCL-xL inhibitor
(ABT263)

Pharmacological
modalities

Depletion of senescent HSCs
Improve reconstitution potential

[30]

mTOR inhibitor (rapamycin)
Pharmacological

modalities
Increasing regenerative capacity of HSCs

Extending the life span
[31]

RANTES/CCL5 knockout Targeting the BM niche
Decrease myeloid bias

Improve the engraftment potential after transplantation
[32]

Bone marrow transplant Changing the BM niche Restoring the normal phenotype [33]

Special AT-rich sequence binding protein 1: Satb1; cell division control protein 42 homolog: Cdc42; mammalian target of rapamycin: mTOR.
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role in driving HSC aging. It was evidenced by the prema-
ture aging phenotype of HSCs isolated from mice lacking
the DNA repair components [59, 60].

DNA damage in HSCs may result from errors during
DNA synthesis or/and by endogenous factors, such as ele-
vated ROS levels or environmental stressors [61]. Indeed,
DNA damage impairs HSC function by inducing DNA dam-
age repair and activating cell cycle checkpoints such as
CD53-p21-mediated cell cycle arrest [62]. Besides, overex-
pression of senescence-associated of p16Ink protein [15]
and proapoptotic proteins such as PUMA (as an essential
factor for p53-dependent apoptosis) [53] can impair HSC
function. Beerman and his colleagues showed that HSCs iso-
lated from old mice had consistent evidence of DNA strand
breaks, demonstrating that HSCs are not uniquely genopro-
tected with age [56]. According to a recent report, aged
HSCs also displayed more replication errors [63].

2.7. Reactive Oxygen Species. In the BM, HSCs are located
within hypoxic niches which may protect them against oxi-
dative stress and promote self-renewal potential [64]. Since
HSCs are quiescent and maintain low metabolic require-
ments, they produce low levels of ROS. However, it has been
shown that ROS levels increase as HSCs age, resulting in
oxidative stress in HSCs [65, 66]. In addition to ROS levels
increasing during aging, it also contributes to increased pro-
liferation rate, senescence, and apoptosis. The self-renewal
potential of HSCs exposed to low ROS levels was higher, as
evidenced by serial transplantations. By contrast, exposing
HSCs to a higher level of ROS results in self-renewal failure,
accompanied by upregulation of mTOR and p38 mitogen-
activated protein kinase activity [67].

According to a study in the three mouse models (young,
middle, and aged), mitochondria and NADPH oxidase were
the main ROS-generating sources in the three groups, while
cytochrome P450 contributed to the aged and middle groups
and xanthine oxidase only to the aged one. Besides, DNA
damage and apoptosis were detected in the middle and aged
mice. Also, old mice exhibited shorter telomere length. As
evidenced, telomere shortening occurs with age, playing an
essential role in myeloid skewing [68]. With these back-

grounds, oxidative stress might contribute to HSC dysfunc-
tion during the aging process [69, 70].

Previous publications have reported that ROS plays a
significant role in regulating HSC aging. It has been found
that transcription factors of forkhead box O (FOXO) family
such Foxo1, Foxo3a, and Foxo4 have an essential role in reg-
ulating HSC pools, progenitors, and ROS-mediated activity
in HSCs [71].

Several lines of evidence revealed overexpression of
hypoxia-inducible factor-1α (HIF-1α) in HSCs. Interest-
ingly, HIF-1α could switch HSC cellular metabolism from
mitochondrial respiration into glycolysis, ultimately reduc-
ing ROS production. Indeed, HIF-1α deletion in HSCs could
induce ROS generation and negatively impact long-term
repopulation ability [72].

2.8. Altered Epigenetic Profiling. The term epigenetics refers
to changes in gene expression without affecting the DNA
sequence. In other words, it is a change in phenotype
without changing the genotype. Epigenetic regulation is a
key mechanism that maintains the multipotency and self-
renewal of HSCs. This process is mediated by DNA methyl-
ation or histone modification (methylation/acetylation) to
preserve self-renewal gene expression and suppress involved
genes in differentiation and lineage fate [73, 74]. It is well
documented that DNA methyltransferase 1 (Dnmt1) is a cru-
cial regulator of HSCs and exerts its effect by reestablishing
existing DNA methylation profiles during the cell replication.
This is possibly mediated by recognizing hemimethylated
DNA and maintaining preexisting DNA methylation patterns
of the parent strand on the daughter strand [75]. Dnmt3a/3b is
involved in de novo DNA methyltransferase and establishes
new DNA methylation during the development and differen-
tiation of stem cells [76, 77].

Compelling evidence indicates that Dnmt1-deficient
mice had a reduction in HSC number and function [78].
However, in Dnmt3a-knockout mice, HSCs could grow
and self-renew more efficiently and are surprisingly
enhanced in mice with Dnmt3a/3b double-knockout [76,
79]. A growing body of study suggests that altered epigenetic
profiles are strongly associated with HSC aging. The global
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Figure 2: Interconnections between different biological processes involved in intrinsic HSC aging.
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DNA methylation of old HSCs is generally stable or slightly
higher than that of young HSCs. These epigenetic alterations
could affect not only self-renewal genes but also contribute
to age-dependent functional decline and myeloid-biased dif-
ferentiation. This is possibly due to the regulation of gene
expression levels in differentiated progeny [6, 80]. In addi-
tion, age-related epigenetic alterations of HSCs are strongly
linked with a proliferation history, indicating that epigenetic
memory loss is driven by proliferation [12]. A proliferation-
driven HSC aging occurs by switching HSCs from a dormant
state and multipotency to activation and lineage priming.
This process is mediated by a series of factors through
inducing the epigenetic switch such as Ezh1-to-Ezh2 PRC2
[80], decreasing the level of Dnmt1, Dnmt3b, and all three
Tet enzymes, as well as the involvement of critical modula-
tors of chromatin states such as Bmi, Eed, Suz12, Jarid1b,
Kat6b, Sirt1, and Suv39H1 [80, 81].

As discussed earlier, aged human HSCs have a profound
epigenetic reprogramming by targeting cancer-related path-
ways, predisposing to leukemia [6]. In this context, it was
reported that redistribution of DNA methylation and
decrease in H3K27ac, H3K4me1, and H3K4me3 levels pre-
disposed cells to age-related acute myeloid leukemia
(AML) as compared to the young HSCs [82].

2.9. Polarity. Asymmetric distribution of specific proteins
known as “increased polarity” has been recognized as a
prominent characteristic of aged HSCs, while this feature is
less obvious in young HSCs [83]. The cell division control
protein 42 homolog (Cdc42) is believed to be responsible
for the unequal distribution of these proteins. Cell Cdc42
switches an inactive GDP-bound state to an active GTP-
bound state in response to different signals. Besides, this
molecule can regulate actin polymerization and organization
of tubulin, affecting cell-cell and cell-extracellular matrix
adhesion and the polarity in various cell types [27, 83]. With
this notion, the application of Cdc42 inhibitors can restore
the polarity in aged HSCs and improve their function after
transplantation [84]. According to Florian et al., the elevated
activity of Cdc42 is linked to the aging of HSCs and the loss
of polarity of aged HSCs [85]. In aged HSCs, constitutive
activation of Cdc42 induced premature aging of HSCs by
depolarizing Cdc42 and tubulin. Pharmacological inhibition
of Cdc42 activity could restore the cellular function of aged
HSCs [86], although it is not clear whether the acute reversal
of asymmetry in protein distribution has long-term effects
on the function of HSC.

2.10. Metabolic Alterations and Impaired Autophagy. As
described above, HSCs maintain a low metabolic rate and
glycolytic activity. A young HSC undergoes an oxidative
metabolic change following activation, which can be
reversed by returning to the quiescent state. In contrast,
the basal metabolism of aged HSC shifts towards oxidative
metabolism [87], which leads to an increase in ROS levels
and a decrease in regenerative capacity [88]. As a response
to metabolic stress, cells engage autophagy, a “housekeeping”
mechanism for the self-degradation of cellular components
[89]. In this process, organelles or portions of the cytosol are

enclosed within double-membrane vesicles, which are subse-
quently fused with the lysosome where degradation occurs
[90]. It has been well documented that the deregulation of
autophagy is associated with aging and various age-related dis-
eases such as cancer [91] (Figure 3).

3. Alterations in the Intrinsic Signaling
Pathways Present in HSC Aging

Several studies have found that age-related decline in the
functional capacity of HSCs is associated with multiple
signaling pathways. Signaling pathways that contribute to
HSC aging include Janus kinase/signal transducer and acti-
vator of transcription (JAK/STAT) pathway, nuclear factor-
(NF-) κB, mTOR, transforming growth factor-beta (TGF-β),
and wingless-related integration site (Wnt) (Figure 4) [92].

3.1. The Signaling Pathways of JAK/STAT, NF-κB, and
mTOR involved in HSC Aging. JAK/STAT signaling cascade
is a highly conserved event that regulates biological pro-
cesses such as immune responses, regeneration, and homeo-
stasis [93]. Besides, this pathway controls stem cell dynamics
and senescence. Using a single-cell transcriptome, a previous
study by Kirschner et al. found that the JAK/STAT signaling
pathway had a crucial role in stem cell exhaustion during
aging. They detected a divergent subpopulation of old HSCs
with a p53 signature. p53 has a substantial role in hemato-
poietic aging. Increasing p53 activity decreases the function
and proliferation of HSCs, while decreasing p53 levels has
the opposite effect. The relationship between p53 signaling
and JAK/STAT was investigated through constitutive
activation of JAK2 (V617F) and p53-positive expansion in
aged mice. JAK2- (V617F-) mediated proliferative activity
showed a critical role in the p53-induced functional decline
in aged HSCs [94]. Additionally, it is well established that
NF-κB-mediated activity has a substantial regulatory role
in HSC aging [95]. In a study carried out by Stein et al., they
identified the role of the NF-κB subunit RelA/p65 in HSC
regulation in mice lacking RelA/p65. p65 is the main regula-
tor of hematopoietic development [96]. Loss of p65 led to a
severe functional defect in HSCs. Besides, there was an
increase in HSPC cycling, differentiation deficits, and extra-
medullary hematopoiesis [97]. Chen and Kerr reported that
aged HSPCs exhibited elevated activity of NF-κB that
resulted in increased differentiation and loss of self-renewal
[74]. Rad21/cohesin is a critical mediator of NF-κB signaling
and is necessary for normal differentiation; however, it can
limit HSCs’ self-renewal during the aging process in an
NF-κB-dependent manner. In this context, old HSCs dis-
played failure in downregulating Rad21/cohesin and differ-
entiation signals. Collectively, these findings indicate that
aged HSCs have increased NF-κB activity [98].

As discussed in the previous part, the mTOR pathway is
a robust regulator of cellular function that integrates a wide
variety of signals received from mitogens, nutrients, and
energy levels [99]. It is well accepted that mTOR inhibition
enhances lifespan, but the mechanism of action by which
this occurs is still vague. Growing evidence has shown that
hyperactivity of mTOR is strongly linked with age-
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associated disorders [20]. Furthermore, several studies have
demonstrated that mTOR inhibition with rapamycin attenu-
ated the pathological processes [100]. Bitto et al. reported
that three months of rapamycin therapy could inhibit the
mTOR pathway and extend the lifespan up to 60% in
middle-aged mice [101]. Chen et al. found that HSCs from
aged mice had higher phosphorylated (p-)mTOR and
mTOR activity than those HSCs from young mice. Accord-
ing to their results, intraperitoneal injection of rapamycin at
a dose of 4mg/kg every other day for six weeks in aged mice
extended the life span. These data implicated the efficacy of
rapamycin in restoring HSC functions in the old mice [102].

3.2. The Role of the TGF-β Signaling Pathway in HSC Aging.
The transforming growth factor-β (TGF-β) pathway is
fundamental for many cellular functions. This pathway also
regulates HSC features such as self-renewal, differentiation,
and quiescence [103]. Given the regulatory role of TGF-β
potential in differentiation among HSC subtypes, Challen
and colleagues reported that TGF-β1 could stimulate the
proliferation of myeloid-biased HSCs in young mice and
prevented the turnover of lymphoid-biased HSCs [104].

On the contrary, it was demonstrated that old mice
treated with TGF-β1 produced fewer myeloid cells. Indeed,
aged HSCs exhibited more responsiveness to TGF-β1 than
young HSCs [105]. Genome-wide transcriptome analysis
during HSC aging demonstrated the downregulation of reg-
ulatory genes involved in the TGF-β pathway (Smad4,
Nr4a1, Endoglin, Cepba, Jun, Spectrin b2, and Junb), indi-
cating a decline of TGF-β signaling with aging [106].

3.3. The Wnt Pathway. As described earlier, polarity is
linked with specific functions of HSC, including migration
and division. However, polarity loss is associated with an
impairment of self-renewal capacity, accompanied by alter-
ation in HSC differentiation [92]. In addition, there is an ele-
vated level of Cdc42 in aged HSCs, which is associated with
loss of polarity [86]. According to further research on the

Cdc42 polarity pathway, HSC aging is caused by changes
in Wnt signaling, from canonical to noncanonical [107]. It
has been identified that treatment with Wnt5a led to a series
of events including activation of Cdc42, induction of aging-
associated polarity, a decline in regenerative potential, and
modification of myeloid-lymphoid differentiation in young
HSCs [107].

3.4. Other Pathways. G-CSF transiently upregulates stromal
cell-derived factor-1 (SDF-1) and activates CXC chemokine
receptor-4 (CXCR4) signaling that results in hepatocyte
growth factor (HGF) production. HGF can bind to c-Met
and activate c-Met signaling, regulating the mTOR-
FOXO3a signaling pathway [108]. Furthermore, G-CSF sig-
naling can facilitate ROS production and HSC egress from
BM [109].

4. HSC Aging Occurs through Changes in the
Extrinsic Factors

In addition to intrinsic mechanisms, some studies have found
that extrinsic factors also contributed to HSC aging [110].
HSC function is strongly affected by the BM microenviron-
ment. Megakaryocytes promote HSC quiescence within this
niche [111]. Li et al. provided insights regarding the mecha-
nism of homing HSPC. They reported that the vascular cell
adhesion molecule-1+ (VCAM-1) macrophage with patrolling
properties interacted with and homed HSPCs into a vascular
niche [112]. In another study by Chow et al., CD169+ macro-
phages in the BM enhanced the retention of HSPCs [113].
Furthermore, Winkler et al. demonstrated that phagocytic
macrophages with the unusual F4/80+Ly-6G+CD11b+

phenotype could maintain HSC niches, and more impor-
tantly, the loss of these macrophages could mobilize HSCs
[114]. A previous study found that regulatory T cells that
highly expressed CD150 could maintain a quiescent state,
HSC numbers, and immune privilege by the adenosine path-
way [115]. Along with the hematopoietic cells mentioned
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Figure 3: Metabolic homeostasis and proteostasis during aging in HSC.
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above, several nonhematopoietic cells such as mesenchymal
stromal cells (MSCs), perivascular cells, and arterial and
sinusoidal endothelial cells have a pivotal role in the HSC
niche [116, 117].

The sympathetic nervous system (SNS) regulates HSC
trafficking and orchestrates adrenergic neurotransmission
into the microenvironment on circadian rhythms [118].
Here, we summarize how HSC environment, the SNS, and
other related factors affect HSC aging.

The research of Maryanovich et al. in 2018 proved that
HSC aging significantly relied on the innervation of the
BM by SNS, since the loss of SNS nerves or adrenoreceptor
β3 signaling (ADRβ3) resulted in premature HSC aging.
Remarkably, in an in vivo setting, supplementation of a sym-
pathomimetic with selective effect on ADRβ3 significantly
rejuvenated the function of aged HSCs. These findings sug-

gested that maintenance of SNS innervation of BM may offer
new strategies for HSC rejuvenation [119].

Megakaryocytes also exhibit the potential of inhibiting
HSC proliferation. As mentioned above, both HSCs and
megakaryocytes increase during aging. HSCs are located fur-
ther from megakaryocytes; thereby, it seems that decreased
interactions between HSCs and megakaryocytes may be
involved in premature hematopoietic aging. In other words,
the distance between HSCs and megakaryocytes could
regulate HSC proliferation and enhance ADRβ3 during
physiological aging. In this regard, Ho et al. identified that
β-adrenergic signals promoted megakaryopoiesis during
aging. They showed that HSC-supporting niches declined
near the bone during natural aging; however, they expanded
away from it. Increasing noradrenergic innervation of the
BM raises interleukin-6-dependent megakaryopoiesis through
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the β2-adrenergic receptors (ARs). Besides, reduction of β3-
AR-Nos1 activity is associated with niche alterations in
aging, leading to myeloid expansion and impaired lymphoid
differentiation [120]. Frisch et al. also found that the dys-
function of aged macrophages was associated with HSC
platelet bias and an increase in senescent neutrophils in
aged mice compared to younger counterparts. Aged macro-
phages from the marrow of old mice and humans displayed
an activated phenotype and overexpression of inflammatory
markers such as IL-1β. Altogether, it can be assumed that
overexpression of IL-1β and caspase-1 in the aged mouse
BM niche has a contributory role in age-related lineage
skewness of HSCs [13].

5. Conclusion

This paper summarizes the hallmarks of HSC aging pertain-
ing to repopulating capacity, homing ability, mobilization,
and lineage skewing. Multiple cell-intrinsic factors contrib-
ute to HSC aging, such as genetic mutations and DNA
damage, ROS production, epigenetic alterations, polarity,
clonality, metabolic changes, and impaired autophagic activ-
ity. Numerous studies using knockout and transgenic animal
models have demonstrated that epigenetic factors are crucial
for maintaining proper HSC function. In general, several
cell-extrinsic factors, such as HSC-surrounding niches such
as megakaryocytes, MSCs, macrophages, and neutrophils,
impact HSC aging. β-Adrenergic nerve signals, cytokines
such as IL-6 and IL-1β, and enzymes like caspase-1 also
influence HSC aging. Furthermore, inhibition of specific
pathways, such as the mTOR and P38 MAPK signaling
pathways, is involved in the aging of HSCs.

The interconnections between these processes will be
crucial in deciphering how aging affects stem cells. Most of
the aging mechanisms reviewed in this paper have been
investigated in mouse or nonhuman systems. However, we
would like to highlight the progress that has been made to
date and the importance of pursuing an integrated approach
to connect all underlying factors that affect HSC upon aging.
Accordingly, a more comprehensive perspective regarding
this process might be the key to bridging the gap between
translation and the human system. Therefore, future work
should emphasize the mechanisms of the HSC niche during
aging. Moreover, expanding long-term HSCs in vitro is still a
challenge, and the findings of HSC aging could be applied to
this challenge.
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